Newspace parameters
| Level: | \( N \) | \(=\) | \( 455 = 5 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 455.cl (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(3.63319329197\) |
| Analytic rank: | \(0\) |
| Dimension: | \(208\) |
| Relative dimension: | \(52\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 54.1 | −1.97450 | − | 1.97450i | −1.19666 | + | 2.07268i | 5.79729i | 2.22898 | − | 0.177927i | 6.45531 | − | 1.72969i | 0.795119 | + | 2.52345i | 7.49775 | − | 7.49775i | −1.36400 | − | 2.36251i | −4.75243 | − | 4.04980i | ||
| 54.2 | −1.83748 | − | 1.83748i | −0.230032 | + | 0.398427i | 4.75268i | −1.52820 | + | 1.63236i | 1.15478 | − | 0.309423i | −2.54879 | − | 0.709714i | 5.05799 | − | 5.05799i | 1.39417 | + | 2.41477i | 5.80747 | − | 0.191407i | ||
| 54.3 | −1.79250 | − | 1.79250i | 0.570210 | − | 0.987632i | 4.42610i | −0.848115 | − | 2.06899i | −2.79243 | + | 0.748229i | −0.864980 | + | 2.50036i | 4.34877 | − | 4.34877i | 0.849722 | + | 1.47176i | −2.18841 | + | 5.22890i | ||
| 54.4 | −1.70582 | − | 1.70582i | 0.876376 | − | 1.51793i | 3.81963i | −1.81559 | + | 1.30523i | −4.08425 | + | 1.09437i | 2.61783 | − | 0.383340i | 3.10395 | − | 3.10395i | −0.0360702 | − | 0.0624754i | 5.32355 | + | 0.870576i | ||
| 54.5 | −1.67761 | − | 1.67761i | −0.0710893 | + | 0.123130i | 3.62875i | 1.78039 | + | 1.35286i | 0.325824 | − | 0.0873044i | 0.569797 | − | 2.58367i | 2.73241 | − | 2.73241i | 1.48989 | + | 2.58057i | −0.717231 | − | 5.25636i | ||
| 54.6 | −1.60002 | − | 1.60002i | 1.00288 | − | 1.73704i | 3.12010i | 1.89456 | − | 1.18771i | −4.38390 | + | 1.17466i | 2.63857 | + | 0.194785i | 1.79218 | − | 1.79218i | −0.511527 | − | 0.885991i | −4.93168 | − | 1.13096i | ||
| 54.7 | −1.53989 | − | 1.53989i | −1.66747 | + | 2.88814i | 2.74252i | −2.10885 | − | 0.743462i | 7.01514 | − | 1.87970i | −2.50833 | + | 0.841606i | 1.14339 | − | 1.14339i | −4.06092 | − | 7.03372i | 2.10255 | + | 4.39225i | ||
| 54.8 | −1.51836 | − | 1.51836i | −0.942185 | + | 1.63191i | 2.61081i | 0.0390361 | − | 2.23573i | 3.90840 | − | 1.04725i | 1.05939 | − | 2.42439i | 0.927434 | − | 0.927434i | −0.275424 | − | 0.477048i | −3.45390 | + | 3.33536i | ||
| 54.9 | −1.45992 | − | 1.45992i | 1.52047 | − | 2.63354i | 2.26275i | −1.90616 | − | 1.16900i | −6.06454 | + | 1.62499i | −1.37796 | − | 2.25859i | 0.383594 | − | 0.383594i | −3.12369 | − | 5.41038i | 1.07620 | + | 4.48949i | ||
| 54.10 | −1.35125 | − | 1.35125i | −0.820812 | + | 1.42169i | 1.65175i | 0.449426 | + | 2.19044i | 3.03018 | − | 0.811934i | 1.09494 | + | 2.40855i | −0.470569 | + | 0.470569i | 0.152534 | + | 0.264197i | 2.35254 | − | 3.56712i | ||
| 54.11 | −1.29511 | − | 1.29511i | −1.43161 | + | 2.47962i | 1.35463i | −0.486590 | + | 2.18248i | 5.06548 | − | 1.35729i | 2.36022 | − | 1.19557i | −0.835832 | + | 0.835832i | −2.59902 | − | 4.50164i | 3.45675 | − | 2.19637i | ||
| 54.12 | −1.28051 | − | 1.28051i | 0.583111 | − | 1.00998i | 1.27940i | 1.72823 | + | 1.41889i | −2.03996 | + | 0.546607i | −2.10897 | + | 1.59758i | −0.922731 | + | 0.922731i | 0.819962 | + | 1.42022i | −0.396112 | − | 4.02990i | ||
| 54.13 | −1.11196 | − | 1.11196i | −0.266092 | + | 0.460885i | 0.472893i | −1.28746 | − | 1.82824i | 0.808367 | − | 0.216601i | 1.39754 | + | 2.24653i | −1.69808 | + | 1.69808i | 1.35839 | + | 2.35280i | −0.601320 | + | 3.46452i | ||
| 54.14 | −0.966485 | − | 0.966485i | 1.04990 | − | 1.81847i | − | 0.131813i | 1.61919 | − | 1.54215i | −2.77224 | + | 0.742818i | −2.33151 | − | 1.25063i | −2.06037 | + | 2.06037i | −0.704563 | − | 1.22034i | −3.05539 | − | 0.0744587i | |
| 54.15 | −0.919959 | − | 0.919959i | 0.136758 | − | 0.236872i | − | 0.307351i | −2.23415 | − | 0.0925757i | −0.343724 | + | 0.0921005i | 1.54879 | − | 2.14505i | −2.12267 | + | 2.12267i | 1.46259 | + | 2.53329i | 1.97016 | + | 2.14049i | |
| 54.16 | −0.817444 | − | 0.817444i | −0.603671 | + | 1.04559i | − | 0.663571i | −2.14260 | + | 0.639737i | 1.34818 | − | 0.361243i | −1.82788 | − | 1.91281i | −2.17732 | + | 2.17732i | 0.771163 | + | 1.33569i | 2.27441 | + | 1.22851i | |
| 54.17 | −0.797919 | − | 0.797919i | −0.779516 | + | 1.35016i | − | 0.726652i | 0.969702 | − | 2.01486i | 1.69931 | − | 0.455329i | −1.90263 | + | 1.83848i | −2.17565 | + | 2.17565i | 0.284709 | + | 0.493131i | −2.38144 | + | 0.833954i | |
| 54.18 | −0.767371 | − | 0.767371i | 0.697267 | − | 1.20770i | − | 0.822284i | −1.61323 | + | 1.54839i | −1.46182 | + | 0.391693i | −1.33480 | + | 2.28436i | −2.16574 | + | 2.16574i | 0.527637 | + | 0.913893i | 2.42613 | + | 0.0497575i | |
| 54.19 | −0.617933 | − | 0.617933i | 1.57245 | − | 2.72356i | − | 1.23632i | 1.61913 | + | 1.54221i | −2.65464 | + | 0.711309i | 2.58422 | + | 0.567298i | −1.99983 | + | 1.99983i | −3.44518 | − | 5.96723i | −0.0475314 | − | 1.95350i | |
| 54.20 | −0.585058 | − | 0.585058i | 1.49781 | − | 2.59428i | − | 1.31542i | −1.85632 | − | 1.24663i | −2.39410 | + | 0.641498i | 0.832587 | + | 2.51133i | −1.93971 | + | 1.93971i | −2.98684 | − | 5.17336i | 0.356702 | + | 1.81540i | |
| See next 80 embeddings (of 208 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 91.ba | even | 12 | 1 | inner |
| 455.cl | even | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 455.2.cl.a | ✓ | 208 |
| 5.b | even | 2 | 1 | inner | 455.2.cl.a | ✓ | 208 |
| 7.d | odd | 6 | 1 | 455.2.dn.a | yes | 208 | |
| 13.f | odd | 12 | 1 | 455.2.dn.a | yes | 208 | |
| 35.i | odd | 6 | 1 | 455.2.dn.a | yes | 208 | |
| 65.s | odd | 12 | 1 | 455.2.dn.a | yes | 208 | |
| 91.ba | even | 12 | 1 | inner | 455.2.cl.a | ✓ | 208 |
| 455.cl | even | 12 | 1 | inner | 455.2.cl.a | ✓ | 208 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 455.2.cl.a | ✓ | 208 | 1.a | even | 1 | 1 | trivial |
| 455.2.cl.a | ✓ | 208 | 5.b | even | 2 | 1 | inner |
| 455.2.cl.a | ✓ | 208 | 91.ba | even | 12 | 1 | inner |
| 455.2.cl.a | ✓ | 208 | 455.cl | even | 12 | 1 | inner |
| 455.2.dn.a | yes | 208 | 7.d | odd | 6 | 1 | |
| 455.2.dn.a | yes | 208 | 13.f | odd | 12 | 1 | |
| 455.2.dn.a | yes | 208 | 35.i | odd | 6 | 1 | |
| 455.2.dn.a | yes | 208 | 65.s | odd | 12 | 1 | |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(455, [\chi])\).