Properties

Label 455.2.bj
Level $455$
Weight $2$
Character orbit 455.bj
Rep. character $\chi_{455}(134,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $2$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 455 = 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 455.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(112\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(455, [\chi])\).

Total New Old
Modular forms 120 88 32
Cusp forms 104 88 16
Eisenstein series 16 0 16

Trace form

\( 88 q - 48 q^{4} + 54 q^{9} + 2 q^{10} - 16 q^{14} - 12 q^{15} - 40 q^{16} - 30 q^{20} - 48 q^{24} - 12 q^{25} + 36 q^{26} + 2 q^{29} + 16 q^{30} + 2 q^{35} + 64 q^{36} - 26 q^{39} + 40 q^{40} - 48 q^{41}+ \cdots - 10 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(455, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
455.2.bj.a 455.bj 65.l $44$ $3.633$ None 455.2.bj.a \(-4\) \(3\) \(2\) \(22\) $\mathrm{SU}(2)[C_{6}]$
455.2.bj.b 455.bj 65.l $44$ $3.633$ None 455.2.bj.a \(4\) \(-3\) \(-2\) \(-22\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(455, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(455, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)