Properties

Label 456.2.bk
Level $456$
Weight $2$
Character orbit 456.bk
Rep. character $\chi_{456}(61,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $240$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bk (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).

Total New Old
Modular forms 504 240 264
Cusp forms 456 240 216
Eisenstein series 48 0 48

Trace form

\( 240 q + 6 q^{4} + 6 q^{6} - 24 q^{10} + 18 q^{14} - 6 q^{16} + 60 q^{20} - 36 q^{28} - 72 q^{31} - 90 q^{32} + 66 q^{34} - 6 q^{36} + 72 q^{38} - 114 q^{40} - 60 q^{44} + 30 q^{46} + 72 q^{47} + 24 q^{48}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
456.2.bk.a 456.bk 152.t $240$ $3.641$ None 456.2.bk.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(456, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)