Defining parameters
| Level: | \( N \) | \(=\) | \( 455 = 5 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 455.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(455, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 60 | 36 | 24 |
| Cusp forms | 52 | 36 | 16 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(455, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 455.2.c.a | $2$ | $3.633$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+i q^{2}-2 i q^{3}+q^{4}+(i-2)q^{5}+\cdots\) |
| 455.2.c.b | $14$ | $3.633$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{13}q^{3}+(-1+\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\) |
| 455.2.c.c | $20$ | $3.633$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{19}q^{3}+(-1+\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(455, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(455, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)