Properties

Label 456.2.bm.b.89.5
Level $456$
Weight $2$
Character 456.89
Analytic conductor $3.641$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(41,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 89.5
Character \(\chi\) \(=\) 456.89
Dual form 456.2.bm.b.41.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.144474 + 1.72601i) q^{3} +(2.45783 - 0.433381i) q^{5} +(-2.29577 + 3.97638i) q^{7} +(-2.95825 + 0.498730i) q^{9} +(-3.74180 + 2.16033i) q^{11} +(-0.651848 - 1.79094i) q^{13} +(1.10312 + 4.17963i) q^{15} +(2.81708 + 3.35726i) q^{17} +(1.87753 - 3.93381i) q^{19} +(-7.19497 - 3.38804i) q^{21} +(3.57273 + 0.629969i) q^{23} +(1.15463 - 0.420253i) q^{25} +(-1.28821 - 5.03394i) q^{27} +(3.18868 + 2.67562i) q^{29} +(-2.29253 - 1.32359i) q^{31} +(-4.26936 - 6.14630i) q^{33} +(-3.91931 + 10.7682i) q^{35} +5.26569i q^{37} +(2.99701 - 1.38384i) q^{39} +(2.84993 + 1.03729i) q^{41} +(1.24668 + 7.07025i) q^{43} +(-7.05474 + 2.50784i) q^{45} +(2.70628 - 3.22521i) q^{47} +(-7.04108 - 12.1955i) q^{49} +(-5.38768 + 5.34735i) q^{51} +(-1.64899 + 9.35187i) q^{53} +(-8.26046 + 6.93135i) q^{55} +(7.06107 + 2.67232i) q^{57} +(4.98221 - 4.18057i) q^{59} +(1.49179 - 8.46035i) q^{61} +(4.80832 - 12.9081i) q^{63} +(-2.37829 - 4.11932i) q^{65} +(9.62058 - 11.4654i) q^{67} +(-0.571168 + 6.25761i) q^{69} +(0.219681 + 1.24587i) q^{71} +(-2.29219 - 0.834290i) q^{73} +(0.892177 + 1.93220i) q^{75} -19.8385i q^{77} +(-4.31964 + 11.8681i) q^{79} +(8.50254 - 2.95074i) q^{81} +(15.5265 + 8.96425i) q^{83} +(8.37886 + 7.03070i) q^{85} +(-4.15748 + 5.89027i) q^{87} +(10.0104 - 3.64348i) q^{89} +(8.61794 + 1.51957i) q^{91} +(1.95333 - 4.14817i) q^{93} +(2.90981 - 10.4823i) q^{95} +(1.02401 + 1.22036i) q^{97} +(9.99179 - 8.25696i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 6 q^{9} + 3 q^{13} - 3 q^{15} - 6 q^{17} + 3 q^{19} + 6 q^{25} + 3 q^{27} + 6 q^{29} + 24 q^{35} + 18 q^{39} + 3 q^{41} - 21 q^{43} + 63 q^{45} - 18 q^{47} - 30 q^{49} + 33 q^{51} - 36 q^{53} + 18 q^{55}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.144474 + 1.72601i 0.0834123 + 0.996515i
\(4\) 0 0
\(5\) 2.45783 0.433381i 1.09917 0.193814i 0.405494 0.914098i \(-0.367099\pi\)
0.693680 + 0.720284i \(0.255988\pi\)
\(6\) 0 0
\(7\) −2.29577 + 3.97638i −0.867718 + 1.50293i −0.00339458 + 0.999994i \(0.501081\pi\)
−0.864323 + 0.502937i \(0.832253\pi\)
\(8\) 0 0
\(9\) −2.95825 + 0.498730i −0.986085 + 0.166243i
\(10\) 0 0
\(11\) −3.74180 + 2.16033i −1.12820 + 0.651365i −0.943481 0.331427i \(-0.892470\pi\)
−0.184716 + 0.982792i \(0.559136\pi\)
\(12\) 0 0
\(13\) −0.651848 1.79094i −0.180790 0.496716i 0.815883 0.578217i \(-0.196251\pi\)
−0.996673 + 0.0815001i \(0.974029\pi\)
\(14\) 0 0
\(15\) 1.10312 + 4.17963i 0.284823 + 1.07918i
\(16\) 0 0
\(17\) 2.81708 + 3.35726i 0.683241 + 0.814255i 0.990521 0.137364i \(-0.0438631\pi\)
−0.307279 + 0.951619i \(0.599419\pi\)
\(18\) 0 0
\(19\) 1.87753 3.93381i 0.430736 0.902478i
\(20\) 0 0
\(21\) −7.19497 3.38804i −1.57007 0.739331i
\(22\) 0 0
\(23\) 3.57273 + 0.629969i 0.744967 + 0.131358i 0.533231 0.845969i \(-0.320977\pi\)
0.211735 + 0.977327i \(0.432089\pi\)
\(24\) 0 0
\(25\) 1.15463 0.420253i 0.230927 0.0840505i
\(26\) 0 0
\(27\) −1.28821 5.03394i −0.247915 0.968782i
\(28\) 0 0
\(29\) 3.18868 + 2.67562i 0.592124 + 0.496851i 0.888903 0.458095i \(-0.151468\pi\)
−0.296779 + 0.954946i \(0.595913\pi\)
\(30\) 0 0
\(31\) −2.29253 1.32359i −0.411750 0.237724i 0.279791 0.960061i \(-0.409735\pi\)
−0.691542 + 0.722337i \(0.743068\pi\)
\(32\) 0 0
\(33\) −4.26936 6.14630i −0.743200 1.06993i
\(34\) 0 0
\(35\) −3.91931 + 10.7682i −0.662484 + 1.82016i
\(36\) 0 0
\(37\) 5.26569i 0.865674i 0.901472 + 0.432837i \(0.142487\pi\)
−0.901472 + 0.432837i \(0.857513\pi\)
\(38\) 0 0
\(39\) 2.99701 1.38384i 0.479905 0.221592i
\(40\) 0 0
\(41\) 2.84993 + 1.03729i 0.445084 + 0.161997i 0.554832 0.831962i \(-0.312782\pi\)
−0.109749 + 0.993959i \(0.535005\pi\)
\(42\) 0 0
\(43\) 1.24668 + 7.07025i 0.190116 + 1.07820i 0.919204 + 0.393782i \(0.128834\pi\)
−0.729088 + 0.684420i \(0.760055\pi\)
\(44\) 0 0
\(45\) −7.05474 + 2.50784i −1.05166 + 0.373847i
\(46\) 0 0
\(47\) 2.70628 3.22521i 0.394751 0.470446i −0.531661 0.846957i \(-0.678432\pi\)
0.926412 + 0.376511i \(0.122876\pi\)
\(48\) 0 0
\(49\) −7.04108 12.1955i −1.00587 1.74221i
\(50\) 0 0
\(51\) −5.38768 + 5.34735i −0.754427 + 0.748779i
\(52\) 0 0
\(53\) −1.64899 + 9.35187i −0.226506 + 1.28458i 0.633279 + 0.773923i \(0.281708\pi\)
−0.859785 + 0.510656i \(0.829403\pi\)
\(54\) 0 0
\(55\) −8.26046 + 6.93135i −1.11384 + 0.934623i
\(56\) 0 0
\(57\) 7.06107 + 2.67232i 0.935262 + 0.353957i
\(58\) 0 0
\(59\) 4.98221 4.18057i 0.648628 0.544264i −0.258026 0.966138i \(-0.583072\pi\)
0.906654 + 0.421874i \(0.138628\pi\)
\(60\) 0 0
\(61\) 1.49179 8.46035i 0.191004 1.08324i −0.726992 0.686646i \(-0.759082\pi\)
0.917996 0.396590i \(-0.129807\pi\)
\(62\) 0 0
\(63\) 4.80832 12.9081i 0.605791 1.62627i
\(64\) 0 0
\(65\) −2.37829 4.11932i −0.294990 0.510938i
\(66\) 0 0
\(67\) 9.62058 11.4654i 1.17534 1.40072i 0.277312 0.960780i \(-0.410556\pi\)
0.898029 0.439937i \(-0.144999\pi\)
\(68\) 0 0
\(69\) −0.571168 + 6.25761i −0.0687606 + 0.753327i
\(70\) 0 0
\(71\) 0.219681 + 1.24587i 0.0260714 + 0.147858i 0.995065 0.0992292i \(-0.0316377\pi\)
−0.968993 + 0.247087i \(0.920527\pi\)
\(72\) 0 0
\(73\) −2.29219 0.834290i −0.268281 0.0976463i 0.204377 0.978892i \(-0.434483\pi\)
−0.472658 + 0.881246i \(0.656705\pi\)
\(74\) 0 0
\(75\) 0.892177 + 1.93220i 0.103020 + 0.223111i
\(76\) 0 0
\(77\) 19.8385i 2.26080i
\(78\) 0 0
\(79\) −4.31964 + 11.8681i −0.485998 + 1.33527i 0.418278 + 0.908319i \(0.362634\pi\)
−0.904276 + 0.426949i \(0.859588\pi\)
\(80\) 0 0
\(81\) 8.50254 2.95074i 0.944726 0.327860i
\(82\) 0 0
\(83\) 15.5265 + 8.96425i 1.70426 + 0.983954i 0.941339 + 0.337461i \(0.109568\pi\)
0.762920 + 0.646493i \(0.223765\pi\)
\(84\) 0 0
\(85\) 8.37886 + 7.03070i 0.908815 + 0.762586i
\(86\) 0 0
\(87\) −4.15748 + 5.89027i −0.445729 + 0.631504i
\(88\) 0 0
\(89\) 10.0104 3.64348i 1.06110 0.386208i 0.248258 0.968694i \(-0.420142\pi\)
0.812841 + 0.582486i \(0.197920\pi\)
\(90\) 0 0
\(91\) 8.61794 + 1.51957i 0.903405 + 0.159295i
\(92\) 0 0
\(93\) 1.95333 4.14817i 0.202551 0.430145i
\(94\) 0 0
\(95\) 2.90981 10.4823i 0.298540 1.07546i
\(96\) 0 0
\(97\) 1.02401 + 1.22036i 0.103972 + 0.123909i 0.815521 0.578727i \(-0.196450\pi\)
−0.711549 + 0.702637i \(0.752006\pi\)
\(98\) 0 0
\(99\) 9.99179 8.25696i 1.00421 0.829856i
\(100\) 0 0
\(101\) −3.14558 8.64241i −0.312997 0.859952i −0.992048 0.125861i \(-0.959831\pi\)
0.679051 0.734091i \(-0.262392\pi\)
\(102\) 0 0
\(103\) −7.73101 + 4.46350i −0.761759 + 0.439802i −0.829927 0.557872i \(-0.811618\pi\)
0.0681681 + 0.997674i \(0.478285\pi\)
\(104\) 0 0
\(105\) −19.1523 5.20905i −1.86907 0.508351i
\(106\) 0 0
\(107\) 7.80705 13.5222i 0.754736 1.30724i −0.190769 0.981635i \(-0.561098\pi\)
0.945505 0.325607i \(-0.105569\pi\)
\(108\) 0 0
\(109\) 5.80872 1.02423i 0.556374 0.0981038i 0.111611 0.993752i \(-0.464399\pi\)
0.444763 + 0.895648i \(0.353288\pi\)
\(110\) 0 0
\(111\) −9.08866 + 0.760757i −0.862657 + 0.0722078i
\(112\) 0 0
\(113\) 11.5473 1.08628 0.543142 0.839641i \(-0.317235\pi\)
0.543142 + 0.839641i \(0.317235\pi\)
\(114\) 0 0
\(115\) 9.05418 0.844307
\(116\) 0 0
\(117\) 2.82152 + 4.97295i 0.260850 + 0.459749i
\(118\) 0 0
\(119\) −19.8171 + 3.49429i −1.81663 + 0.320321i
\(120\) 0 0
\(121\) 3.83407 6.64080i 0.348552 0.603709i
\(122\) 0 0
\(123\) −1.37863 + 5.06888i −0.124307 + 0.457045i
\(124\) 0 0
\(125\) −8.15112 + 4.70605i −0.729059 + 0.420922i
\(126\) 0 0
\(127\) −5.29301 14.5424i −0.469679 1.29043i −0.918008 0.396563i \(-0.870203\pi\)
0.448329 0.893869i \(-0.352019\pi\)
\(128\) 0 0
\(129\) −12.0232 + 3.17325i −1.05859 + 0.279389i
\(130\) 0 0
\(131\) −3.79397 4.52148i −0.331481 0.395043i 0.574401 0.818574i \(-0.305235\pi\)
−0.905882 + 0.423531i \(0.860791\pi\)
\(132\) 0 0
\(133\) 11.3320 + 16.4969i 0.982606 + 1.43046i
\(134\) 0 0
\(135\) −5.34780 11.8143i −0.460266 1.01681i
\(136\) 0 0
\(137\) −13.5569 2.39045i −1.15825 0.204230i −0.438673 0.898647i \(-0.644551\pi\)
−0.719573 + 0.694417i \(0.755663\pi\)
\(138\) 0 0
\(139\) −11.2261 + 4.08596i −0.952183 + 0.346566i −0.770966 0.636877i \(-0.780226\pi\)
−0.181218 + 0.983443i \(0.558004\pi\)
\(140\) 0 0
\(141\) 5.95775 + 4.20511i 0.501733 + 0.354134i
\(142\) 0 0
\(143\) 6.30810 + 5.29313i 0.527510 + 0.442634i
\(144\) 0 0
\(145\) 8.99680 + 5.19430i 0.747143 + 0.431363i
\(146\) 0 0
\(147\) 20.0324 13.9149i 1.65224 1.14768i
\(148\) 0 0
\(149\) −6.82022 + 18.7384i −0.558735 + 1.53511i 0.262741 + 0.964866i \(0.415374\pi\)
−0.821475 + 0.570244i \(0.806849\pi\)
\(150\) 0 0
\(151\) 2.58955i 0.210735i 0.994433 + 0.105367i \(0.0336018\pi\)
−0.994433 + 0.105367i \(0.966398\pi\)
\(152\) 0 0
\(153\) −10.0080 8.52667i −0.809098 0.689340i
\(154\) 0 0
\(155\) −6.20826 2.25962i −0.498660 0.181497i
\(156\) 0 0
\(157\) −0.383416 2.17446i −0.0305999 0.173541i 0.965678 0.259743i \(-0.0836379\pi\)
−0.996278 + 0.0862025i \(0.972527\pi\)
\(158\) 0 0
\(159\) −16.3797 1.49507i −1.29900 0.118567i
\(160\) 0 0
\(161\) −10.7072 + 12.7603i −0.843842 + 1.00565i
\(162\) 0 0
\(163\) −7.10780 12.3111i −0.556726 0.964277i −0.997767 0.0667904i \(-0.978724\pi\)
0.441041 0.897487i \(-0.354609\pi\)
\(164\) 0 0
\(165\) −13.1570 13.2563i −1.02427 1.03200i
\(166\) 0 0
\(167\) 2.76178 15.6628i 0.213713 1.21203i −0.669413 0.742891i \(-0.733454\pi\)
0.883126 0.469136i \(-0.155435\pi\)
\(168\) 0 0
\(169\) 7.17603 6.02140i 0.552002 0.463185i
\(170\) 0 0
\(171\) −3.59231 + 12.5736i −0.274711 + 0.961527i
\(172\) 0 0
\(173\) 11.6673 9.79004i 0.887049 0.744323i −0.0805667 0.996749i \(-0.525673\pi\)
0.967616 + 0.252426i \(0.0812286\pi\)
\(174\) 0 0
\(175\) −0.979685 + 5.55607i −0.0740572 + 0.419999i
\(176\) 0 0
\(177\) 7.93552 + 7.99538i 0.596470 + 0.600969i
\(178\) 0 0
\(179\) 4.58725 + 7.94535i 0.342867 + 0.593863i 0.984964 0.172760i \(-0.0552686\pi\)
−0.642097 + 0.766624i \(0.721935\pi\)
\(180\) 0 0
\(181\) −6.79399 + 8.09676i −0.504993 + 0.601828i −0.956965 0.290205i \(-0.906277\pi\)
0.451971 + 0.892033i \(0.350721\pi\)
\(182\) 0 0
\(183\) 14.8182 + 1.35254i 1.09539 + 0.0999830i
\(184\) 0 0
\(185\) 2.28205 + 12.9422i 0.167780 + 0.951526i
\(186\) 0 0
\(187\) −17.7937 6.47639i −1.30121 0.473601i
\(188\) 0 0
\(189\) 22.9743 + 6.43434i 1.67113 + 0.468029i
\(190\) 0 0
\(191\) 5.81299i 0.420613i −0.977636 0.210306i \(-0.932554\pi\)
0.977636 0.210306i \(-0.0674462\pi\)
\(192\) 0 0
\(193\) 1.86644 5.12800i 0.134349 0.369122i −0.854215 0.519919i \(-0.825962\pi\)
0.988565 + 0.150798i \(0.0481842\pi\)
\(194\) 0 0
\(195\) 6.76640 4.70010i 0.484552 0.336581i
\(196\) 0 0
\(197\) 17.1165 + 9.88223i 1.21950 + 0.704080i 0.964812 0.262942i \(-0.0846929\pi\)
0.254691 + 0.967023i \(0.418026\pi\)
\(198\) 0 0
\(199\) −19.8707 16.6735i −1.40859 1.18195i −0.957129 0.289660i \(-0.906458\pi\)
−0.451464 0.892290i \(-0.649098\pi\)
\(200\) 0 0
\(201\) 21.1793 + 14.9488i 1.49387 + 1.05441i
\(202\) 0 0
\(203\) −17.9598 + 6.53682i −1.26053 + 0.458795i
\(204\) 0 0
\(205\) 7.45417 + 1.31437i 0.520622 + 0.0917997i
\(206\) 0 0
\(207\) −10.8832 0.0817814i −0.756438 0.00568420i
\(208\) 0 0
\(209\) 1.47298 + 18.7756i 0.101888 + 1.29874i
\(210\) 0 0
\(211\) 18.0319 + 21.4896i 1.24137 + 1.47941i 0.819841 + 0.572592i \(0.194062\pi\)
0.421529 + 0.906815i \(0.361494\pi\)
\(212\) 0 0
\(213\) −2.11866 + 0.559170i −0.145168 + 0.0383137i
\(214\) 0 0
\(215\) 6.12823 + 16.8372i 0.417942 + 1.14828i
\(216\) 0 0
\(217\) 10.5262 6.07732i 0.714566 0.412555i
\(218\) 0 0
\(219\) 1.10883 4.07689i 0.0749281 0.275491i
\(220\) 0 0
\(221\) 4.17634 7.23363i 0.280931 0.486586i
\(222\) 0 0
\(223\) −12.1785 + 2.14739i −0.815531 + 0.143800i −0.565829 0.824523i \(-0.691444\pi\)
−0.249702 + 0.968323i \(0.580333\pi\)
\(224\) 0 0
\(225\) −3.20611 + 1.81906i −0.213741 + 0.121271i
\(226\) 0 0
\(227\) 22.7402 1.50932 0.754661 0.656115i \(-0.227801\pi\)
0.754661 + 0.656115i \(0.227801\pi\)
\(228\) 0 0
\(229\) −4.80165 −0.317302 −0.158651 0.987335i \(-0.550714\pi\)
−0.158651 + 0.987335i \(0.550714\pi\)
\(230\) 0 0
\(231\) 34.2415 2.86615i 2.25292 0.188579i
\(232\) 0 0
\(233\) −16.4340 + 2.89777i −1.07663 + 0.189839i −0.683725 0.729740i \(-0.739641\pi\)
−0.392905 + 0.919579i \(0.628530\pi\)
\(234\) 0 0
\(235\) 5.25381 9.09987i 0.342721 0.593610i
\(236\) 0 0
\(237\) −21.1086 5.74113i −1.37115 0.372926i
\(238\) 0 0
\(239\) −18.5367 + 10.7022i −1.19904 + 0.692266i −0.960341 0.278827i \(-0.910054\pi\)
−0.238699 + 0.971094i \(0.576721\pi\)
\(240\) 0 0
\(241\) 2.43271 + 6.68382i 0.156705 + 0.430543i 0.993055 0.117653i \(-0.0375371\pi\)
−0.836350 + 0.548196i \(0.815315\pi\)
\(242\) 0 0
\(243\) 6.32142 + 14.2492i 0.405519 + 0.914087i
\(244\) 0 0
\(245\) −22.5911 26.9230i −1.44329 1.72005i
\(246\) 0 0
\(247\) −8.26907 0.798297i −0.526148 0.0507944i
\(248\) 0 0
\(249\) −13.2292 + 28.0941i −0.838369 + 1.78039i
\(250\) 0 0
\(251\) 0.626296 + 0.110433i 0.0395314 + 0.00697046i 0.193379 0.981124i \(-0.438055\pi\)
−0.153847 + 0.988095i \(0.549166\pi\)
\(252\) 0 0
\(253\) −14.7294 + 5.36107i −0.926030 + 0.337048i
\(254\) 0 0
\(255\) −10.9246 + 15.4778i −0.684122 + 0.969257i
\(256\) 0 0
\(257\) −18.7785 15.7571i −1.17137 0.982898i −0.171375 0.985206i \(-0.554821\pi\)
−0.999997 + 0.00230758i \(0.999265\pi\)
\(258\) 0 0
\(259\) −20.9384 12.0888i −1.30105 0.751161i
\(260\) 0 0
\(261\) −10.7673 6.32488i −0.666482 0.391500i
\(262\) 0 0
\(263\) −1.49037 + 4.09475i −0.0919001 + 0.252493i −0.977123 0.212673i \(-0.931783\pi\)
0.885223 + 0.465166i \(0.154005\pi\)
\(264\) 0 0
\(265\) 23.6999i 1.45588i
\(266\) 0 0
\(267\) 7.73495 + 16.7517i 0.473371 + 1.02519i
\(268\) 0 0
\(269\) −5.86725 2.13550i −0.357732 0.130204i 0.156901 0.987614i \(-0.449850\pi\)
−0.514633 + 0.857410i \(0.672072\pi\)
\(270\) 0 0
\(271\) 1.51875 + 8.61329i 0.0922578 + 0.523220i 0.995553 + 0.0942008i \(0.0300296\pi\)
−0.903295 + 0.429019i \(0.858859\pi\)
\(272\) 0 0
\(273\) −1.37774 + 15.0942i −0.0833845 + 0.913544i
\(274\) 0 0
\(275\) −3.41253 + 4.06690i −0.205783 + 0.245243i
\(276\) 0 0
\(277\) 6.13311 + 10.6229i 0.368503 + 0.638266i 0.989332 0.145680i \(-0.0465371\pi\)
−0.620829 + 0.783946i \(0.713204\pi\)
\(278\) 0 0
\(279\) 7.44200 + 2.77217i 0.445541 + 0.165966i
\(280\) 0 0
\(281\) 1.62709 9.22769i 0.0970641 0.550478i −0.897031 0.441967i \(-0.854281\pi\)
0.994095 0.108511i \(-0.0346081\pi\)
\(282\) 0 0
\(283\) 19.1635 16.0801i 1.13915 0.955861i 0.139740 0.990188i \(-0.455373\pi\)
0.999411 + 0.0343277i \(0.0109290\pi\)
\(284\) 0 0
\(285\) 18.5130 + 3.50795i 1.09662 + 0.207793i
\(286\) 0 0
\(287\) −10.6674 + 8.95102i −0.629678 + 0.528362i
\(288\) 0 0
\(289\) −0.383260 + 2.17358i −0.0225447 + 0.127857i
\(290\) 0 0
\(291\) −1.95842 + 1.94376i −0.114805 + 0.113945i
\(292\) 0 0
\(293\) 6.85167 + 11.8674i 0.400279 + 0.693304i 0.993759 0.111545i \(-0.0355799\pi\)
−0.593480 + 0.804848i \(0.702247\pi\)
\(294\) 0 0
\(295\) 10.4336 12.4343i 0.607469 0.723954i
\(296\) 0 0
\(297\) 15.6952 + 16.0531i 0.910727 + 0.931493i
\(298\) 0 0
\(299\) −1.20064 6.80918i −0.0694350 0.393785i
\(300\) 0 0
\(301\) −30.9761 11.2744i −1.78543 0.649844i
\(302\) 0 0
\(303\) 14.4625 6.67793i 0.830848 0.383637i
\(304\) 0 0
\(305\) 21.4406i 1.22768i
\(306\) 0 0
\(307\) −1.95864 + 5.38131i −0.111785 + 0.307128i −0.982953 0.183858i \(-0.941141\pi\)
0.871167 + 0.490986i \(0.163363\pi\)
\(308\) 0 0
\(309\) −8.82100 12.6990i −0.501809 0.722419i
\(310\) 0 0
\(311\) −18.2229 10.5210i −1.03333 0.596592i −0.115391 0.993320i \(-0.536812\pi\)
−0.917936 + 0.396728i \(0.870146\pi\)
\(312\) 0 0
\(313\) 2.99001 + 2.50892i 0.169006 + 0.141812i 0.723368 0.690463i \(-0.242593\pi\)
−0.554362 + 0.832276i \(0.687038\pi\)
\(314\) 0 0
\(315\) 6.22388 33.8098i 0.350676 1.90496i
\(316\) 0 0
\(317\) −14.1115 + 5.13616i −0.792580 + 0.288475i −0.706408 0.707805i \(-0.749686\pi\)
−0.0861718 + 0.996280i \(0.527463\pi\)
\(318\) 0 0
\(319\) −17.7117 3.12304i −0.991663 0.174857i
\(320\) 0 0
\(321\) 24.4675 + 11.5215i 1.36564 + 0.643066i
\(322\) 0 0
\(323\) 18.4960 4.77848i 1.02914 0.265882i
\(324\) 0 0
\(325\) −1.50529 1.79394i −0.0834985 0.0995097i
\(326\) 0 0
\(327\) 2.60705 + 9.87796i 0.144170 + 0.546252i
\(328\) 0 0
\(329\) 6.61171 + 18.1655i 0.364515 + 1.00150i
\(330\) 0 0
\(331\) −4.64775 + 2.68338i −0.255463 + 0.147492i −0.622263 0.782808i \(-0.713787\pi\)
0.366800 + 0.930300i \(0.380453\pi\)
\(332\) 0 0
\(333\) −2.62615 15.5772i −0.143912 0.853628i
\(334\) 0 0
\(335\) 18.6769 32.3493i 1.02043 1.76743i
\(336\) 0 0
\(337\) 5.31074 0.936426i 0.289294 0.0510104i −0.0271178 0.999632i \(-0.508633\pi\)
0.316412 + 0.948622i \(0.397522\pi\)
\(338\) 0 0
\(339\) 1.66830 + 19.9309i 0.0906094 + 1.08250i
\(340\) 0 0
\(341\) 11.4376 0.619381
\(342\) 0 0
\(343\) 32.5179 1.75580
\(344\) 0 0
\(345\) 1.30810 + 15.6277i 0.0704256 + 0.841365i
\(346\) 0 0
\(347\) −33.0387 + 5.82562i −1.77361 + 0.312735i −0.962322 0.271911i \(-0.912344\pi\)
−0.811288 + 0.584646i \(0.801233\pi\)
\(348\) 0 0
\(349\) 7.23111 12.5246i 0.387072 0.670429i −0.604982 0.796239i \(-0.706820\pi\)
0.992054 + 0.125810i \(0.0401530\pi\)
\(350\) 0 0
\(351\) −8.17575 + 5.58846i −0.436389 + 0.298290i
\(352\) 0 0
\(353\) −7.95771 + 4.59438i −0.423546 + 0.244534i −0.696593 0.717466i \(-0.745302\pi\)
0.273047 + 0.962001i \(0.411968\pi\)
\(354\) 0 0
\(355\) 1.07988 + 2.96694i 0.0573139 + 0.157469i
\(356\) 0 0
\(357\) −8.89425 33.6998i −0.470734 1.78358i
\(358\) 0 0
\(359\) 5.30188 + 6.31854i 0.279823 + 0.333480i 0.887589 0.460636i \(-0.152379\pi\)
−0.607766 + 0.794116i \(0.707934\pi\)
\(360\) 0 0
\(361\) −11.9497 14.7717i −0.628934 0.777459i
\(362\) 0 0
\(363\) 12.0160 + 5.65823i 0.630679 + 0.296980i
\(364\) 0 0
\(365\) −5.99538 1.05715i −0.313813 0.0553336i
\(366\) 0 0
\(367\) 16.4716 5.99517i 0.859811 0.312946i 0.125777 0.992059i \(-0.459858\pi\)
0.734034 + 0.679113i \(0.237635\pi\)
\(368\) 0 0
\(369\) −8.94813 1.64722i −0.465821 0.0857508i
\(370\) 0 0
\(371\) −33.4009 28.0267i −1.73409 1.45507i
\(372\) 0 0
\(373\) −5.05993 2.92135i −0.261993 0.151262i 0.363250 0.931692i \(-0.381667\pi\)
−0.625244 + 0.780430i \(0.715000\pi\)
\(374\) 0 0
\(375\) −9.30035 13.3891i −0.480268 0.691408i
\(376\) 0 0
\(377\) 2.71334 7.45483i 0.139744 0.383943i
\(378\) 0 0
\(379\) 19.4099i 0.997020i 0.866884 + 0.498510i \(0.166119\pi\)
−0.866884 + 0.498510i \(0.833881\pi\)
\(380\) 0 0
\(381\) 24.3357 11.2368i 1.24676 0.575680i
\(382\) 0 0
\(383\) 1.85317 + 0.674499i 0.0946926 + 0.0344653i 0.388932 0.921266i \(-0.372844\pi\)
−0.294239 + 0.955732i \(0.595066\pi\)
\(384\) 0 0
\(385\) −8.59762 48.7595i −0.438175 2.48502i
\(386\) 0 0
\(387\) −7.21412 20.2938i −0.366715 1.03159i
\(388\) 0 0
\(389\) 8.92735 10.6392i 0.452635 0.539429i −0.490675 0.871343i \(-0.663250\pi\)
0.943310 + 0.331914i \(0.107694\pi\)
\(390\) 0 0
\(391\) 7.94969 + 13.7693i 0.402033 + 0.696342i
\(392\) 0 0
\(393\) 7.25601 7.20169i 0.366017 0.363277i
\(394\) 0 0
\(395\) −5.47352 + 31.0419i −0.275403 + 1.56189i
\(396\) 0 0
\(397\) 8.93894 7.50066i 0.448633 0.376447i −0.390296 0.920690i \(-0.627627\pi\)
0.838928 + 0.544242i \(0.183183\pi\)
\(398\) 0 0
\(399\) −26.8367 + 21.9425i −1.34352 + 1.09850i
\(400\) 0 0
\(401\) 12.7300 10.6818i 0.635707 0.533422i −0.266989 0.963700i \(-0.586029\pi\)
0.902697 + 0.430278i \(0.141584\pi\)
\(402\) 0 0
\(403\) −0.876091 + 4.96856i −0.0436412 + 0.247501i
\(404\) 0 0
\(405\) 19.6190 10.9372i 0.974875 0.543476i
\(406\) 0 0
\(407\) −11.3756 19.7032i −0.563869 0.976650i
\(408\) 0 0
\(409\) −0.596254 + 0.710588i −0.0294829 + 0.0351363i −0.780584 0.625050i \(-0.785078\pi\)
0.751102 + 0.660187i \(0.229523\pi\)
\(410\) 0 0
\(411\) 2.16733 23.7448i 0.106906 1.17125i
\(412\) 0 0
\(413\) 5.18556 + 29.4088i 0.255165 + 1.44711i
\(414\) 0 0
\(415\) 42.0465 + 15.3037i 2.06398 + 0.751228i
\(416\) 0 0
\(417\) −8.67430 18.7861i −0.424782 0.919957i
\(418\) 0 0
\(419\) 4.32431i 0.211256i 0.994406 + 0.105628i \(0.0336853\pi\)
−0.994406 + 0.105628i \(0.966315\pi\)
\(420\) 0 0
\(421\) −7.48696 + 20.5703i −0.364892 + 1.00253i 0.612383 + 0.790561i \(0.290211\pi\)
−0.977276 + 0.211972i \(0.932011\pi\)
\(422\) 0 0
\(423\) −6.39734 + 10.8907i −0.311049 + 0.529524i
\(424\) 0 0
\(425\) 4.66359 + 2.69252i 0.226217 + 0.130607i
\(426\) 0 0
\(427\) 30.2168 + 25.3549i 1.46229 + 1.22701i
\(428\) 0 0
\(429\) −8.22466 + 11.6526i −0.397090 + 0.562593i
\(430\) 0 0
\(431\) −2.08390 + 0.758478i −0.100378 + 0.0365346i −0.391721 0.920084i \(-0.628120\pi\)
0.291343 + 0.956619i \(0.405898\pi\)
\(432\) 0 0
\(433\) −19.0991 3.36769i −0.917845 0.161841i −0.305282 0.952262i \(-0.598751\pi\)
−0.612564 + 0.790421i \(0.709862\pi\)
\(434\) 0 0
\(435\) −7.66564 + 16.2791i −0.367539 + 0.780521i
\(436\) 0 0
\(437\) 9.18611 12.8717i 0.439431 0.615736i
\(438\) 0 0
\(439\) 0.642464 + 0.765659i 0.0306631 + 0.0365429i 0.781158 0.624333i \(-0.214629\pi\)
−0.750495 + 0.660876i \(0.770185\pi\)
\(440\) 0 0
\(441\) 26.9116 + 32.5658i 1.28150 + 1.55075i
\(442\) 0 0
\(443\) −4.15661 11.4202i −0.197486 0.542589i 0.800935 0.598751i \(-0.204336\pi\)
−0.998422 + 0.0561615i \(0.982114\pi\)
\(444\) 0 0
\(445\) 23.0248 13.2934i 1.09148 0.630166i
\(446\) 0 0
\(447\) −33.3281 9.06459i −1.57637 0.428740i
\(448\) 0 0
\(449\) 13.6316 23.6107i 0.643316 1.11426i −0.341371 0.939929i \(-0.610891\pi\)
0.984688 0.174328i \(-0.0557753\pi\)
\(450\) 0 0
\(451\) −12.9048 + 2.27546i −0.607661 + 0.107147i
\(452\) 0 0
\(453\) −4.46960 + 0.374124i −0.210000 + 0.0175779i
\(454\) 0 0
\(455\) 21.8400 1.02387
\(456\) 0 0
\(457\) −21.5286 −1.00706 −0.503532 0.863976i \(-0.667967\pi\)
−0.503532 + 0.863976i \(0.667967\pi\)
\(458\) 0 0
\(459\) 13.2713 18.5058i 0.619449 0.863778i
\(460\) 0 0
\(461\) 11.7710 2.07554i 0.548230 0.0966677i 0.107329 0.994224i \(-0.465770\pi\)
0.440901 + 0.897556i \(0.354659\pi\)
\(462\) 0 0
\(463\) −17.2125 + 29.8130i −0.799935 + 1.38553i 0.119723 + 0.992807i \(0.461799\pi\)
−0.919658 + 0.392720i \(0.871534\pi\)
\(464\) 0 0
\(465\) 3.00321 11.0420i 0.139270 0.512061i
\(466\) 0 0
\(467\) 10.1222 5.84403i 0.468398 0.270430i −0.247171 0.968972i \(-0.579501\pi\)
0.715569 + 0.698542i \(0.246168\pi\)
\(468\) 0 0
\(469\) 23.5041 + 64.5769i 1.08532 + 2.98188i
\(470\) 0 0
\(471\) 3.69775 0.975934i 0.170383 0.0449687i
\(472\) 0 0
\(473\) −19.9389 23.7623i −0.916791 1.09259i
\(474\) 0 0
\(475\) 0.514670 5.33115i 0.0236147 0.244610i
\(476\) 0 0
\(477\) 0.214068 28.4876i 0.00980151 1.30436i
\(478\) 0 0
\(479\) 10.5999 + 1.86905i 0.484322 + 0.0853990i 0.410477 0.911871i \(-0.365362\pi\)
0.0738444 + 0.997270i \(0.476473\pi\)
\(480\) 0 0
\(481\) 9.43051 3.43243i 0.429994 0.156505i
\(482\) 0 0
\(483\) −23.5714 16.6372i −1.07253 0.757018i
\(484\) 0 0
\(485\) 3.04572 + 2.55566i 0.138299 + 0.116047i
\(486\) 0 0
\(487\) 19.0096 + 10.9752i 0.861406 + 0.497333i 0.864483 0.502663i \(-0.167646\pi\)
−0.00307718 + 0.999995i \(0.500979\pi\)
\(488\) 0 0
\(489\) 20.2222 14.0468i 0.914479 0.635218i
\(490\) 0 0
\(491\) 5.65914 15.5484i 0.255393 0.701688i −0.744043 0.668131i \(-0.767094\pi\)
0.999437 0.0335565i \(-0.0106834\pi\)
\(492\) 0 0
\(493\) 18.2427i 0.821608i
\(494\) 0 0
\(495\) 20.9797 24.6244i 0.942967 1.10679i
\(496\) 0 0
\(497\) −5.45841 1.98670i −0.244843 0.0891156i
\(498\) 0 0
\(499\) 0.0513797 + 0.291389i 0.00230007 + 0.0130443i 0.985936 0.167122i \(-0.0534474\pi\)
−0.983636 + 0.180167i \(0.942336\pi\)
\(500\) 0 0
\(501\) 27.4333 + 2.50400i 1.22563 + 0.111870i
\(502\) 0 0
\(503\) −6.11833 + 7.29154i −0.272803 + 0.325114i −0.885000 0.465592i \(-0.845842\pi\)
0.612197 + 0.790705i \(0.290286\pi\)
\(504\) 0 0
\(505\) −11.4768 19.8783i −0.510709 0.884574i
\(506\) 0 0
\(507\) 11.4298 + 11.5160i 0.507614 + 0.511443i
\(508\) 0 0
\(509\) −4.18871 + 23.7553i −0.185661 + 1.05294i 0.739442 + 0.673220i \(0.235089\pi\)
−0.925103 + 0.379716i \(0.876022\pi\)
\(510\) 0 0
\(511\) 8.57979 7.19930i 0.379548 0.318478i
\(512\) 0 0
\(513\) −22.2212 4.38382i −0.981090 0.193550i
\(514\) 0 0
\(515\) −17.0671 + 14.3210i −0.752066 + 0.631058i
\(516\) 0 0
\(517\) −3.15882 + 17.9146i −0.138925 + 0.787882i
\(518\) 0 0
\(519\) 18.5834 + 18.7235i 0.815720 + 0.821872i
\(520\) 0 0
\(521\) −5.76706 9.98884i −0.252659 0.437619i 0.711598 0.702587i \(-0.247972\pi\)
−0.964257 + 0.264968i \(0.914639\pi\)
\(522\) 0 0
\(523\) 7.64855 9.11518i 0.334448 0.398579i −0.572444 0.819944i \(-0.694004\pi\)
0.906891 + 0.421365i \(0.138449\pi\)
\(524\) 0 0
\(525\) −9.73140 0.888241i −0.424713 0.0387660i
\(526\) 0 0
\(527\) −2.01458 11.4253i −0.0877567 0.497693i
\(528\) 0 0
\(529\) −9.24536 3.36504i −0.401972 0.146306i
\(530\) 0 0
\(531\) −12.6537 + 14.8520i −0.549122 + 0.644520i
\(532\) 0 0
\(533\) 5.78019i 0.250368i
\(534\) 0 0
\(535\) 13.3281 36.6187i 0.576225 1.58316i
\(536\) 0 0
\(537\) −13.0511 + 9.06556i −0.563194 + 0.391208i
\(538\) 0 0
\(539\) 52.6927 + 30.4221i 2.26963 + 1.31037i
\(540\) 0 0
\(541\) −31.5118 26.4416i −1.35480 1.13681i −0.977551 0.210699i \(-0.932426\pi\)
−0.377248 0.926112i \(-0.623130\pi\)
\(542\) 0 0
\(543\) −14.9567 10.5568i −0.641853 0.453034i
\(544\) 0 0
\(545\) 13.8329 5.03478i 0.592538 0.215666i
\(546\) 0 0
\(547\) −24.2128 4.26937i −1.03526 0.182545i −0.369906 0.929069i \(-0.620610\pi\)
−0.665358 + 0.746524i \(0.731721\pi\)
\(548\) 0 0
\(549\) −0.193661 + 25.7719i −0.00826525 + 1.09992i
\(550\) 0 0
\(551\) 16.5123 7.52011i 0.703446 0.320367i
\(552\) 0 0
\(553\) −37.2753 44.4230i −1.58511 1.88906i
\(554\) 0 0
\(555\) −22.0087 + 5.80866i −0.934215 + 0.246564i
\(556\) 0 0
\(557\) −2.52133 6.92729i −0.106832 0.293519i 0.874746 0.484582i \(-0.161028\pi\)
−0.981578 + 0.191064i \(0.938806\pi\)
\(558\) 0 0
\(559\) 11.8497 6.84144i 0.501190 0.289362i
\(560\) 0 0
\(561\) 8.60761 31.6479i 0.363414 1.33618i
\(562\) 0 0
\(563\) −7.18491 + 12.4446i −0.302808 + 0.524478i −0.976771 0.214287i \(-0.931257\pi\)
0.673963 + 0.738765i \(0.264591\pi\)
\(564\) 0 0
\(565\) 28.3814 5.00441i 1.19401 0.210537i
\(566\) 0 0
\(567\) −7.78657 + 40.5835i −0.327005 + 1.70435i
\(568\) 0 0
\(569\) −23.8628 −1.00038 −0.500190 0.865916i \(-0.666737\pi\)
−0.500190 + 0.865916i \(0.666737\pi\)
\(570\) 0 0
\(571\) 16.7519 0.701045 0.350523 0.936554i \(-0.386004\pi\)
0.350523 + 0.936554i \(0.386004\pi\)
\(572\) 0 0
\(573\) 10.0333 0.839827i 0.419147 0.0350843i
\(574\) 0 0
\(575\) 4.38995 0.774066i 0.183073 0.0322808i
\(576\) 0 0
\(577\) 14.0202 24.2838i 0.583670 1.01095i −0.411369 0.911469i \(-0.634949\pi\)
0.995040 0.0994781i \(-0.0317173\pi\)
\(578\) 0 0
\(579\) 9.12066 + 2.48064i 0.379042 + 0.103092i
\(580\) 0 0
\(581\) −71.2906 + 41.1596i −2.95763 + 1.70759i
\(582\) 0 0
\(583\) −14.0330 38.5552i −0.581186 1.59680i
\(584\) 0 0
\(585\) 9.09000 + 10.9999i 0.375825 + 0.454788i
\(586\) 0 0
\(587\) −10.8980 12.9877i −0.449808 0.536060i 0.492720 0.870188i \(-0.336003\pi\)
−0.942528 + 0.334128i \(0.891558\pi\)
\(588\) 0 0
\(589\) −9.51106 + 6.53329i −0.391897 + 0.269200i
\(590\) 0 0
\(591\) −14.5840 + 30.9711i −0.599905 + 1.27398i
\(592\) 0 0
\(593\) 44.9926 + 7.93341i 1.84763 + 0.325786i 0.983975 0.178305i \(-0.0570614\pi\)
0.863650 + 0.504091i \(0.168172\pi\)
\(594\) 0 0
\(595\) −47.1926 + 17.1767i −1.93471 + 0.704177i
\(596\) 0 0
\(597\) 25.9078 36.7059i 1.06034 1.50227i
\(598\) 0 0
\(599\) 19.8093 + 16.6220i 0.809387 + 0.679156i 0.950461 0.310843i \(-0.100611\pi\)
−0.141075 + 0.989999i \(0.545056\pi\)
\(600\) 0 0
\(601\) 20.8635 + 12.0455i 0.851040 + 0.491348i 0.861002 0.508602i \(-0.169838\pi\)
−0.00996176 + 0.999950i \(0.503171\pi\)
\(602\) 0 0
\(603\) −22.7420 + 38.7155i −0.926126 + 1.57662i
\(604\) 0 0
\(605\) 6.54548 17.9836i 0.266112 0.731136i
\(606\) 0 0
\(607\) 21.8193i 0.885617i −0.896616 0.442809i \(-0.853982\pi\)
0.896616 0.442809i \(-0.146018\pi\)
\(608\) 0 0
\(609\) −13.8774 30.0544i −0.562340 1.21787i
\(610\) 0 0
\(611\) −7.54023 2.74442i −0.305045 0.111027i
\(612\) 0 0
\(613\) 0.146818 + 0.832646i 0.00592992 + 0.0336302i 0.987629 0.156808i \(-0.0501203\pi\)
−0.981699 + 0.190438i \(0.939009\pi\)
\(614\) 0 0
\(615\) −1.19169 + 13.0559i −0.0480535 + 0.526465i
\(616\) 0 0
\(617\) 13.6787 16.3016i 0.550683 0.656279i −0.416864 0.908969i \(-0.636871\pi\)
0.967547 + 0.252690i \(0.0813153\pi\)
\(618\) 0 0
\(619\) −18.9506 32.8233i −0.761688 1.31928i −0.941980 0.335669i \(-0.891038\pi\)
0.180293 0.983613i \(-0.442296\pi\)
\(620\) 0 0
\(621\) −1.43119 18.7965i −0.0574318 0.754276i
\(622\) 0 0
\(623\) −8.49361 + 48.1697i −0.340289 + 1.92988i
\(624\) 0 0
\(625\) −22.7009 + 19.0483i −0.908035 + 0.761932i
\(626\) 0 0
\(627\) −32.1942 + 5.25498i −1.28571 + 0.209864i
\(628\) 0 0
\(629\) −17.6783 + 14.8338i −0.704879 + 0.591464i
\(630\) 0 0
\(631\) −3.72763 + 21.1405i −0.148395 + 0.841588i 0.816184 + 0.577792i \(0.196086\pi\)
−0.964579 + 0.263796i \(0.915025\pi\)
\(632\) 0 0
\(633\) −34.4863 + 34.2281i −1.37071 + 1.36044i
\(634\) 0 0
\(635\) −19.3117 33.4489i −0.766362 1.32738i
\(636\) 0 0
\(637\) −17.2517 + 20.5597i −0.683536 + 0.814606i
\(638\) 0 0
\(639\) −1.27123 3.57605i −0.0502890 0.141466i
\(640\) 0 0
\(641\) 0.890484 + 5.05019i 0.0351720 + 0.199470i 0.997330 0.0730202i \(-0.0232638\pi\)
−0.962158 + 0.272491i \(0.912153\pi\)
\(642\) 0 0
\(643\) 26.2317 + 9.54757i 1.03448 + 0.376519i 0.802785 0.596269i \(-0.203351\pi\)
0.231694 + 0.972789i \(0.425573\pi\)
\(644\) 0 0
\(645\) −28.1758 + 13.0099i −1.10942 + 0.512266i
\(646\) 0 0
\(647\) 2.13623i 0.0839837i 0.999118 + 0.0419919i \(0.0133704\pi\)
−0.999118 + 0.0419919i \(0.986630\pi\)
\(648\) 0 0
\(649\) −9.61103 + 26.4061i −0.377266 + 1.03653i
\(650\) 0 0
\(651\) 12.0103 + 17.2904i 0.470721 + 0.677664i
\(652\) 0 0
\(653\) −0.500626 0.289037i −0.0195910 0.0113109i 0.490173 0.871625i \(-0.336934\pi\)
−0.509764 + 0.860315i \(0.670267\pi\)
\(654\) 0 0
\(655\) −11.2845 9.46878i −0.440920 0.369976i
\(656\) 0 0
\(657\) 7.19698 + 1.32486i 0.280781 + 0.0516876i
\(658\) 0 0
\(659\) 23.0584 8.39258i 0.898229 0.326929i 0.148686 0.988884i \(-0.452496\pi\)
0.749543 + 0.661956i \(0.230273\pi\)
\(660\) 0 0
\(661\) −13.9639 2.46222i −0.543133 0.0957691i −0.104651 0.994509i \(-0.533373\pi\)
−0.438482 + 0.898740i \(0.644484\pi\)
\(662\) 0 0
\(663\) 13.0887 + 6.16334i 0.508324 + 0.239364i
\(664\) 0 0
\(665\) 35.0015 + 35.6355i 1.35730 + 1.38188i
\(666\) 0 0
\(667\) 9.70676 + 11.5681i 0.375847 + 0.447917i
\(668\) 0 0
\(669\) −5.46591 20.7100i −0.211324 0.800694i
\(670\) 0 0
\(671\) 12.6952 + 34.8797i 0.490092 + 1.34652i
\(672\) 0 0
\(673\) −0.452127 + 0.261035i −0.0174282 + 0.0100622i −0.508689 0.860950i \(-0.669870\pi\)
0.491261 + 0.871013i \(0.336536\pi\)
\(674\) 0 0
\(675\) −3.60293 5.27099i −0.138677 0.202880i
\(676\) 0 0
\(677\) 22.3175 38.6550i 0.857730 1.48563i −0.0163583 0.999866i \(-0.505207\pi\)
0.874089 0.485766i \(-0.161459\pi\)
\(678\) 0 0
\(679\) −7.20351 + 1.27017i −0.276446 + 0.0487448i
\(680\) 0 0
\(681\) 3.28538 + 39.2500i 0.125896 + 1.50406i
\(682\) 0 0
\(683\) 6.04064 0.231139 0.115569 0.993299i \(-0.463131\pi\)
0.115569 + 0.993299i \(0.463131\pi\)
\(684\) 0 0
\(685\) −34.3566 −1.31270
\(686\) 0 0
\(687\) −0.693715 8.28772i −0.0264669 0.316196i
\(688\) 0 0
\(689\) 17.8235 3.14276i 0.679021 0.119730i
\(690\) 0 0
\(691\) 2.37454 4.11282i 0.0903316 0.156459i −0.817319 0.576185i \(-0.804541\pi\)
0.907651 + 0.419726i \(0.137874\pi\)
\(692\) 0 0
\(693\) 9.89403 + 58.6872i 0.375843 + 2.22934i
\(694\) 0 0
\(695\) −25.8210 + 14.9077i −0.979446 + 0.565483i
\(696\) 0 0
\(697\) 4.54601 + 12.4901i 0.172192 + 0.473095i
\(698\) 0 0
\(699\) −7.37588 27.9468i −0.278982 1.05704i
\(700\) 0 0
\(701\) 18.1636 + 21.6466i 0.686030 + 0.817579i 0.990869 0.134825i \(-0.0430471\pi\)
−0.304839 + 0.952404i \(0.598603\pi\)
\(702\) 0 0
\(703\) 20.7142 + 9.88650i 0.781252 + 0.372877i
\(704\) 0 0
\(705\) 16.4655 + 7.75346i 0.620128 + 0.292012i
\(706\) 0 0
\(707\) 41.5871 + 7.33292i 1.56404 + 0.275783i
\(708\) 0 0
\(709\) 23.2838 8.47462i 0.874443 0.318271i 0.134478 0.990917i \(-0.457064\pi\)
0.739965 + 0.672645i \(0.234842\pi\)
\(710\) 0 0
\(711\) 6.85962 37.2633i 0.257256 1.39748i
\(712\) 0 0
\(713\) −7.35678 6.17307i −0.275513 0.231183i
\(714\) 0 0
\(715\) 17.7982 + 10.2758i 0.665614 + 0.384292i
\(716\) 0 0
\(717\) −21.1502 30.4485i −0.789869 1.13712i
\(718\) 0 0
\(719\) 5.45833 14.9966i 0.203561 0.559280i −0.795339 0.606165i \(-0.792707\pi\)
0.998900 + 0.0468847i \(0.0149293\pi\)
\(720\) 0 0
\(721\) 40.9886i 1.52649i
\(722\) 0 0
\(723\) −11.1849 + 5.16453i −0.415971 + 0.192071i
\(724\) 0 0
\(725\) 4.80620 + 1.74931i 0.178498 + 0.0649679i
\(726\) 0 0
\(727\) 0.0763752 + 0.433145i 0.00283260 + 0.0160645i 0.986191 0.165610i \(-0.0529593\pi\)
−0.983359 + 0.181675i \(0.941848\pi\)
\(728\) 0 0
\(729\) −23.6810 + 12.9695i −0.877076 + 0.480352i
\(730\) 0 0
\(731\) −20.2247 + 24.1028i −0.748037 + 0.891475i
\(732\) 0 0
\(733\) 15.8181 + 27.3978i 0.584256 + 1.01196i 0.994968 + 0.100195i \(0.0319468\pi\)
−0.410712 + 0.911765i \(0.634720\pi\)
\(734\) 0 0
\(735\) 43.2056 42.8822i 1.59366 1.58173i
\(736\) 0 0
\(737\) −11.2293 + 63.6848i −0.413638 + 2.34586i
\(738\) 0 0
\(739\) −20.1981 + 16.9482i −0.742998 + 0.623449i −0.933641 0.358210i \(-0.883387\pi\)
0.190643 + 0.981659i \(0.438943\pi\)
\(740\) 0 0
\(741\) 0.183204 14.3879i 0.00673018 0.528552i
\(742\) 0 0
\(743\) 23.4319 19.6617i 0.859633 0.721318i −0.102256 0.994758i \(-0.532606\pi\)
0.961889 + 0.273440i \(0.0881617\pi\)
\(744\) 0 0
\(745\) −8.64206 + 49.0115i −0.316621 + 1.79564i
\(746\) 0 0
\(747\) −50.4022 18.7750i −1.84412 0.686941i
\(748\) 0 0
\(749\) 35.8463 + 62.0876i 1.30980 + 2.26863i
\(750\) 0 0
\(751\) 27.4205 32.6785i 1.00059 1.19245i 0.0193183 0.999813i \(-0.493850\pi\)
0.981269 0.192641i \(-0.0617052\pi\)
\(752\) 0 0
\(753\) −0.100125 + 1.09695i −0.00364876 + 0.0399751i
\(754\) 0 0
\(755\) 1.12226 + 6.36467i 0.0408433 + 0.231634i
\(756\) 0 0
\(757\) −18.6067 6.77229i −0.676272 0.246143i −0.0190261 0.999819i \(-0.506057\pi\)
−0.657246 + 0.753676i \(0.728279\pi\)
\(758\) 0 0
\(759\) −11.3813 24.6487i −0.413115 0.894689i
\(760\) 0 0
\(761\) 21.0263i 0.762202i 0.924533 + 0.381101i \(0.124455\pi\)
−0.924533 + 0.381101i \(0.875545\pi\)
\(762\) 0 0
\(763\) −9.26271 + 25.4491i −0.335332 + 0.921318i
\(764\) 0 0
\(765\) −28.2932 16.6198i −1.02294 0.600890i
\(766\) 0 0
\(767\) −10.7348 6.19772i −0.387610 0.223787i
\(768\) 0 0
\(769\) 9.84253 + 8.25886i 0.354931 + 0.297822i 0.802766 0.596294i \(-0.203361\pi\)
−0.447836 + 0.894116i \(0.647805\pi\)
\(770\) 0 0
\(771\) 24.4839 34.6885i 0.881766 1.24928i
\(772\) 0 0
\(773\) −48.7230 + 17.7337i −1.75245 + 0.637838i −0.999788 0.0205750i \(-0.993450\pi\)
−0.752657 + 0.658413i \(0.771228\pi\)
\(774\) 0 0
\(775\) −3.20328 0.564824i −0.115065 0.0202891i
\(776\) 0 0
\(777\) 17.8404 37.8865i 0.640019 1.35917i
\(778\) 0 0
\(779\) 9.43133 9.26353i 0.337912 0.331900i
\(780\) 0 0
\(781\) −3.51351 4.18723i −0.125723 0.149831i
\(782\) 0 0
\(783\) 9.36123 19.4984i 0.334543 0.696815i
\(784\) 0 0
\(785\) −1.88474 5.17828i −0.0672692 0.184821i
\(786\) 0 0
\(787\) 23.1195 13.3480i 0.824120 0.475806i −0.0277150 0.999616i \(-0.508823\pi\)
0.851835 + 0.523810i \(0.175490\pi\)
\(788\) 0 0
\(789\) −7.28293 1.98081i −0.259279 0.0705187i
\(790\) 0 0
\(791\) −26.5100 + 45.9167i −0.942587 + 1.63261i
\(792\) 0 0
\(793\) −16.1244 + 2.84316i −0.572593 + 0.100964i
\(794\) 0 0
\(795\) −40.9064 + 3.42403i −1.45080 + 0.121438i
\(796\) 0 0
\(797\) 39.6576 1.40474 0.702372 0.711810i \(-0.252124\pi\)
0.702372 + 0.711810i \(0.252124\pi\)
\(798\) 0 0
\(799\) 18.4517 0.652773
\(800\) 0 0
\(801\) −27.7961 + 15.7708i −0.982128 + 0.557234i
\(802\) 0 0
\(803\) 10.3793 1.83015i 0.366277 0.0645845i
\(804\) 0 0
\(805\) −20.7863 + 36.0029i −0.732620 + 1.26894i
\(806\) 0 0
\(807\) 2.83824 10.4355i 0.0999109 0.367346i
\(808\) 0 0
\(809\) −13.1404 + 7.58659i −0.461990 + 0.266730i −0.712881 0.701285i \(-0.752610\pi\)
0.250890 + 0.968015i \(0.419277\pi\)
\(810\) 0 0
\(811\) −4.48250 12.3156i −0.157402 0.432458i 0.835776 0.549071i \(-0.185018\pi\)
−0.993177 + 0.116613i \(0.962796\pi\)
\(812\) 0 0
\(813\) −14.6472 + 3.86579i −0.513701 + 0.135579i
\(814\) 0 0
\(815\) −22.8051 27.1781i −0.798829 0.952007i
\(816\) 0 0
\(817\) 30.1537 + 8.37044i 1.05494 + 0.292845i
\(818\) 0 0
\(819\) −26.2519 0.197268i −0.917316 0.00689311i
\(820\) 0 0
\(821\) 13.0469 + 2.30053i 0.455341 + 0.0802890i 0.396615 0.917985i \(-0.370185\pi\)
0.0587266 + 0.998274i \(0.481296\pi\)
\(822\) 0 0
\(823\) −20.4461 + 7.44178i −0.712707 + 0.259404i −0.672827 0.739800i \(-0.734920\pi\)
−0.0398806 + 0.999204i \(0.512698\pi\)
\(824\) 0 0
\(825\) −7.51255 5.30252i −0.261553 0.184610i
\(826\) 0 0
\(827\) 20.5471 + 17.2410i 0.714492 + 0.599530i 0.925855 0.377878i \(-0.123346\pi\)
−0.211364 + 0.977407i \(0.567791\pi\)
\(828\) 0 0
\(829\) 25.5289 + 14.7391i 0.886655 + 0.511910i 0.872847 0.487994i \(-0.162271\pi\)
0.0138079 + 0.999905i \(0.495605\pi\)
\(830\) 0 0
\(831\) −17.4491 + 12.1206i −0.605304 + 0.420458i
\(832\) 0 0
\(833\) 21.1082 57.9944i 0.731357 2.00939i
\(834\) 0 0
\(835\) 39.6935i 1.37365i
\(836\) 0 0
\(837\) −3.70963 + 13.2455i −0.128224 + 0.457832i
\(838\) 0 0
\(839\) −12.8095 4.66226i −0.442232 0.160959i 0.111301 0.993787i \(-0.464498\pi\)
−0.553532 + 0.832828i \(0.686720\pi\)
\(840\) 0 0
\(841\) −2.02705 11.4960i −0.0698984 0.396414i
\(842\) 0 0
\(843\) 16.1622 + 1.47522i 0.556656 + 0.0508092i
\(844\) 0 0
\(845\) 15.0279 17.9095i 0.516975 0.616107i
\(846\) 0 0
\(847\) 17.6042 + 30.4914i 0.604889 + 1.04770i
\(848\) 0 0
\(849\) 30.5231 + 30.7533i 1.04755 + 1.05545i
\(850\) 0 0
\(851\) −3.31722 + 18.8129i −0.113713 + 0.644898i
\(852\) 0 0
\(853\) 24.3461 20.4288i 0.833595 0.699470i −0.122518 0.992466i \(-0.539097\pi\)
0.956113 + 0.292997i \(0.0946525\pi\)
\(854\) 0 0
\(855\) −3.38012 + 32.4606i −0.115598 + 1.11013i
\(856\) 0 0
\(857\) 5.73136 4.80918i 0.195780 0.164279i −0.539628 0.841904i \(-0.681435\pi\)
0.735408 + 0.677625i \(0.236991\pi\)
\(858\) 0 0
\(859\) 6.61755 37.5300i 0.225788 1.28051i −0.635386 0.772195i \(-0.719159\pi\)
0.861173 0.508311i \(-0.169730\pi\)
\(860\) 0 0
\(861\) −16.9908 17.1189i −0.579044 0.583411i
\(862\) 0 0
\(863\) 17.8990 + 31.0020i 0.609289 + 1.05532i 0.991358 + 0.131185i \(0.0418783\pi\)
−0.382069 + 0.924134i \(0.624788\pi\)
\(864\) 0 0
\(865\) 24.4334 29.1186i 0.830761 0.990063i
\(866\) 0 0
\(867\) −3.80699 0.347487i −0.129292 0.0118013i
\(868\) 0 0
\(869\) −9.47582 53.7401i −0.321445 1.82301i
\(870\) 0 0
\(871\) −26.8049 9.75618i −0.908249 0.330576i
\(872\) 0 0
\(873\) −3.63791 3.09945i −0.123124 0.104900i
\(874\) 0 0
\(875\) 43.2160i 1.46097i
\(876\) 0 0
\(877\) 10.5187 28.8998i 0.355190 0.975876i −0.625486 0.780235i \(-0.715099\pi\)
0.980676 0.195640i \(-0.0626786\pi\)
\(878\) 0 0
\(879\) −19.4935 + 13.5406i −0.657499 + 0.456714i
\(880\) 0 0
\(881\) −8.15736 4.70966i −0.274829 0.158672i 0.356251 0.934390i \(-0.384055\pi\)
−0.631080 + 0.775718i \(0.717388\pi\)
\(882\) 0 0
\(883\) 8.55501 + 7.17850i 0.287899 + 0.241576i 0.775286 0.631610i \(-0.217606\pi\)
−0.487387 + 0.873186i \(0.662050\pi\)
\(884\) 0 0
\(885\) 22.9692 + 16.2122i 0.772101 + 0.544966i
\(886\) 0 0
\(887\) 41.5278 15.1149i 1.39437 0.507509i 0.467867 0.883799i \(-0.345023\pi\)
0.926502 + 0.376291i \(0.122801\pi\)
\(888\) 0 0
\(889\) 69.9777 + 12.3390i 2.34698 + 0.413835i
\(890\) 0 0
\(891\) −25.4403 + 29.4094i −0.852281 + 0.985252i
\(892\) 0 0
\(893\) −7.60626 16.7014i −0.254534 0.558892i
\(894\) 0 0
\(895\) 14.7180 + 17.5403i 0.491970 + 0.586307i
\(896\) 0 0
\(897\) 11.5793 3.05608i 0.386621 0.102040i
\(898\) 0 0
\(899\) −3.76872 10.3545i −0.125694 0.345341i
\(900\) 0 0
\(901\) −36.0420 + 20.8089i −1.20073 + 0.693243i
\(902\) 0 0
\(903\) 14.9845 55.0940i 0.498652 1.83341i
\(904\) 0 0
\(905\) −13.1895 + 22.8448i −0.438433 + 0.759388i
\(906\) 0 0
\(907\) 4.51072 0.795362i 0.149776 0.0264096i −0.0982573 0.995161i \(-0.531327\pi\)
0.248033 + 0.968751i \(0.420216\pi\)
\(908\) 0 0
\(909\) 13.6157 + 23.9977i 0.451603 + 0.795952i
\(910\) 0 0
\(911\) −13.1488 −0.435640 −0.217820 0.975989i \(-0.569895\pi\)
−0.217820 + 0.975989i \(0.569895\pi\)
\(912\) 0 0
\(913\) −77.4630 −2.56365
\(914\) 0 0
\(915\) 37.0068 3.09761i 1.22341 0.102404i
\(916\) 0 0
\(917\) 26.6892 4.70602i 0.881355 0.155407i
\(918\) 0 0
\(919\) −9.31748 + 16.1383i −0.307355 + 0.532355i −0.977783 0.209620i \(-0.932777\pi\)
0.670428 + 0.741975i \(0.266111\pi\)
\(920\) 0 0
\(921\) −9.57119 2.60317i −0.315382 0.0857775i
\(922\) 0 0
\(923\) 2.08808 1.20556i 0.0687301 0.0396813i
\(924\) 0 0
\(925\) 2.21292 + 6.07995i 0.0727603 + 0.199907i
\(926\) 0 0
\(927\) 20.6442 17.0598i 0.678045 0.560319i
\(928\) 0 0
\(929\) 4.43968 + 5.29101i 0.145661 + 0.173592i 0.833942 0.551852i \(-0.186079\pi\)
−0.688281 + 0.725444i \(0.741634\pi\)
\(930\) 0 0
\(931\) −61.1947 + 4.80081i −2.00557 + 0.157340i
\(932\) 0 0
\(933\) 15.5267 32.9731i 0.508321 1.07949i
\(934\) 0 0
\(935\) −46.5407 8.20638i −1.52204 0.268377i
\(936\) 0 0
\(937\) 45.1480 16.4325i 1.47492 0.536827i 0.525488 0.850801i \(-0.323883\pi\)
0.949431 + 0.313974i \(0.101661\pi\)
\(938\) 0 0
\(939\) −3.89845 + 5.52328i −0.127221 + 0.180245i
\(940\) 0 0
\(941\) −33.8655 28.4165i −1.10398 0.926352i −0.106297 0.994334i \(-0.533899\pi\)
−0.997687 + 0.0679825i \(0.978344\pi\)
\(942\) 0 0
\(943\) 9.52857 + 5.50132i 0.310293 + 0.179148i
\(944\) 0 0
\(945\) 59.2553 + 5.85787i 1.92758 + 0.190556i
\(946\) 0 0
\(947\) 10.5950 29.1095i 0.344291 0.945931i −0.639843 0.768505i \(-0.721001\pi\)
0.984134 0.177426i \(-0.0567770\pi\)
\(948\) 0 0
\(949\) 4.64900i 0.150913i
\(950\) 0 0
\(951\) −10.9038 23.6146i −0.353581 0.765755i
\(952\) 0 0
\(953\) −20.7542 7.55393i −0.672296 0.244696i −0.0167598 0.999860i \(-0.505335\pi\)
−0.655536 + 0.755164i \(0.727557\pi\)
\(954\) 0 0
\(955\) −2.51924 14.2873i −0.0815207 0.462327i
\(956\) 0 0
\(957\) 2.83154 31.0218i 0.0915307 1.00279i
\(958\) 0 0
\(959\) 40.6289 48.4196i 1.31197 1.56355i
\(960\) 0 0
\(961\) −11.9962 20.7780i −0.386974 0.670259i
\(962\) 0 0
\(963\) −16.3513 + 43.8958i −0.526914 + 1.41452i
\(964\) 0 0
\(965\) 2.36501 13.4126i 0.0761323 0.431768i
\(966\) 0 0
\(967\) −23.5446 + 19.7562i −0.757143 + 0.635318i −0.937381 0.348305i \(-0.886757\pi\)
0.180239 + 0.983623i \(0.442313\pi\)
\(968\) 0 0
\(969\) 10.9199 + 31.2340i 0.350798 + 1.00338i
\(970\) 0 0
\(971\) −6.71056 + 5.63083i −0.215352 + 0.180702i −0.744082 0.668088i \(-0.767113\pi\)
0.528730 + 0.848790i \(0.322668\pi\)
\(972\) 0 0
\(973\) 9.52511 54.0196i 0.305361 1.73179i
\(974\) 0 0
\(975\) 2.87889 2.85733i 0.0921981 0.0915079i
\(976\) 0 0
\(977\) −19.0522 32.9995i −0.609535 1.05575i −0.991317 0.131493i \(-0.958023\pi\)
0.381782 0.924252i \(-0.375311\pi\)
\(978\) 0 0
\(979\) −29.5858 + 35.2589i −0.945565 + 1.12688i
\(980\) 0 0
\(981\) −16.6728 + 5.92692i −0.532323 + 0.189232i
\(982\) 0 0
\(983\) −1.05201 5.96622i −0.0335538 0.190293i 0.963424 0.267982i \(-0.0863569\pi\)
−0.996978 + 0.0776894i \(0.975246\pi\)
\(984\) 0 0
\(985\) 46.3523 + 16.8708i 1.47691 + 0.537550i
\(986\) 0 0
\(987\) −30.3987 + 14.0364i −0.967602 + 0.446782i
\(988\) 0 0
\(989\) 26.0455i 0.828198i
\(990\) 0 0
\(991\) 14.3275 39.3644i 0.455127 1.25045i −0.473945 0.880555i \(-0.657170\pi\)
0.929072 0.369898i \(-0.120607\pi\)
\(992\) 0 0
\(993\) −5.30303 7.63440i −0.168287 0.242270i
\(994\) 0 0
\(995\) −56.0646 32.3689i −1.77737 1.02616i
\(996\) 0 0
\(997\) −15.7307 13.1996i −0.498196 0.418036i 0.358757 0.933431i \(-0.383201\pi\)
−0.856953 + 0.515395i \(0.827645\pi\)
\(998\) 0 0
\(999\) 26.5071 6.78329i 0.838649 0.214614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bm.b.89.5 yes 60
3.2 odd 2 456.2.bm.a.89.4 yes 60
4.3 odd 2 912.2.cc.g.545.6 60
12.11 even 2 912.2.cc.h.545.7 60
19.3 odd 18 456.2.bm.a.41.4 60
57.41 even 18 inner 456.2.bm.b.41.5 yes 60
76.3 even 18 912.2.cc.h.497.7 60
228.155 odd 18 912.2.cc.g.497.6 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.41.4 60 19.3 odd 18
456.2.bm.a.89.4 yes 60 3.2 odd 2
456.2.bm.b.41.5 yes 60 57.41 even 18 inner
456.2.bm.b.89.5 yes 60 1.1 even 1 trivial
912.2.cc.g.497.6 60 228.155 odd 18
912.2.cc.g.545.6 60 4.3 odd 2
912.2.cc.h.497.7 60 76.3 even 18
912.2.cc.h.545.7 60 12.11 even 2