Properties

Label 455.2.z
Level $455$
Weight $2$
Character orbit 455.z
Rep. character $\chi_{455}(186,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $76$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(455, [\chi])\).

Total New Old
Modular forms 120 76 44
Cusp forms 104 76 28
Eisenstein series 16 0 16

Trace form

\( 76 q + 6 q^{3} - 80 q^{4} + 8 q^{7} - 42 q^{9} - 4 q^{10} - 6 q^{11} - 16 q^{12} - 14 q^{14} - 6 q^{15} + 80 q^{16} + 40 q^{17} + 24 q^{18} - 12 q^{19} - 12 q^{20} - 2 q^{21} + 16 q^{22} + 38 q^{25} + 8 q^{26}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(455, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
455.2.z.a 455.z 91.k $76$ $3.633$ None 455.2.z.a \(0\) \(6\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(455, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(455, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)