Properties

Label 456.2.bm.b.89.7
Level $456$
Weight $2$
Character 456.89
Analytic conductor $3.641$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(41,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 89.7
Character \(\chi\) \(=\) 456.89
Dual form 456.2.bm.b.41.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.505407 - 1.65667i) q^{3} +(2.78114 - 0.490390i) q^{5} +(-1.12097 + 1.94159i) q^{7} +(-2.48913 - 1.67459i) q^{9} +(5.69741 - 3.28940i) q^{11} +(1.84678 + 5.07399i) q^{13} +(0.593192 - 4.85529i) q^{15} +(-0.460192 - 0.548435i) q^{17} +(-0.336683 - 4.34588i) q^{19} +(2.65002 + 2.83838i) q^{21} +(-4.12489 - 0.727330i) q^{23} +(2.79580 - 1.01759i) q^{25} +(-4.03226 + 3.27732i) q^{27} +(1.34454 + 1.12820i) q^{29} +(-7.07240 - 4.08325i) q^{31} +(-2.56995 - 11.1012i) q^{33} +(-2.16546 + 5.94954i) q^{35} +3.68487i q^{37} +(9.33932 - 0.495083i) q^{39} +(4.12620 + 1.50181i) q^{41} +(-0.824974 - 4.67866i) q^{43} +(-7.74382 - 3.43662i) q^{45} +(-3.25644 + 3.88087i) q^{47} +(0.986831 + 1.70924i) q^{49} +(-1.14116 + 0.485204i) q^{51} +(1.20330 - 6.82425i) q^{53} +(14.2322 - 11.9423i) q^{55} +(-7.36986 - 1.63866i) q^{57} +(8.27991 - 6.94767i) q^{59} +(-1.03142 + 5.84947i) q^{61} +(6.04160 - 2.95568i) q^{63} +(7.62440 + 13.2058i) q^{65} +(-6.75064 + 8.04510i) q^{67} +(-3.28969 + 6.46600i) q^{69} +(2.19569 + 12.4524i) q^{71} +(-7.23344 - 2.63276i) q^{73} +(-0.272794 - 5.14603i) q^{75} +14.7494i q^{77} +(-2.10301 + 5.77799i) q^{79} +(3.39152 + 8.33652i) q^{81} +(6.08101 + 3.51087i) q^{83} +(-1.54881 - 1.29960i) q^{85} +(2.54860 - 1.65726i) q^{87} +(-13.9565 + 5.07976i) q^{89} +(-11.9218 - 2.10213i) q^{91} +(-10.3391 + 9.65295i) q^{93} +(-3.06754 - 11.9214i) q^{95} +(6.33856 + 7.55401i) q^{97} +(-19.6900 - 1.35307i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 6 q^{9} + 3 q^{13} - 3 q^{15} - 6 q^{17} + 3 q^{19} + 6 q^{25} + 3 q^{27} + 6 q^{29} + 24 q^{35} + 18 q^{39} + 3 q^{41} - 21 q^{43} + 63 q^{45} - 18 q^{47} - 30 q^{49} + 33 q^{51} - 36 q^{53} + 18 q^{55}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.505407 1.65667i 0.291797 0.956480i
\(4\) 0 0
\(5\) 2.78114 0.490390i 1.24376 0.219309i 0.487236 0.873270i \(-0.338005\pi\)
0.756528 + 0.653961i \(0.226894\pi\)
\(6\) 0 0
\(7\) −1.12097 + 1.94159i −0.423689 + 0.733850i −0.996297 0.0859788i \(-0.972598\pi\)
0.572608 + 0.819829i \(0.305932\pi\)
\(8\) 0 0
\(9\) −2.48913 1.67459i −0.829709 0.558196i
\(10\) 0 0
\(11\) 5.69741 3.28940i 1.71783 0.991792i 0.794987 0.606626i \(-0.207477\pi\)
0.922847 0.385166i \(-0.125856\pi\)
\(12\) 0 0
\(13\) 1.84678 + 5.07399i 0.512205 + 1.40727i 0.878934 + 0.476944i \(0.158256\pi\)
−0.366729 + 0.930328i \(0.619522\pi\)
\(14\) 0 0
\(15\) 0.593192 4.85529i 0.153161 1.25363i
\(16\) 0 0
\(17\) −0.460192 0.548435i −0.111613 0.133015i 0.707345 0.706868i \(-0.249893\pi\)
−0.818958 + 0.573853i \(0.805448\pi\)
\(18\) 0 0
\(19\) −0.336683 4.34588i −0.0772404 0.997012i
\(20\) 0 0
\(21\) 2.65002 + 2.83838i 0.578282 + 0.619385i
\(22\) 0 0
\(23\) −4.12489 0.727330i −0.860099 0.151659i −0.273833 0.961777i \(-0.588292\pi\)
−0.586266 + 0.810119i \(0.699403\pi\)
\(24\) 0 0
\(25\) 2.79580 1.01759i 0.559161 0.203518i
\(26\) 0 0
\(27\) −4.03226 + 3.27732i −0.776010 + 0.630721i
\(28\) 0 0
\(29\) 1.34454 + 1.12820i 0.249674 + 0.209502i 0.759032 0.651053i \(-0.225673\pi\)
−0.509358 + 0.860555i \(0.670117\pi\)
\(30\) 0 0
\(31\) −7.07240 4.08325i −1.27024 0.733374i −0.295208 0.955433i \(-0.595389\pi\)
−0.975033 + 0.222059i \(0.928722\pi\)
\(32\) 0 0
\(33\) −2.56995 11.1012i −0.447371 1.93248i
\(34\) 0 0
\(35\) −2.16546 + 5.94954i −0.366029 + 1.00566i
\(36\) 0 0
\(37\) 3.68487i 0.605789i 0.953024 + 0.302894i \(0.0979529\pi\)
−0.953024 + 0.302894i \(0.902047\pi\)
\(38\) 0 0
\(39\) 9.33932 0.495083i 1.49549 0.0792768i
\(40\) 0 0
\(41\) 4.12620 + 1.50181i 0.644404 + 0.234544i 0.643488 0.765456i \(-0.277486\pi\)
0.000915237 1.00000i \(0.499709\pi\)
\(42\) 0 0
\(43\) −0.824974 4.67866i −0.125807 0.713489i −0.980825 0.194890i \(-0.937565\pi\)
0.855018 0.518599i \(-0.173546\pi\)
\(44\) 0 0
\(45\) −7.74382 3.43662i −1.15438 0.512301i
\(46\) 0 0
\(47\) −3.25644 + 3.88087i −0.475000 + 0.566084i −0.949337 0.314260i \(-0.898244\pi\)
0.474336 + 0.880344i \(0.342688\pi\)
\(48\) 0 0
\(49\) 0.986831 + 1.70924i 0.140976 + 0.244177i
\(50\) 0 0
\(51\) −1.14116 + 0.485204i −0.159795 + 0.0679422i
\(52\) 0 0
\(53\) 1.20330 6.82425i 0.165286 0.937383i −0.783483 0.621413i \(-0.786559\pi\)
0.948769 0.315970i \(-0.102330\pi\)
\(54\) 0 0
\(55\) 14.2322 11.9423i 1.91907 1.61029i
\(56\) 0 0
\(57\) −7.36986 1.63866i −0.976161 0.217046i
\(58\) 0 0
\(59\) 8.27991 6.94767i 1.07795 0.904510i 0.0822033 0.996616i \(-0.473804\pi\)
0.995749 + 0.0921060i \(0.0293599\pi\)
\(60\) 0 0
\(61\) −1.03142 + 5.84947i −0.132060 + 0.748948i 0.844802 + 0.535078i \(0.179718\pi\)
−0.976862 + 0.213870i \(0.931393\pi\)
\(62\) 0 0
\(63\) 6.04160 2.95568i 0.761171 0.372381i
\(64\) 0 0
\(65\) 7.62440 + 13.2058i 0.945690 + 1.63798i
\(66\) 0 0
\(67\) −6.75064 + 8.04510i −0.824722 + 0.982865i −0.999999 0.00165397i \(-0.999474\pi\)
0.175277 + 0.984519i \(0.443918\pi\)
\(68\) 0 0
\(69\) −3.28969 + 6.46600i −0.396033 + 0.778414i
\(70\) 0 0
\(71\) 2.19569 + 12.4524i 0.260581 + 1.47783i 0.781330 + 0.624118i \(0.214541\pi\)
−0.520749 + 0.853710i \(0.674347\pi\)
\(72\) 0 0
\(73\) −7.23344 2.63276i −0.846610 0.308141i −0.117953 0.993019i \(-0.537633\pi\)
−0.728657 + 0.684878i \(0.759855\pi\)
\(74\) 0 0
\(75\) −0.272794 5.14603i −0.0314996 0.594212i
\(76\) 0 0
\(77\) 14.7494i 1.68084i
\(78\) 0 0
\(79\) −2.10301 + 5.77799i −0.236608 + 0.650074i 0.763384 + 0.645945i \(0.223537\pi\)
−0.999991 + 0.00412906i \(0.998686\pi\)
\(80\) 0 0
\(81\) 3.39152 + 8.33652i 0.376835 + 0.926280i
\(82\) 0 0
\(83\) 6.08101 + 3.51087i 0.667478 + 0.385369i 0.795120 0.606452i \(-0.207408\pi\)
−0.127642 + 0.991820i \(0.540741\pi\)
\(84\) 0 0
\(85\) −1.54881 1.29960i −0.167992 0.140962i
\(86\) 0 0
\(87\) 2.54860 1.65726i 0.273238 0.177677i
\(88\) 0 0
\(89\) −13.9565 + 5.07976i −1.47939 + 0.538453i −0.950632 0.310320i \(-0.899564\pi\)
−0.528757 + 0.848774i \(0.677342\pi\)
\(90\) 0 0
\(91\) −11.9218 2.10213i −1.24974 0.220363i
\(92\) 0 0
\(93\) −10.3391 + 9.65295i −1.07211 + 1.00096i
\(94\) 0 0
\(95\) −3.06754 11.9214i −0.314723 1.22311i
\(96\) 0 0
\(97\) 6.33856 + 7.55401i 0.643584 + 0.766993i 0.984932 0.172944i \(-0.0553279\pi\)
−0.341348 + 0.939937i \(0.610883\pi\)
\(98\) 0 0
\(99\) −19.6900 1.35307i −1.97892 0.135988i
\(100\) 0 0
\(101\) −3.32961 9.14804i −0.331309 0.910264i −0.987772 0.155906i \(-0.950170\pi\)
0.656463 0.754358i \(-0.272052\pi\)
\(102\) 0 0
\(103\) 4.50028 2.59824i 0.443426 0.256012i −0.261624 0.965170i \(-0.584258\pi\)
0.705050 + 0.709158i \(0.250925\pi\)
\(104\) 0 0
\(105\) 8.76200 + 6.59439i 0.855084 + 0.643546i
\(106\) 0 0
\(107\) −8.76381 + 15.1794i −0.847229 + 1.46744i 0.0364419 + 0.999336i \(0.488398\pi\)
−0.883671 + 0.468108i \(0.844936\pi\)
\(108\) 0 0
\(109\) 4.63286 0.816899i 0.443748 0.0782447i 0.0526901 0.998611i \(-0.483220\pi\)
0.391058 + 0.920366i \(0.372109\pi\)
\(110\) 0 0
\(111\) 6.10462 + 1.86236i 0.579425 + 0.176767i
\(112\) 0 0
\(113\) −0.795701 −0.0748532 −0.0374266 0.999299i \(-0.511916\pi\)
−0.0374266 + 0.999299i \(0.511916\pi\)
\(114\) 0 0
\(115\) −11.8286 −1.10302
\(116\) 0 0
\(117\) 3.89996 15.7224i 0.360552 1.45354i
\(118\) 0 0
\(119\) 1.58070 0.278720i 0.144902 0.0255502i
\(120\) 0 0
\(121\) 16.1403 27.9559i 1.46730 2.54144i
\(122\) 0 0
\(123\) 4.57342 6.07673i 0.412371 0.547920i
\(124\) 0 0
\(125\) −4.95196 + 2.85902i −0.442917 + 0.255718i
\(126\) 0 0
\(127\) 2.07272 + 5.69475i 0.183924 + 0.505328i 0.997050 0.0767610i \(-0.0244578\pi\)
−0.813125 + 0.582089i \(0.802236\pi\)
\(128\) 0 0
\(129\) −8.16795 0.997914i −0.719148 0.0878614i
\(130\) 0 0
\(131\) 0.245621 + 0.292720i 0.0214600 + 0.0255751i 0.776668 0.629911i \(-0.216908\pi\)
−0.755208 + 0.655486i \(0.772464\pi\)
\(132\) 0 0
\(133\) 8.81530 + 4.21792i 0.764384 + 0.365740i
\(134\) 0 0
\(135\) −9.60713 + 11.0921i −0.826850 + 0.954654i
\(136\) 0 0
\(137\) −13.8890 2.44900i −1.18661 0.209232i −0.454710 0.890640i \(-0.650257\pi\)
−0.731904 + 0.681408i \(0.761368\pi\)
\(138\) 0 0
\(139\) −0.257841 + 0.0938465i −0.0218698 + 0.00795995i −0.352932 0.935649i \(-0.614815\pi\)
0.331062 + 0.943609i \(0.392593\pi\)
\(140\) 0 0
\(141\) 4.78351 + 7.35627i 0.402844 + 0.619510i
\(142\) 0 0
\(143\) 27.2123 + 22.8338i 2.27561 + 1.90946i
\(144\) 0 0
\(145\) 4.29261 + 2.47834i 0.356482 + 0.205815i
\(146\) 0 0
\(147\) 3.33040 0.770993i 0.274687 0.0635905i
\(148\) 0 0
\(149\) 4.30153 11.8184i 0.352395 0.968198i −0.629203 0.777241i \(-0.716619\pi\)
0.981598 0.190957i \(-0.0611592\pi\)
\(150\) 0 0
\(151\) 17.9408i 1.46001i 0.683444 + 0.730003i \(0.260481\pi\)
−0.683444 + 0.730003i \(0.739519\pi\)
\(152\) 0 0
\(153\) 0.227074 + 2.13576i 0.0183578 + 0.172666i
\(154\) 0 0
\(155\) −21.6717 7.88787i −1.74072 0.633569i
\(156\) 0 0
\(157\) −1.20226 6.81837i −0.0959510 0.544165i −0.994452 0.105193i \(-0.966454\pi\)
0.898501 0.438972i \(-0.144657\pi\)
\(158\) 0 0
\(159\) −10.6974 5.44249i −0.848358 0.431618i
\(160\) 0 0
\(161\) 6.03607 7.19351i 0.475709 0.566928i
\(162\) 0 0
\(163\) −0.335462 0.581037i −0.0262754 0.0455103i 0.852589 0.522583i \(-0.175031\pi\)
−0.878864 + 0.477072i \(0.841698\pi\)
\(164\) 0 0
\(165\) −12.5913 29.6138i −0.980235 2.30543i
\(166\) 0 0
\(167\) 0.567367 3.21770i 0.0439042 0.248993i −0.954955 0.296751i \(-0.904097\pi\)
0.998859 + 0.0477586i \(0.0152078\pi\)
\(168\) 0 0
\(169\) −12.3762 + 10.3849i −0.952016 + 0.798836i
\(170\) 0 0
\(171\) −6.43950 + 11.3812i −0.492441 + 0.870346i
\(172\) 0 0
\(173\) 3.27667 2.74946i 0.249121 0.209037i −0.509673 0.860368i \(-0.670234\pi\)
0.758794 + 0.651331i \(0.225789\pi\)
\(174\) 0 0
\(175\) −1.15829 + 6.56898i −0.0875584 + 0.496569i
\(176\) 0 0
\(177\) −7.32529 17.2285i −0.550603 1.29497i
\(178\) 0 0
\(179\) −3.12472 5.41218i −0.233553 0.404525i 0.725298 0.688435i \(-0.241702\pi\)
−0.958851 + 0.283910i \(0.908368\pi\)
\(180\) 0 0
\(181\) −3.63150 + 4.32785i −0.269927 + 0.321687i −0.883932 0.467616i \(-0.845113\pi\)
0.614005 + 0.789302i \(0.289558\pi\)
\(182\) 0 0
\(183\) 9.16937 + 4.66509i 0.677819 + 0.344853i
\(184\) 0 0
\(185\) 1.80702 + 10.2481i 0.132855 + 0.753458i
\(186\) 0 0
\(187\) −4.42593 1.61091i −0.323656 0.117801i
\(188\) 0 0
\(189\) −1.84314 11.5028i −0.134068 0.836704i
\(190\) 0 0
\(191\) 15.8727i 1.14851i −0.818678 0.574253i \(-0.805293\pi\)
0.818678 0.574253i \(-0.194707\pi\)
\(192\) 0 0
\(193\) −2.22289 + 6.10735i −0.160007 + 0.439616i −0.993626 0.112723i \(-0.964043\pi\)
0.833619 + 0.552340i \(0.186265\pi\)
\(194\) 0 0
\(195\) 25.7312 5.95681i 1.84265 0.426576i
\(196\) 0 0
\(197\) 12.2587 + 7.07756i 0.873396 + 0.504256i 0.868475 0.495732i \(-0.165100\pi\)
0.00492088 + 0.999988i \(0.498434\pi\)
\(198\) 0 0
\(199\) 2.94354 + 2.46993i 0.208662 + 0.175088i 0.741129 0.671362i \(-0.234291\pi\)
−0.532467 + 0.846451i \(0.678735\pi\)
\(200\) 0 0
\(201\) 9.91628 + 15.2496i 0.699440 + 1.07563i
\(202\) 0 0
\(203\) −3.69769 + 1.34585i −0.259527 + 0.0944601i
\(204\) 0 0
\(205\) 12.2120 + 2.15331i 0.852924 + 0.150394i
\(206\) 0 0
\(207\) 9.04941 + 8.71790i 0.628977 + 0.605936i
\(208\) 0 0
\(209\) −16.2136 23.6528i −1.12152 1.63610i
\(210\) 0 0
\(211\) −6.36827 7.58941i −0.438410 0.522477i 0.500919 0.865494i \(-0.332995\pi\)
−0.939329 + 0.343017i \(0.888551\pi\)
\(212\) 0 0
\(213\) 21.7393 + 2.65598i 1.48955 + 0.181985i
\(214\) 0 0
\(215\) −4.58874 12.6075i −0.312949 0.859821i
\(216\) 0 0
\(217\) 15.8560 9.15445i 1.07637 0.621445i
\(218\) 0 0
\(219\) −8.01745 + 10.6528i −0.541769 + 0.719852i
\(220\) 0 0
\(221\) 1.93288 3.34785i 0.130020 0.225201i
\(222\) 0 0
\(223\) −6.35203 + 1.12003i −0.425363 + 0.0750030i −0.382232 0.924066i \(-0.624844\pi\)
−0.0431313 + 0.999069i \(0.513733\pi\)
\(224\) 0 0
\(225\) −8.66316 2.14891i −0.577544 0.143260i
\(226\) 0 0
\(227\) 1.93669 0.128543 0.0642715 0.997932i \(-0.479528\pi\)
0.0642715 + 0.997932i \(0.479528\pi\)
\(228\) 0 0
\(229\) −0.732337 −0.0483942 −0.0241971 0.999707i \(-0.507703\pi\)
−0.0241971 + 0.999707i \(0.507703\pi\)
\(230\) 0 0
\(231\) 24.4348 + 7.45442i 1.60769 + 0.490465i
\(232\) 0 0
\(233\) 16.3556 2.88393i 1.07149 0.188933i 0.390041 0.920798i \(-0.372461\pi\)
0.681450 + 0.731865i \(0.261350\pi\)
\(234\) 0 0
\(235\) −7.15348 + 12.3902i −0.466641 + 0.808247i
\(236\) 0 0
\(237\) 8.50935 + 6.40424i 0.552742 + 0.416000i
\(238\) 0 0
\(239\) 3.12565 1.80459i 0.202181 0.116729i −0.395491 0.918470i \(-0.629426\pi\)
0.597673 + 0.801740i \(0.296092\pi\)
\(240\) 0 0
\(241\) −4.61225 12.6721i −0.297101 0.816279i −0.994981 0.100064i \(-0.968095\pi\)
0.697880 0.716215i \(-0.254127\pi\)
\(242\) 0 0
\(243\) 15.5250 1.40530i 0.995928 0.0901500i
\(244\) 0 0
\(245\) 3.58271 + 4.26971i 0.228891 + 0.272782i
\(246\) 0 0
\(247\) 21.4292 9.73421i 1.36350 0.619373i
\(248\) 0 0
\(249\) 8.88976 8.29983i 0.563365 0.525980i
\(250\) 0 0
\(251\) −8.20040 1.44595i −0.517604 0.0912676i −0.0912575 0.995827i \(-0.529089\pi\)
−0.426347 + 0.904560i \(0.640200\pi\)
\(252\) 0 0
\(253\) −25.8937 + 9.42453i −1.62792 + 0.592515i
\(254\) 0 0
\(255\) −2.93579 + 1.90904i −0.183846 + 0.119549i
\(256\) 0 0
\(257\) 14.7338 + 12.3631i 0.919070 + 0.771191i 0.973823 0.227309i \(-0.0729927\pi\)
−0.0547529 + 0.998500i \(0.517437\pi\)
\(258\) 0 0
\(259\) −7.15449 4.13065i −0.444558 0.256666i
\(260\) 0 0
\(261\) −1.45746 5.05978i −0.0902142 0.313193i
\(262\) 0 0
\(263\) 9.82773 27.0015i 0.606004 1.66498i −0.132866 0.991134i \(-0.542418\pi\)
0.738870 0.673848i \(-0.235360\pi\)
\(264\) 0 0
\(265\) 19.5693i 1.20213i
\(266\) 0 0
\(267\) 1.36178 + 25.6887i 0.0833394 + 1.57213i
\(268\) 0 0
\(269\) −4.18387 1.52281i −0.255095 0.0928471i 0.211307 0.977420i \(-0.432228\pi\)
−0.466403 + 0.884573i \(0.654450\pi\)
\(270\) 0 0
\(271\) −0.0517699 0.293602i −0.00314480 0.0178350i 0.983195 0.182559i \(-0.0584379\pi\)
−0.986340 + 0.164724i \(0.947327\pi\)
\(272\) 0 0
\(273\) −9.50789 + 18.6881i −0.575444 + 1.13105i
\(274\) 0 0
\(275\) 12.5816 14.9942i 0.758698 0.904181i
\(276\) 0 0
\(277\) −12.4130 21.4999i −0.745824 1.29180i −0.949809 0.312830i \(-0.898723\pi\)
0.203985 0.978974i \(-0.434610\pi\)
\(278\) 0 0
\(279\) 10.7664 + 22.0071i 0.644565 + 1.31753i
\(280\) 0 0
\(281\) 3.85999 21.8911i 0.230268 1.30591i −0.622087 0.782949i \(-0.713715\pi\)
0.852354 0.522965i \(-0.175174\pi\)
\(282\) 0 0
\(283\) 4.64172 3.89487i 0.275922 0.231526i −0.494317 0.869282i \(-0.664582\pi\)
0.770238 + 0.637756i \(0.220137\pi\)
\(284\) 0 0
\(285\) −21.3002 0.943244i −1.26171 0.0558730i
\(286\) 0 0
\(287\) −7.54126 + 6.32787i −0.445147 + 0.373522i
\(288\) 0 0
\(289\) 2.86301 16.2370i 0.168413 0.955115i
\(290\) 0 0
\(291\) 15.7181 6.68308i 0.921409 0.391769i
\(292\) 0 0
\(293\) −7.15307 12.3895i −0.417887 0.723801i 0.577840 0.816150i \(-0.303896\pi\)
−0.995727 + 0.0923488i \(0.970563\pi\)
\(294\) 0 0
\(295\) 19.6205 23.3828i 1.14235 1.36140i
\(296\) 0 0
\(297\) −12.1930 + 31.9360i −0.707512 + 1.85311i
\(298\) 0 0
\(299\) −3.92731 22.2729i −0.227122 1.28807i
\(300\) 0 0
\(301\) 10.0088 + 3.64290i 0.576897 + 0.209973i
\(302\) 0 0
\(303\) −16.8381 + 0.892600i −0.967324 + 0.0512785i
\(304\) 0 0
\(305\) 16.7740i 0.960477i
\(306\) 0 0
\(307\) −2.50006 + 6.86886i −0.142686 + 0.392026i −0.990365 0.138483i \(-0.955777\pi\)
0.847679 + 0.530510i \(0.177999\pi\)
\(308\) 0 0
\(309\) −2.02996 8.76866i −0.115480 0.498831i
\(310\) 0 0
\(311\) −29.4386 16.9964i −1.66931 0.963778i −0.968009 0.250915i \(-0.919268\pi\)
−0.701304 0.712863i \(-0.747398\pi\)
\(312\) 0 0
\(313\) 14.8670 + 12.4749i 0.840335 + 0.705125i 0.957639 0.287971i \(-0.0929808\pi\)
−0.117304 + 0.993096i \(0.537425\pi\)
\(314\) 0 0
\(315\) 15.3531 11.1829i 0.865050 0.630086i
\(316\) 0 0
\(317\) 22.4188 8.15976i 1.25916 0.458298i 0.375675 0.926752i \(-0.377411\pi\)
0.883488 + 0.468454i \(0.155189\pi\)
\(318\) 0 0
\(319\) 11.3715 + 2.00510i 0.636681 + 0.112264i
\(320\) 0 0
\(321\) 20.7179 + 22.1905i 1.15636 + 1.23855i
\(322\) 0 0
\(323\) −2.22849 + 2.18459i −0.123997 + 0.121554i
\(324\) 0 0
\(325\) 10.3265 + 12.3066i 0.572810 + 0.682648i
\(326\) 0 0
\(327\) 0.988146 8.08800i 0.0546446 0.447268i
\(328\) 0 0
\(329\) −3.88466 10.6730i −0.214168 0.588422i
\(330\) 0 0
\(331\) −13.5946 + 7.84886i −0.747229 + 0.431413i −0.824692 0.565583i \(-0.808651\pi\)
0.0774631 + 0.996995i \(0.475318\pi\)
\(332\) 0 0
\(333\) 6.17063 9.17211i 0.338149 0.502629i
\(334\) 0 0
\(335\) −14.8292 + 25.6850i −0.810208 + 1.40332i
\(336\) 0 0
\(337\) −23.2235 + 4.09493i −1.26506 + 0.223065i −0.765627 0.643285i \(-0.777571\pi\)
−0.499438 + 0.866350i \(0.666460\pi\)
\(338\) 0 0
\(339\) −0.402152 + 1.31822i −0.0218419 + 0.0715956i
\(340\) 0 0
\(341\) −53.7259 −2.90942
\(342\) 0 0
\(343\) −20.1185 −1.08630
\(344\) 0 0
\(345\) −5.97824 + 19.5961i −0.321858 + 1.05502i
\(346\) 0 0
\(347\) 5.21261 0.919124i 0.279828 0.0493412i −0.0319729 0.999489i \(-0.510179\pi\)
0.311801 + 0.950148i \(0.399068\pi\)
\(348\) 0 0
\(349\) −7.15845 + 12.3988i −0.383183 + 0.663692i −0.991515 0.129990i \(-0.958505\pi\)
0.608332 + 0.793682i \(0.291839\pi\)
\(350\) 0 0
\(351\) −24.0758 14.4072i −1.28507 0.768998i
\(352\) 0 0
\(353\) −3.97636 + 2.29575i −0.211640 + 0.122191i −0.602073 0.798441i \(-0.705659\pi\)
0.390433 + 0.920631i \(0.372325\pi\)
\(354\) 0 0
\(355\) 12.2131 + 33.5551i 0.648202 + 1.78092i
\(356\) 0 0
\(357\) 0.337148 2.75956i 0.0178438 0.146052i
\(358\) 0 0
\(359\) 6.35129 + 7.56917i 0.335208 + 0.399485i 0.907149 0.420809i \(-0.138254\pi\)
−0.571941 + 0.820295i \(0.693809\pi\)
\(360\) 0 0
\(361\) −18.7733 + 2.92637i −0.988068 + 0.154019i
\(362\) 0 0
\(363\) −38.1563 40.8684i −2.00269 2.14503i
\(364\) 0 0
\(365\) −21.4083 3.77486i −1.12056 0.197585i
\(366\) 0 0
\(367\) −0.473661 + 0.172399i −0.0247249 + 0.00899913i −0.354353 0.935112i \(-0.615299\pi\)
0.329628 + 0.944111i \(0.393077\pi\)
\(368\) 0 0
\(369\) −7.75572 10.6479i −0.403746 0.554306i
\(370\) 0 0
\(371\) 11.9010 + 9.98612i 0.617869 + 0.518454i
\(372\) 0 0
\(373\) 0.239135 + 0.138065i 0.0123819 + 0.00714871i 0.506178 0.862429i \(-0.331058\pi\)
−0.493796 + 0.869578i \(0.664391\pi\)
\(374\) 0 0
\(375\) 2.23370 + 9.64875i 0.115348 + 0.498259i
\(376\) 0 0
\(377\) −3.24141 + 8.90571i −0.166941 + 0.458667i
\(378\) 0 0
\(379\) 12.3487i 0.634308i 0.948374 + 0.317154i \(0.102727\pi\)
−0.948374 + 0.317154i \(0.897273\pi\)
\(380\) 0 0
\(381\) 10.4819 0.555653i 0.537005 0.0284670i
\(382\) 0 0
\(383\) −18.5993 6.76960i −0.950381 0.345910i −0.180124 0.983644i \(-0.557650\pi\)
−0.770257 + 0.637734i \(0.779872\pi\)
\(384\) 0 0
\(385\) 7.23294 + 41.0200i 0.368625 + 2.09057i
\(386\) 0 0
\(387\) −5.78136 + 13.0273i −0.293883 + 0.662213i
\(388\) 0 0
\(389\) 12.4909 14.8860i 0.633312 0.754751i −0.349986 0.936755i \(-0.613814\pi\)
0.983298 + 0.182003i \(0.0582582\pi\)
\(390\) 0 0
\(391\) 1.49935 + 2.59695i 0.0758253 + 0.131333i
\(392\) 0 0
\(393\) 0.609080 0.258971i 0.0307240 0.0130634i
\(394\) 0 0
\(395\) −3.01531 + 17.1007i −0.151717 + 0.860429i
\(396\) 0 0
\(397\) −11.7235 + 9.83720i −0.588386 + 0.493715i −0.887689 0.460443i \(-0.847690\pi\)
0.299303 + 0.954158i \(0.403246\pi\)
\(398\) 0 0
\(399\) 11.4430 12.4723i 0.572868 0.624396i
\(400\) 0 0
\(401\) 3.93117 3.29864i 0.196313 0.164726i −0.539332 0.842093i \(-0.681323\pi\)
0.735646 + 0.677367i \(0.236879\pi\)
\(402\) 0 0
\(403\) 7.65721 43.4262i 0.381433 2.16321i
\(404\) 0 0
\(405\) 13.5204 + 21.5219i 0.671836 + 1.06943i
\(406\) 0 0
\(407\) 12.1210 + 20.9942i 0.600817 + 1.04064i
\(408\) 0 0
\(409\) 14.3999 17.1612i 0.712031 0.848566i −0.281800 0.959473i \(-0.590931\pi\)
0.993831 + 0.110908i \(0.0353758\pi\)
\(410\) 0 0
\(411\) −11.0768 + 21.7717i −0.546376 + 1.07392i
\(412\) 0 0
\(413\) 4.20792 + 23.8643i 0.207058 + 1.17429i
\(414\) 0 0
\(415\) 18.6339 + 6.78217i 0.914700 + 0.332924i
\(416\) 0 0
\(417\) 0.0251583 + 0.474589i 0.00123201 + 0.0232407i
\(418\) 0 0
\(419\) 33.9260i 1.65739i 0.559698 + 0.828697i \(0.310917\pi\)
−0.559698 + 0.828697i \(0.689083\pi\)
\(420\) 0 0
\(421\) 7.50801 20.6281i 0.365918 1.00535i −0.610980 0.791646i \(-0.709224\pi\)
0.976898 0.213706i \(-0.0685533\pi\)
\(422\) 0 0
\(423\) 14.6046 4.20680i 0.710098 0.204542i
\(424\) 0 0
\(425\) −1.84469 1.06503i −0.0894805 0.0516616i
\(426\) 0 0
\(427\) −10.2011 8.55970i −0.493664 0.414233i
\(428\) 0 0
\(429\) 51.5814 33.5415i 2.49037 1.61940i
\(430\) 0 0
\(431\) 4.74408 1.72670i 0.228514 0.0831724i −0.225225 0.974307i \(-0.572312\pi\)
0.453740 + 0.891134i \(0.350090\pi\)
\(432\) 0 0
\(433\) 29.6453 + 5.22727i 1.42466 + 0.251207i 0.832238 0.554419i \(-0.187059\pi\)
0.592426 + 0.805625i \(0.298170\pi\)
\(434\) 0 0
\(435\) 6.27531 5.85888i 0.300878 0.280912i
\(436\) 0 0
\(437\) −1.77210 + 18.1711i −0.0847712 + 0.869244i
\(438\) 0 0
\(439\) −1.56606 1.86636i −0.0747439 0.0890763i 0.727377 0.686238i \(-0.240739\pi\)
−0.802121 + 0.597162i \(0.796295\pi\)
\(440\) 0 0
\(441\) 0.405924 5.90705i 0.0193297 0.281288i
\(442\) 0 0
\(443\) 3.77403 + 10.3691i 0.179310 + 0.492649i 0.996488 0.0837359i \(-0.0266852\pi\)
−0.817178 + 0.576385i \(0.804463\pi\)
\(444\) 0 0
\(445\) −36.3240 + 20.9717i −1.72192 + 0.994153i
\(446\) 0 0
\(447\) −17.4051 13.0993i −0.823235 0.619576i
\(448\) 0 0
\(449\) 4.92205 8.52525i 0.232286 0.402331i −0.726194 0.687489i \(-0.758713\pi\)
0.958480 + 0.285158i \(0.0920461\pi\)
\(450\) 0 0
\(451\) 28.4487 5.01628i 1.33960 0.236207i
\(452\) 0 0
\(453\) 29.7221 + 9.06742i 1.39647 + 0.426025i
\(454\) 0 0
\(455\) −34.1870 −1.60271
\(456\) 0 0
\(457\) 34.7856 1.62720 0.813601 0.581424i \(-0.197504\pi\)
0.813601 + 0.581424i \(0.197504\pi\)
\(458\) 0 0
\(459\) 3.65301 + 0.703239i 0.170508 + 0.0328244i
\(460\) 0 0
\(461\) −10.0178 + 1.76641i −0.466575 + 0.0822697i −0.401993 0.915643i \(-0.631682\pi\)
−0.0645817 + 0.997912i \(0.520571\pi\)
\(462\) 0 0
\(463\) −4.91533 + 8.51360i −0.228435 + 0.395661i −0.957344 0.288949i \(-0.906694\pi\)
0.728910 + 0.684610i \(0.240027\pi\)
\(464\) 0 0
\(465\) −24.0207 + 31.9164i −1.11393 + 1.48009i
\(466\) 0 0
\(467\) −0.244993 + 0.141447i −0.0113369 + 0.00654538i −0.505658 0.862734i \(-0.668750\pi\)
0.494321 + 0.869280i \(0.335417\pi\)
\(468\) 0 0
\(469\) −8.05295 22.1253i −0.371851 1.02165i
\(470\) 0 0
\(471\) −11.9034 1.45429i −0.548482 0.0670104i
\(472\) 0 0
\(473\) −20.0902 23.9426i −0.923749 1.10088i
\(474\) 0 0
\(475\) −5.36362 11.8076i −0.246100 0.541770i
\(476\) 0 0
\(477\) −14.4230 + 14.9714i −0.660382 + 0.685493i
\(478\) 0 0
\(479\) 18.9911 + 3.34864i 0.867724 + 0.153003i 0.589750 0.807586i \(-0.299226\pi\)
0.277973 + 0.960589i \(0.410337\pi\)
\(480\) 0 0
\(481\) −18.6970 + 6.80515i −0.852509 + 0.310288i
\(482\) 0 0
\(483\) −8.86662 13.6354i −0.403445 0.620434i
\(484\) 0 0
\(485\) 21.3329 + 17.9004i 0.968675 + 0.812815i
\(486\) 0 0
\(487\) −24.9285 14.3925i −1.12962 0.652185i −0.185779 0.982592i \(-0.559481\pi\)
−0.943839 + 0.330407i \(0.892814\pi\)
\(488\) 0 0
\(489\) −1.13213 + 0.262091i −0.0511968 + 0.0118521i
\(490\) 0 0
\(491\) 11.8893 32.6655i 0.536556 1.47417i −0.314581 0.949231i \(-0.601864\pi\)
0.851137 0.524944i \(-0.175914\pi\)
\(492\) 0 0
\(493\) 1.25658i 0.0565935i
\(494\) 0 0
\(495\) −55.4242 + 5.89270i −2.49113 + 0.264857i
\(496\) 0 0
\(497\) −26.6387 9.69570i −1.19491 0.434911i
\(498\) 0 0
\(499\) −1.79554 10.1830i −0.0803793 0.455854i −0.998258 0.0589934i \(-0.981211\pi\)
0.917879 0.396860i \(-0.129900\pi\)
\(500\) 0 0
\(501\) −5.04392 2.56619i −0.225346 0.114649i
\(502\) 0 0
\(503\) 5.38397 6.41636i 0.240059 0.286092i −0.632541 0.774527i \(-0.717988\pi\)
0.872600 + 0.488436i \(0.162432\pi\)
\(504\) 0 0
\(505\) −13.7462 23.8092i −0.611700 1.05949i
\(506\) 0 0
\(507\) 10.9493 + 25.7519i 0.486276 + 1.14368i
\(508\) 0 0
\(509\) −3.41126 + 19.3462i −0.151202 + 0.857506i 0.810975 + 0.585080i \(0.198937\pi\)
−0.962177 + 0.272426i \(0.912174\pi\)
\(510\) 0 0
\(511\) 13.2202 11.0931i 0.584828 0.490729i
\(512\) 0 0
\(513\) 15.6004 + 16.4203i 0.688776 + 0.724974i
\(514\) 0 0
\(515\) 11.2418 9.43296i 0.495371 0.415666i
\(516\) 0 0
\(517\) −5.78752 + 32.8227i −0.254535 + 1.44354i
\(518\) 0 0
\(519\) −2.89889 6.81797i −0.127247 0.299276i
\(520\) 0 0
\(521\) 17.7743 + 30.7860i 0.778705 + 1.34876i 0.932688 + 0.360684i \(0.117457\pi\)
−0.153983 + 0.988074i \(0.549210\pi\)
\(522\) 0 0
\(523\) 7.32928 8.73469i 0.320487 0.381942i −0.581615 0.813464i \(-0.697579\pi\)
0.902102 + 0.431523i \(0.142023\pi\)
\(524\) 0 0
\(525\) 10.2972 + 5.23891i 0.449409 + 0.228645i
\(526\) 0 0
\(527\) 1.01526 + 5.75784i 0.0442255 + 0.250815i
\(528\) 0 0
\(529\) −5.12721 1.86615i −0.222922 0.0811371i
\(530\) 0 0
\(531\) −32.2442 + 3.42821i −1.39928 + 0.148772i
\(532\) 0 0
\(533\) 23.7098i 1.02699i
\(534\) 0 0
\(535\) −16.9296 + 46.5136i −0.731930 + 2.01096i
\(536\) 0 0
\(537\) −10.5455 + 2.44129i −0.455070 + 0.105349i
\(538\) 0 0
\(539\) 11.2448 + 6.49217i 0.484346 + 0.279637i
\(540\) 0 0
\(541\) 17.9188 + 15.0357i 0.770390 + 0.646434i 0.940809 0.338938i \(-0.110068\pi\)
−0.170419 + 0.985372i \(0.554512\pi\)
\(542\) 0 0
\(543\) 5.33445 + 8.20353i 0.228923 + 0.352047i
\(544\) 0 0
\(545\) 12.4840 4.54382i 0.534758 0.194636i
\(546\) 0 0
\(547\) −15.8120 2.78808i −0.676071 0.119210i −0.174937 0.984580i \(-0.555972\pi\)
−0.501133 + 0.865370i \(0.667083\pi\)
\(548\) 0 0
\(549\) 12.3628 12.8329i 0.527631 0.547694i
\(550\) 0 0
\(551\) 4.45034 6.22304i 0.189591 0.265110i
\(552\) 0 0
\(553\) −8.86103 10.5602i −0.376809 0.449064i
\(554\) 0 0
\(555\) 17.8911 + 2.18583i 0.759435 + 0.0927834i
\(556\) 0 0
\(557\) 12.8621 + 35.3383i 0.544984 + 1.49733i 0.840402 + 0.541964i \(0.182319\pi\)
−0.295417 + 0.955368i \(0.595459\pi\)
\(558\) 0 0
\(559\) 22.2159 12.8264i 0.939634 0.542498i
\(560\) 0 0
\(561\) −4.90564 + 6.51815i −0.207116 + 0.275197i
\(562\) 0 0
\(563\) 8.24918 14.2880i 0.347662 0.602168i −0.638172 0.769894i \(-0.720309\pi\)
0.985834 + 0.167726i \(0.0536425\pi\)
\(564\) 0 0
\(565\) −2.21296 + 0.390204i −0.0930998 + 0.0164160i
\(566\) 0 0
\(567\) −19.9879 2.76011i −0.839412 0.115914i
\(568\) 0 0
\(569\) 6.34727 0.266091 0.133046 0.991110i \(-0.457524\pi\)
0.133046 + 0.991110i \(0.457524\pi\)
\(570\) 0 0
\(571\) 32.7448 1.37033 0.685163 0.728390i \(-0.259731\pi\)
0.685163 + 0.728390i \(0.259731\pi\)
\(572\) 0 0
\(573\) −26.2958 8.02215i −1.09852 0.335130i
\(574\) 0 0
\(575\) −12.2725 + 2.16397i −0.511799 + 0.0902440i
\(576\) 0 0
\(577\) 0.927339 1.60620i 0.0386056 0.0668669i −0.846077 0.533061i \(-0.821042\pi\)
0.884683 + 0.466194i \(0.154375\pi\)
\(578\) 0 0
\(579\) 8.99441 + 6.76930i 0.373795 + 0.281322i
\(580\) 0 0
\(581\) −13.6333 + 7.87121i −0.565606 + 0.326553i
\(582\) 0 0
\(583\) −15.5920 42.8387i −0.645755 1.77420i
\(584\) 0 0
\(585\) 3.13623 45.6388i 0.129667 1.88693i
\(586\) 0 0
\(587\) −14.8603 17.7099i −0.613352 0.730964i 0.366560 0.930394i \(-0.380535\pi\)
−0.979912 + 0.199430i \(0.936091\pi\)
\(588\) 0 0
\(589\) −15.3642 + 32.1106i −0.633069 + 1.32309i
\(590\) 0 0
\(591\) 17.9208 16.7316i 0.737165 0.688246i
\(592\) 0 0
\(593\) −29.7078 5.23829i −1.21995 0.215111i −0.473648 0.880714i \(-0.657063\pi\)
−0.746305 + 0.665604i \(0.768174\pi\)
\(594\) 0 0
\(595\) 4.25946 1.55032i 0.174621 0.0635568i
\(596\) 0 0
\(597\) 5.57955 3.62817i 0.228356 0.148491i
\(598\) 0 0
\(599\) 13.2364 + 11.1067i 0.540826 + 0.453807i 0.871820 0.489826i \(-0.162940\pi\)
−0.330994 + 0.943633i \(0.607384\pi\)
\(600\) 0 0
\(601\) −29.8194 17.2163i −1.21636 0.702266i −0.252223 0.967669i \(-0.581162\pi\)
−0.964138 + 0.265403i \(0.914495\pi\)
\(602\) 0 0
\(603\) 30.2754 8.72075i 1.23291 0.355136i
\(604\) 0 0
\(605\) 31.1793 85.6644i 1.26762 3.48275i
\(606\) 0 0
\(607\) 35.2061i 1.42897i −0.699651 0.714485i \(-0.746661\pi\)
0.699651 0.714485i \(-0.253339\pi\)
\(608\) 0 0
\(609\) 0.360794 + 6.80606i 0.0146201 + 0.275796i
\(610\) 0 0
\(611\) −25.7054 9.35602i −1.03993 0.378504i
\(612\) 0 0
\(613\) 4.56485 + 25.8886i 0.184373 + 1.04563i 0.926759 + 0.375657i \(0.122583\pi\)
−0.742386 + 0.669972i \(0.766306\pi\)
\(614\) 0 0
\(615\) 9.73936 19.1430i 0.392729 0.771921i
\(616\) 0 0
\(617\) 24.8664 29.6347i 1.00108 1.19305i 0.0199340 0.999801i \(-0.493654\pi\)
0.981151 0.193245i \(-0.0619012\pi\)
\(618\) 0 0
\(619\) 12.5787 + 21.7869i 0.505579 + 0.875688i 0.999979 + 0.00645396i \(0.00205437\pi\)
−0.494400 + 0.869234i \(0.664612\pi\)
\(620\) 0 0
\(621\) 19.0163 10.5858i 0.763100 0.424794i
\(622\) 0 0
\(623\) 5.78213 32.7921i 0.231656 1.31379i
\(624\) 0 0
\(625\) −23.7659 + 19.9419i −0.950635 + 0.797678i
\(626\) 0 0
\(627\) −47.3793 + 14.9063i −1.89215 + 0.595300i
\(628\) 0 0
\(629\) 2.02091 1.69575i 0.0805790 0.0676138i
\(630\) 0 0
\(631\) −7.34421 + 41.6511i −0.292368 + 1.65810i 0.385341 + 0.922774i \(0.374084\pi\)
−0.677710 + 0.735330i \(0.737027\pi\)
\(632\) 0 0
\(633\) −15.7917 + 6.71440i −0.627665 + 0.266874i
\(634\) 0 0
\(635\) 8.55718 + 14.8215i 0.339581 + 0.588172i
\(636\) 0 0
\(637\) −6.85021 + 8.16376i −0.271415 + 0.323460i
\(638\) 0 0
\(639\) 15.3873 34.6725i 0.608710 1.37162i
\(640\) 0 0
\(641\) 0.626666 + 3.55400i 0.0247518 + 0.140374i 0.994679 0.103019i \(-0.0328504\pi\)
−0.969928 + 0.243394i \(0.921739\pi\)
\(642\) 0 0
\(643\) 16.2051 + 5.89817i 0.639066 + 0.232601i 0.641173 0.767397i \(-0.278448\pi\)
−0.00210635 + 0.999998i \(0.500670\pi\)
\(644\) 0 0
\(645\) −23.2056 + 1.23014i −0.913720 + 0.0484369i
\(646\) 0 0
\(647\) 43.1987i 1.69832i 0.528138 + 0.849158i \(0.322890\pi\)
−0.528138 + 0.849158i \(0.677110\pi\)
\(648\) 0 0
\(649\) 24.3204 66.8197i 0.954659 2.62290i
\(650\) 0 0
\(651\) −7.15221 30.8949i −0.280317 1.21087i
\(652\) 0 0
\(653\) −32.6444 18.8473i −1.27747 0.737550i −0.301091 0.953595i \(-0.597351\pi\)
−0.976383 + 0.216045i \(0.930684\pi\)
\(654\) 0 0
\(655\) 0.826654 + 0.693645i 0.0323001 + 0.0271030i
\(656\) 0 0
\(657\) 13.5962 + 18.6663i 0.530438 + 0.728242i
\(658\) 0 0
\(659\) −8.64651 + 3.14707i −0.336820 + 0.122593i −0.504893 0.863182i \(-0.668468\pi\)
0.168073 + 0.985775i \(0.446246\pi\)
\(660\) 0 0
\(661\) −0.272839 0.0481089i −0.0106122 0.00187122i 0.168340 0.985729i \(-0.446159\pi\)
−0.178952 + 0.983858i \(0.557271\pi\)
\(662\) 0 0
\(663\) −4.56940 4.89418i −0.177461 0.190074i
\(664\) 0 0
\(665\) 26.5850 + 7.40769i 1.03092 + 0.287258i
\(666\) 0 0
\(667\) −4.72550 5.63163i −0.182972 0.218057i
\(668\) 0 0
\(669\) −1.35483 + 11.0893i −0.0523807 + 0.428737i
\(670\) 0 0
\(671\) 13.3648 + 36.7196i 0.515944 + 1.41754i
\(672\) 0 0
\(673\) 13.7853 7.95895i 0.531385 0.306795i −0.210196 0.977659i \(-0.567410\pi\)
0.741580 + 0.670864i \(0.234077\pi\)
\(674\) 0 0
\(675\) −7.93845 + 13.2659i −0.305551 + 0.510606i
\(676\) 0 0
\(677\) −13.0452 + 22.5950i −0.501369 + 0.868397i 0.498630 + 0.866815i \(0.333837\pi\)
−0.999999 + 0.00158170i \(0.999497\pi\)
\(678\) 0 0
\(679\) −21.7721 + 3.83901i −0.835537 + 0.147328i
\(680\) 0 0
\(681\) 0.978819 3.20847i 0.0375084 0.122949i
\(682\) 0 0
\(683\) 21.9973 0.841702 0.420851 0.907130i \(-0.361732\pi\)
0.420851 + 0.907130i \(0.361732\pi\)
\(684\) 0 0
\(685\) −39.8281 −1.52175
\(686\) 0 0
\(687\) −0.370128 + 1.21324i −0.0141213 + 0.0462881i
\(688\) 0 0
\(689\) 36.8484 6.49737i 1.40381 0.247530i
\(690\) 0 0
\(691\) 18.1605 31.4548i 0.690857 1.19660i −0.280701 0.959795i \(-0.590567\pi\)
0.971558 0.236804i \(-0.0760998\pi\)
\(692\) 0 0
\(693\) 24.6991 36.7130i 0.938240 1.39461i
\(694\) 0 0
\(695\) −0.671071 + 0.387443i −0.0254552 + 0.0146966i
\(696\) 0 0
\(697\) −1.07520 2.95407i −0.0407259 0.111894i
\(698\) 0 0
\(699\) 3.48850 28.5534i 0.131947 1.07999i
\(700\) 0 0
\(701\) −6.19222 7.37960i −0.233877 0.278724i 0.636323 0.771423i \(-0.280455\pi\)
−0.870200 + 0.492699i \(0.836010\pi\)
\(702\) 0 0
\(703\) 16.0140 1.24063i 0.603979 0.0467914i
\(704\) 0 0
\(705\) 16.9111 + 18.1131i 0.636908 + 0.682177i
\(706\) 0 0
\(707\) 21.4941 + 3.78999i 0.808369 + 0.142537i
\(708\) 0 0
\(709\) 30.2012 10.9924i 1.13423 0.412827i 0.294405 0.955681i \(-0.404879\pi\)
0.839827 + 0.542854i \(0.182656\pi\)
\(710\) 0 0
\(711\) 14.9104 10.8605i 0.559184 0.407299i
\(712\) 0 0
\(713\) 26.2030 + 21.9869i 0.981311 + 0.823418i
\(714\) 0 0
\(715\) 86.8787 + 50.1594i 3.24908 + 1.87586i
\(716\) 0 0
\(717\) −1.40990 6.09023i −0.0526536 0.227444i
\(718\) 0 0
\(719\) 16.1565 44.3896i 0.602535 1.65545i −0.143584 0.989638i \(-0.545863\pi\)
0.746119 0.665813i \(-0.231915\pi\)
\(720\) 0 0
\(721\) 11.6502i 0.433877i
\(722\) 0 0
\(723\) −23.3245 + 1.23645i −0.867448 + 0.0459840i
\(724\) 0 0
\(725\) 4.90711 + 1.78604i 0.182245 + 0.0663319i
\(726\) 0 0
\(727\) −3.16767 17.9648i −0.117482 0.666276i −0.985491 0.169727i \(-0.945711\pi\)
0.868009 0.496549i \(-0.165400\pi\)
\(728\) 0 0
\(729\) 5.51831 26.4301i 0.204382 0.978891i
\(730\) 0 0
\(731\) −2.18630 + 2.60553i −0.0808631 + 0.0963688i
\(732\) 0 0
\(733\) −11.2370 19.4630i −0.415047 0.718883i 0.580386 0.814341i \(-0.302902\pi\)
−0.995433 + 0.0954585i \(0.969568\pi\)
\(734\) 0 0
\(735\) 8.88424 3.77744i 0.327700 0.139333i
\(736\) 0 0
\(737\) −11.9976 + 68.0418i −0.441938 + 2.50635i
\(738\) 0 0
\(739\) −6.08433 + 5.10536i −0.223816 + 0.187804i −0.747800 0.663925i \(-0.768890\pi\)
0.523984 + 0.851728i \(0.324445\pi\)
\(740\) 0 0
\(741\) −5.29596 40.4208i −0.194552 1.48490i
\(742\) 0 0
\(743\) 14.9235 12.5223i 0.547489 0.459398i −0.326601 0.945162i \(-0.605903\pi\)
0.874090 + 0.485765i \(0.161459\pi\)
\(744\) 0 0
\(745\) 6.16756 34.9780i 0.225962 1.28149i
\(746\) 0 0
\(747\) −9.25716 18.9222i −0.338702 0.692327i
\(748\) 0 0
\(749\) −19.6480 34.0314i −0.717923 1.24348i
\(750\) 0 0
\(751\) −32.7761 + 39.0610i −1.19602 + 1.42536i −0.317091 + 0.948395i \(0.602706\pi\)
−0.878925 + 0.476961i \(0.841738\pi\)
\(752\) 0 0
\(753\) −6.54000 + 12.8546i −0.238331 + 0.468447i
\(754\) 0 0
\(755\) 8.79802 + 49.8960i 0.320193 + 1.81590i
\(756\) 0 0
\(757\) −20.7277 7.54428i −0.753363 0.274202i −0.0633426 0.997992i \(-0.520176\pi\)
−0.690020 + 0.723790i \(0.742398\pi\)
\(758\) 0 0
\(759\) 2.52652 + 47.6606i 0.0917068 + 1.72997i
\(760\) 0 0
\(761\) 21.1505i 0.766705i −0.923602 0.383352i \(-0.874769\pi\)
0.923602 0.383352i \(-0.125231\pi\)
\(762\) 0 0
\(763\) −3.60724 + 9.91082i −0.130591 + 0.358796i
\(764\) 0 0
\(765\) 1.67888 + 5.82849i 0.0607000 + 0.210729i
\(766\) 0 0
\(767\) 50.5436 + 29.1814i 1.82502 + 1.05368i
\(768\) 0 0
\(769\) −31.5049 26.4358i −1.13610 0.953298i −0.136792 0.990600i \(-0.543679\pi\)
−0.999304 + 0.0373021i \(0.988124\pi\)
\(770\) 0 0
\(771\) 27.9282 18.1607i 1.00581 0.654041i
\(772\) 0 0
\(773\) 12.4014 4.51375i 0.446049 0.162348i −0.109223 0.994017i \(-0.534836\pi\)
0.555272 + 0.831669i \(0.312614\pi\)
\(774\) 0 0
\(775\) −23.9281 4.21918i −0.859524 0.151557i
\(776\) 0 0
\(777\) −10.4591 + 9.76499i −0.375216 + 0.350317i
\(778\) 0 0
\(779\) 5.13747 18.4376i 0.184069 0.660595i
\(780\) 0 0
\(781\) 53.4707 + 63.7239i 1.91333 + 2.28022i
\(782\) 0 0
\(783\) −9.11901 0.142721i −0.325887 0.00510043i
\(784\) 0 0
\(785\) −6.68733 18.3733i −0.238681 0.655770i
\(786\) 0 0
\(787\) 10.3999 6.00436i 0.370715 0.214032i −0.303056 0.952973i \(-0.598007\pi\)
0.673771 + 0.738941i \(0.264674\pi\)
\(788\) 0 0
\(789\) −39.7656 29.9281i −1.41569 1.06547i
\(790\) 0 0
\(791\) 0.891961 1.54492i 0.0317145 0.0549311i
\(792\) 0 0
\(793\) −31.5850 + 5.56928i −1.12162 + 0.197771i
\(794\) 0 0
\(795\) −32.4199 9.89045i −1.14982 0.350778i
\(796\) 0 0
\(797\) 35.7099 1.26491 0.632454 0.774598i \(-0.282048\pi\)
0.632454 + 0.774598i \(0.282048\pi\)
\(798\) 0 0
\(799\) 3.62699 0.128314
\(800\) 0 0
\(801\) 43.2461 + 10.7272i 1.52802 + 0.379028i
\(802\) 0 0
\(803\) −49.8721 + 8.79380i −1.75995 + 0.310326i
\(804\) 0 0
\(805\) 13.2595 22.9662i 0.467337 0.809452i
\(806\) 0 0
\(807\) −4.63735 + 6.16167i −0.163242 + 0.216901i
\(808\) 0 0
\(809\) 30.9982 17.8968i 1.08984 0.629218i 0.156305 0.987709i \(-0.450042\pi\)
0.933533 + 0.358491i \(0.116709\pi\)
\(810\) 0 0
\(811\) 6.17957 + 16.9782i 0.216994 + 0.596186i 0.999655 0.0262620i \(-0.00836040\pi\)
−0.782661 + 0.622448i \(0.786138\pi\)
\(812\) 0 0
\(813\) −0.512566 0.0626225i −0.0179765 0.00219627i
\(814\) 0 0
\(815\) −1.21790 1.45144i −0.0426613 0.0508417i
\(816\) 0 0
\(817\) −20.0551 + 5.16046i −0.701640 + 0.180542i
\(818\) 0 0
\(819\) 26.1546 + 25.1965i 0.913917 + 0.880438i
\(820\) 0 0
\(821\) 49.7488 + 8.77205i 1.73624 + 0.306147i 0.950111 0.311911i \(-0.100969\pi\)
0.786133 + 0.618057i \(0.212080\pi\)
\(822\) 0 0
\(823\) −25.9399 + 9.44137i −0.904209 + 0.329105i −0.751938 0.659233i \(-0.770881\pi\)
−0.152271 + 0.988339i \(0.548659\pi\)
\(824\) 0 0
\(825\) −18.4816 28.4217i −0.643446 0.989517i
\(826\) 0 0
\(827\) −8.24033 6.91446i −0.286544 0.240439i 0.488173 0.872747i \(-0.337663\pi\)
−0.774717 + 0.632308i \(0.782108\pi\)
\(828\) 0 0
\(829\) 11.4217 + 6.59431i 0.396691 + 0.229030i 0.685055 0.728491i \(-0.259778\pi\)
−0.288364 + 0.957521i \(0.593111\pi\)
\(830\) 0 0
\(831\) −41.8919 + 9.69804i −1.45321 + 0.336421i
\(832\) 0 0
\(833\) 0.483277 1.32779i 0.0167445 0.0460052i
\(834\) 0 0
\(835\) 9.22711i 0.319317i
\(836\) 0 0
\(837\) 41.8999 6.71379i 1.44827 0.232063i
\(838\) 0 0
\(839\) −28.9419 10.5340i −0.999184 0.363673i −0.209914 0.977720i \(-0.567318\pi\)
−0.789270 + 0.614047i \(0.789541\pi\)
\(840\) 0 0
\(841\) −4.50085 25.5256i −0.155202 0.880193i
\(842\) 0 0
\(843\) −34.3155 17.4586i −1.18189 0.601308i
\(844\) 0 0
\(845\) −29.3273 + 34.9510i −1.00889 + 1.20235i
\(846\) 0 0
\(847\) 36.1858 + 62.6757i 1.24336 + 2.15356i
\(848\) 0 0
\(849\) −4.10656 9.65831i −0.140937 0.331472i
\(850\) 0 0
\(851\) 2.68011 15.1997i 0.0918731 0.521038i
\(852\) 0 0
\(853\) −20.5969 + 17.2829i −0.705224 + 0.591754i −0.923255 0.384188i \(-0.874481\pi\)
0.218030 + 0.975942i \(0.430037\pi\)
\(854\) 0 0
\(855\) −12.3279 + 34.8107i −0.421606 + 1.19050i
\(856\) 0 0
\(857\) −33.1805 + 27.8418i −1.13343 + 0.951057i −0.999204 0.0398942i \(-0.987298\pi\)
−0.134222 + 0.990951i \(0.542853\pi\)
\(858\) 0 0
\(859\) −5.68652 + 32.2498i −0.194021 + 1.10035i 0.719784 + 0.694198i \(0.244241\pi\)
−0.913805 + 0.406152i \(0.866870\pi\)
\(860\) 0 0
\(861\) 6.67180 + 15.6915i 0.227374 + 0.534767i
\(862\) 0 0
\(863\) 8.86606 + 15.3565i 0.301804 + 0.522740i 0.976545 0.215315i \(-0.0690778\pi\)
−0.674741 + 0.738055i \(0.735744\pi\)
\(864\) 0 0
\(865\) 7.76459 9.25347i 0.264004 0.314628i
\(866\) 0 0
\(867\) −25.4523 12.9493i −0.864407 0.439783i
\(868\) 0 0
\(869\) 7.02438 + 39.8372i 0.238286 + 1.35139i
\(870\) 0 0
\(871\) −53.2877 19.3951i −1.80559 0.657179i
\(872\) 0 0
\(873\) −3.12766 29.4174i −0.105855 0.995627i
\(874\) 0 0
\(875\) 12.8195i 0.433380i
\(876\) 0 0
\(877\) 7.68252 21.1076i 0.259420 0.712752i −0.739783 0.672845i \(-0.765072\pi\)
0.999203 0.0399061i \(-0.0127059\pi\)
\(878\) 0 0
\(879\) −24.1405 + 5.58857i −0.814240 + 0.188498i
\(880\) 0 0
\(881\) −20.2208 11.6745i −0.681255 0.393323i 0.119073 0.992886i \(-0.462008\pi\)
−0.800328 + 0.599563i \(0.795341\pi\)
\(882\) 0 0
\(883\) 26.9464 + 22.6107i 0.906818 + 0.760911i 0.971511 0.236995i \(-0.0761624\pi\)
−0.0646931 + 0.997905i \(0.520607\pi\)
\(884\) 0 0
\(885\) −28.8214 44.3226i −0.968820 1.48989i
\(886\) 0 0
\(887\) −12.6213 + 4.59379i −0.423782 + 0.154244i −0.545103 0.838369i \(-0.683509\pi\)
0.121320 + 0.992613i \(0.461287\pi\)
\(888\) 0 0
\(889\) −13.3803 2.35931i −0.448762 0.0791288i
\(890\) 0 0
\(891\) 46.7451 + 36.3405i 1.56602 + 1.21745i
\(892\) 0 0
\(893\) 17.9622 + 12.8455i 0.601082 + 0.429857i
\(894\) 0 0
\(895\) −11.3444 13.5197i −0.379201 0.451914i
\(896\) 0 0
\(897\) −38.8838 4.75060i −1.29829 0.158618i
\(898\) 0 0
\(899\) −4.90238 13.4692i −0.163504 0.449222i
\(900\) 0 0
\(901\) −4.29641 + 2.48053i −0.143134 + 0.0826385i
\(902\) 0 0
\(903\) 11.0936 14.7401i 0.369172 0.490521i
\(904\) 0 0
\(905\) −7.97737 + 13.8172i −0.265177 + 0.459300i
\(906\) 0 0
\(907\) 49.3405 8.70005i 1.63832 0.288881i 0.722773 0.691085i \(-0.242867\pi\)
0.915550 + 0.402205i \(0.131756\pi\)
\(908\) 0 0
\(909\) −7.03135 + 28.3464i −0.233215 + 0.940190i
\(910\) 0 0
\(911\) −26.2541 −0.869837 −0.434918 0.900470i \(-0.643223\pi\)
−0.434918 + 0.900470i \(0.643223\pi\)
\(912\) 0 0
\(913\) 46.1947 1.52882
\(914\) 0 0
\(915\) 27.7890 + 8.47770i 0.918677 + 0.280264i
\(916\) 0 0
\(917\) −0.843676 + 0.148763i −0.0278606 + 0.00491258i
\(918\) 0 0
\(919\) −15.8522 + 27.4568i −0.522915 + 0.905716i 0.476729 + 0.879050i \(0.341822\pi\)
−0.999644 + 0.0266656i \(0.991511\pi\)
\(920\) 0 0
\(921\) 10.1159 + 7.61335i 0.333330 + 0.250868i
\(922\) 0 0
\(923\) −59.1284 + 34.1378i −1.94623 + 1.12366i
\(924\) 0 0
\(925\) 3.74968 + 10.3022i 0.123289 + 0.338733i
\(926\) 0 0
\(927\) −15.5527 1.06876i −0.510819 0.0351028i
\(928\) 0 0
\(929\) 4.17179 + 4.97174i 0.136872 + 0.163118i 0.830126 0.557575i \(-0.188268\pi\)
−0.693254 + 0.720693i \(0.743824\pi\)
\(930\) 0 0
\(931\) 7.09590 4.86412i 0.232559 0.159415i
\(932\) 0 0
\(933\) −43.0360 + 40.1801i −1.40893 + 1.31544i
\(934\) 0 0
\(935\) −13.0991 2.30973i −0.428387 0.0755361i
\(936\) 0 0
\(937\) 43.0174 15.6570i 1.40532 0.511493i 0.475565 0.879681i \(-0.342244\pi\)
0.929752 + 0.368188i \(0.120022\pi\)
\(938\) 0 0
\(939\) 28.1808 18.3249i 0.919645 0.598011i
\(940\) 0 0
\(941\) −16.6900 14.0045i −0.544078 0.456535i 0.328852 0.944381i \(-0.393338\pi\)
−0.872930 + 0.487846i \(0.837783\pi\)
\(942\) 0 0
\(943\) −15.9278 9.19592i −0.518680 0.299460i
\(944\) 0 0
\(945\) −10.7669 31.0870i −0.350246 1.01126i
\(946\) 0 0
\(947\) −0.722218 + 1.98428i −0.0234689 + 0.0644804i −0.950874 0.309579i \(-0.899812\pi\)
0.927405 + 0.374059i \(0.122034\pi\)
\(948\) 0 0
\(949\) 41.5645i 1.34924i
\(950\) 0 0
\(951\) −2.18746 41.2645i −0.0709333 1.33809i
\(952\) 0 0
\(953\) −18.2260 6.63373i −0.590398 0.214887i 0.0295062 0.999565i \(-0.490607\pi\)
−0.619905 + 0.784677i \(0.712829\pi\)
\(954\) 0 0
\(955\) −7.78380 44.1441i −0.251878 1.42847i
\(956\) 0 0
\(957\) 9.06902 17.8254i 0.293160 0.576215i
\(958\) 0 0
\(959\) 20.3241 24.2213i 0.656300 0.782148i
\(960\) 0 0
\(961\) 17.8459 + 30.9101i 0.575675 + 0.997099i
\(962\) 0 0
\(963\) 47.2334 23.1076i 1.52207 0.744632i
\(964\) 0 0
\(965\) −3.18720 + 18.0755i −0.102599 + 0.581870i
\(966\) 0 0
\(967\) 42.8069 35.9193i 1.37658 1.15509i 0.406118 0.913821i \(-0.366882\pi\)
0.970459 0.241265i \(-0.0775622\pi\)
\(968\) 0 0
\(969\) 2.49285 + 4.79599i 0.0800818 + 0.154069i
\(970\) 0 0
\(971\) −40.7240 + 34.1715i −1.30690 + 1.09662i −0.317986 + 0.948096i \(0.603006\pi\)
−0.988909 + 0.148520i \(0.952549\pi\)
\(972\) 0 0
\(973\) 0.106822 0.605820i 0.00342457 0.0194217i
\(974\) 0 0
\(975\) 25.6071 10.8877i 0.820084 0.348687i
\(976\) 0 0
\(977\) 6.21256 + 10.7605i 0.198757 + 0.344258i 0.948126 0.317895i \(-0.102976\pi\)
−0.749368 + 0.662153i \(0.769643\pi\)
\(978\) 0 0
\(979\) −62.8067 + 74.8501i −2.00731 + 2.39222i
\(980\) 0 0
\(981\) −12.8998 5.72477i −0.411857 0.182778i
\(982\) 0 0
\(983\) −8.84945 50.1877i −0.282254 1.60074i −0.714933 0.699193i \(-0.753543\pi\)
0.432680 0.901548i \(-0.357568\pi\)
\(984\) 0 0
\(985\) 37.5640 + 13.6722i 1.19689 + 0.435631i
\(986\) 0 0
\(987\) −19.6450 + 1.04140i −0.625308 + 0.0331480i
\(988\) 0 0
\(989\) 19.8990i 0.632751i
\(990\) 0 0
\(991\) 3.50077 9.61828i 0.111206 0.305535i −0.871589 0.490238i \(-0.836910\pi\)
0.982794 + 0.184703i \(0.0591322\pi\)
\(992\) 0 0
\(993\) 6.13218 + 26.4887i 0.194599 + 0.840594i
\(994\) 0 0
\(995\) 9.39764 + 5.42573i 0.297925 + 0.172007i
\(996\) 0 0
\(997\) −26.1449 21.9382i −0.828018 0.694789i 0.126817 0.991926i \(-0.459524\pi\)
−0.954835 + 0.297137i \(0.903968\pi\)
\(998\) 0 0
\(999\) −12.0765 14.8584i −0.382084 0.470098i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bm.b.89.7 yes 60
3.2 odd 2 456.2.bm.a.89.7 yes 60
4.3 odd 2 912.2.cc.g.545.4 60
12.11 even 2 912.2.cc.h.545.4 60
19.3 odd 18 456.2.bm.a.41.7 60
57.41 even 18 inner 456.2.bm.b.41.7 yes 60
76.3 even 18 912.2.cc.h.497.4 60
228.155 odd 18 912.2.cc.g.497.4 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.41.7 60 19.3 odd 18
456.2.bm.a.89.7 yes 60 3.2 odd 2
456.2.bm.b.41.7 yes 60 57.41 even 18 inner
456.2.bm.b.89.7 yes 60 1.1 even 1 trivial
912.2.cc.g.497.4 60 228.155 odd 18
912.2.cc.g.545.4 60 4.3 odd 2
912.2.cc.h.497.4 60 76.3 even 18
912.2.cc.h.545.4 60 12.11 even 2