Properties

Label 455.2.c
Level $455$
Weight $2$
Character orbit 455.c
Rep. character $\chi_{455}(274,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $3$
Sturm bound $112$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(112\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(455, [\chi])\).

Total New Old
Modular forms 60 36 24
Cusp forms 52 36 16
Eisenstein series 8 0 8

Trace form

\( 36 q - 28 q^{4} + 4 q^{5} - 8 q^{6} - 44 q^{9} - 8 q^{10} + 16 q^{11} - 12 q^{15} + 28 q^{16} + 16 q^{19} + 12 q^{20} + 8 q^{21} - 32 q^{24} - 18 q^{25} - 4 q^{29} - 8 q^{30} + 8 q^{31} + 40 q^{34} + 2 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(455, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
455.2.c.a 455.c 5.b $2$ $3.633$ \(\Q(\sqrt{-1}) \) None 455.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 i q^{3}+q^{4}+(i-2)q^{5}+\cdots\)
455.2.c.b 455.c 5.b $14$ $3.633$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 455.2.c.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{13}q^{3}+(-1+\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
455.2.c.c 455.c 5.b $20$ $3.633$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 455.2.c.c \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{19}q^{3}+(-1+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(455, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(455, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)