Properties

Label 454.2.c
Level 454454
Weight 22
Character orbit 454.c
Rep. character χ454(3,)\chi_{454}(3,\cdot)
Character field Q(ζ113)\Q(\zeta_{113})
Dimension 21282128
Newform subspaces 22
Sturm bound 114114
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 454=2227 454 = 2 \cdot 227
Weight: k k == 2 2
Character orbit: [χ][\chi] == 454.c (of order 113113 and degree 112112)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 227 227
Character field: Q(ζ113)\Q(\zeta_{113})
Newform subspaces: 2 2
Sturm bound: 114114
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(454,[χ])M_{2}(454, [\chi]).

Total New Old
Modular forms 6608 2128 4480
Cusp forms 6160 2128 4032
Eisenstein series 448 0 448

Trace form

2128qq22q319q42q58q64q7q833q94q1010q112q1210q1312q1428q1519q1614q1721q1818q19+144q99+O(q100) 2128 q - q^{2} - 2 q^{3} - 19 q^{4} - 2 q^{5} - 8 q^{6} - 4 q^{7} - q^{8} - 33 q^{9} - 4 q^{10} - 10 q^{11} - 2 q^{12} - 10 q^{13} - 12 q^{14} - 28 q^{15} - 19 q^{16} - 14 q^{17} - 21 q^{18} - 18 q^{19}+ \cdots - 144 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(454,[χ])S_{2}^{\mathrm{new}}(454, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
454.2.c.a 454.c 227.c 10081008 3.6253.625 None 454.2.c.a 99 33 11 44 SU(2)[C113]\mathrm{SU}(2)[C_{113}]
454.2.c.b 454.c 227.c 11201120 3.6253.625 None 454.2.c.b 10-10 5-5 3-3 8-8 SU(2)[C113]\mathrm{SU}(2)[C_{113}]

Decomposition of S2old(454,[χ])S_{2}^{\mathrm{old}}(454, [\chi]) into lower level spaces

S2old(454,[χ]) S_{2}^{\mathrm{old}}(454, [\chi]) \simeq S2new(227,[χ])S_{2}^{\mathrm{new}}(227, [\chi])2^{\oplus 2}