Properties

Label 455.2.l.b
Level $455$
Weight $2$
Character orbit 455.l
Analytic conductor $3.633$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [455,2,Mod(16,455)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("455.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(455, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.63319329197\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 38 q + 4 q^{2} - 2 q^{3} + 44 q^{4} - 19 q^{5} - q^{7} + 12 q^{8} - 19 q^{9} - 2 q^{10} - 9 q^{11} - 4 q^{12} + 2 q^{13} - 3 q^{14} - 2 q^{15} + 56 q^{16} + 6 q^{17} - 23 q^{18} + 2 q^{19} - 22 q^{20}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1 −2.74039 −0.182108 + 0.315421i 5.50972 −0.500000 + 0.866025i 0.499047 0.864375i −0.413858 2.61318i −9.61800 1.43367 + 2.48319i 1.37019 2.37325i
16.2 −2.41578 0.261635 0.453165i 3.83599 −0.500000 + 0.866025i −0.632052 + 1.09475i 1.65525 + 2.06401i −4.43534 1.36309 + 2.36095i 1.20789 2.09213i
16.3 −2.21654 −1.22503 + 2.12182i 2.91305 −0.500000 + 0.866025i 2.71533 4.70309i −2.59082 + 0.536353i −2.02382 −1.50140 2.60051i 1.10827 1.91958i
16.4 −1.82106 0.929351 1.60968i 1.31627 −0.500000 + 0.866025i −1.69241 + 2.93134i 2.13637 1.56074i 1.24511 −0.227386 0.393844i 0.910532 1.57709i
16.5 −1.56699 1.38100 2.39196i 0.455451 −0.500000 + 0.866025i −2.16401 + 3.74817i −2.08092 + 1.63394i 2.42029 −2.31431 4.00850i 0.783494 1.35705i
16.6 −1.36671 −1.19212 + 2.06481i −0.132098 −0.500000 + 0.866025i 1.62928 2.82200i 0.361080 + 2.62100i 2.91396 −1.34229 2.32491i 0.683356 1.18361i
16.7 −1.13200 −0.884561 + 1.53211i −0.718583 −0.500000 + 0.866025i 1.00132 1.73434i 2.00877 1.72188i 3.07743 −0.0648974 0.112406i 0.565998 0.980338i
16.8 −0.460333 0.706974 1.22451i −1.78809 −0.500000 + 0.866025i −0.325444 + 0.563685i −1.42578 + 2.22871i 1.74378 0.500376 + 0.866676i 0.230167 0.398660i
16.9 −0.307288 0.823211 1.42584i −1.90557 −0.500000 + 0.866025i −0.252963 + 0.438145i 2.33734 + 1.23970i 1.20014 0.144647 + 0.250535i 0.153644 0.266119i
16.10 0.414405 −1.18735 + 2.05655i −1.82827 −0.500000 + 0.866025i −0.492043 + 0.852244i 0.223348 2.63631i −1.58645 −1.31960 2.28561i −0.207202 + 0.358885i
16.11 0.616455 −1.45860 + 2.52637i −1.61998 −0.500000 + 0.866025i −0.899162 + 1.55739i −1.60065 + 2.10664i −2.23156 −2.75503 4.77185i −0.308228 + 0.533866i
16.12 0.752383 0.162148 0.280848i −1.43392 −0.500000 + 0.866025i 0.121997 0.211305i −2.32268 1.26695i −2.58362 1.44742 + 2.50700i −0.376192 + 0.651583i
16.13 0.970955 1.13697 1.96930i −1.05725 −0.500000 + 0.866025i 1.10395 1.91210i −0.574936 2.58253i −2.96845 −1.08542 1.88001i −0.485478 + 0.840872i
16.14 1.49905 −0.443947 + 0.768938i 0.247155 −0.500000 + 0.866025i −0.665499 + 1.15268i 0.0520434 + 2.64524i −2.62760 1.10582 + 1.91534i −0.749526 + 1.29822i
16.15 1.79890 −0.217038 + 0.375921i 1.23603 −0.500000 + 0.866025i −0.390429 + 0.676242i 2.63010 0.287369i −1.37431 1.40579 + 2.43490i −0.899448 + 1.55789i
16.16 2.34023 0.780077 1.35113i 3.47668 −0.500000 + 0.866025i 1.82556 3.16196i 1.33454 2.28452i 3.45577 0.282960 + 0.490101i −1.17012 + 2.02670i
16.17 2.35621 1.60078 2.77263i 3.55174 −0.500000 + 0.866025i 3.77177 6.53290i −2.14038 + 1.55524i 3.65623 −3.62498 6.27865i −1.17811 + 2.04054i
16.18 2.56715 −1.69976 + 2.94407i 4.59025 −0.500000 + 0.866025i −4.36354 + 7.55787i 2.54857 + 0.710483i 6.64957 −4.27837 7.41035i −1.28357 + 2.22322i
16.19 2.71135 −0.291634 + 0.505124i 5.35142 −0.500000 + 0.866025i −0.790721 + 1.36957i −2.63739 + 0.210237i 9.08688 1.32990 + 2.30345i −1.35568 + 2.34810i
256.1 −2.74039 −0.182108 0.315421i 5.50972 −0.500000 0.866025i 0.499047 + 0.864375i −0.413858 + 2.61318i −9.61800 1.43367 2.48319i 1.37019 + 2.37325i
See all 38 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.19
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 455.2.l.b yes 38
7.c even 3 1 455.2.k.a 38
13.c even 3 1 455.2.k.a 38
91.h even 3 1 inner 455.2.l.b yes 38
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.k.a 38 7.c even 3 1
455.2.k.a 38 13.c even 3 1
455.2.l.b yes 38 1.a even 1 1 trivial
455.2.l.b yes 38 91.h even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{19} - 2 T_{2}^{18} - 28 T_{2}^{17} + 54 T_{2}^{16} + 322 T_{2}^{15} - 594 T_{2}^{14} - 1969 T_{2}^{13} + \cdots + 177 \) acting on \(S_{2}^{\mathrm{new}}(455, [\chi])\). Copy content Toggle raw display