Defining parameters
Level: | \( N \) | \(=\) | \( 456 = 2^{3} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 456.bf (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 176 | 40 | 136 |
Cusp forms | 144 | 40 | 104 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
456.2.bf.a | $4$ | $3.641$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(1\) | \(-3\) | \(2\) | \(q+\beta _{1}q^{3}+(-1-\beta _{3})q^{5}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\) |
456.2.bf.b | $4$ | $3.641$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(2\) | \(3\) | \(2\) | \(q+(1-\beta _{1}+\beta _{3})q^{3}+(1-\beta _{1})q^{5}+(1+\cdots)q^{7}+\cdots\) |
456.2.bf.c | $16$ | $3.641$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-1\) | \(-3\) | \(0\) | \(q-\beta _{1}q^{3}-\beta _{14}q^{5}+(\beta _{5}-\beta _{13})q^{7}+\cdots\) |
456.2.bf.d | $16$ | $3.641$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(1\) | \(3\) | \(0\) | \(q+\beta _{4}q^{3}+(-\beta _{11}+\beta _{14})q^{5}+(\beta _{5}-\beta _{13}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(456, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(456, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)