# Properties

 Label 4527.2.a.k Level $4527$ Weight $2$ Character orbit 4527.a Self dual yes Analytic conductor $36.148$ Analytic rank $1$ Dimension $10$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4527 = 3^{2} \cdot 503$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4527.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$36.1482769950$$ Analytic rank: $$1$$ Dimension: $$10$$ Coefficient field: $$\mathbb{Q}[x]/(x^{10} - \cdots)$$ Defining polynomial: $$x^{10} - 2 x^{9} - 9 x^{8} + 14 x^{7} + 27 x^{6} - 27 x^{5} - 34 x^{4} + 14 x^{3} + 17 x^{2} + x - 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 503) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{9}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{9} q^{2} + \beta_{5} q^{4} + \beta_{2} q^{5} + ( -\beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} + \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{3} + \beta_{5} + \beta_{8} - \beta_{9} ) q^{8} +O(q^{10})$$ $$q + \beta_{9} q^{2} + \beta_{5} q^{4} + \beta_{2} q^{5} + ( -\beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} + \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{3} + \beta_{5} + \beta_{8} - \beta_{9} ) q^{8} + ( -1 - \beta_{5} - \beta_{6} + \beta_{8} + \beta_{9} ) q^{10} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{11} + ( -2 + \beta_{3} + \beta_{7} ) q^{13} + ( 1 + \beta_{2} + \beta_{3} + \beta_{6} - \beta_{8} - \beta_{9} ) q^{14} + ( -2 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{9} ) q^{16} + ( \beta_{1} - \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - \beta_{6} + \beta_{8} - 2 \beta_{9} ) q^{17} + ( -2 \beta_{2} + \beta_{4} + \beta_{5} - \beta_{8} - \beta_{9} ) q^{19} + ( \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{6} - \beta_{9} ) q^{20} + ( -1 + \beta_{1} + \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{8} + \beta_{9} ) q^{22} + ( 1 - 2 \beta_{1} + 2 \beta_{2} - \beta_{4} - 2 \beta_{5} - \beta_{6} - 3 \beta_{7} + \beta_{8} + 3 \beta_{9} ) q^{23} + ( -2 + \beta_{2} + \beta_{6} - \beta_{7} ) q^{25} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{26} + ( -2 - 2 \beta_{2} + \beta_{3} - 2 \beta_{5} - \beta_{6} + \beta_{8} + \beta_{9} ) q^{28} + ( 2 - \beta_{2} + \beta_{3} + 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - \beta_{9} ) q^{29} + ( -2 - \beta_{1} + \beta_{3} + \beta_{4} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{31} + ( 3 - 2 \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{5} + 3 \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{9} ) q^{32} + ( -3 + 2 \beta_{1} - 2 \beta_{3} + 3 \beta_{4} + \beta_{5} - \beta_{6} - 2 \beta_{9} ) q^{34} + ( 1 - \beta_{3} - \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{35} + ( -6 + 4 \beta_{1} - 3 \beta_{2} - \beta_{3} + 3 \beta_{4} + \beta_{5} - \beta_{6} + 2 \beta_{7} + \beta_{8} - 3 \beta_{9} ) q^{37} + ( -2 \beta_{2} - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{38} + ( -2 + \beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} - \beta_{6} + \beta_{7} - \beta_{8} ) q^{40} + ( 2 - \beta_{1} + 2 \beta_{3} - 2 \beta_{4} - 3 \beta_{8} + \beta_{9} ) q^{41} + ( -2 - \beta_{1} - 2 \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} + \beta_{8} - \beta_{9} ) q^{43} + ( -1 + \beta_{1} + \beta_{2} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} ) q^{44} + ( -1 + 3 \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} + 3 \beta_{7} - 2 \beta_{9} ) q^{46} + ( -2 + \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + \beta_{4} + 2 \beta_{7} + \beta_{8} + \beta_{9} ) q^{47} + ( -2 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} - 2 \beta_{7} - 2 \beta_{9} ) q^{49} + ( -\beta_{1} - \beta_{4} - \beta_{5} + \beta_{8} - 2 \beta_{9} ) q^{50} + ( 1 + \beta_{2} + \beta_{3} - 3 \beta_{5} - \beta_{7} ) q^{52} + ( \beta_{1} - 2 \beta_{2} - \beta_{3} + 3 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} - \beta_{9} ) q^{53} + ( -2 + \beta_{1} - \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 3 \beta_{9} ) q^{55} + ( -1 + \beta_{3} - \beta_{5} - 2 \beta_{6} - \beta_{9} ) q^{56} + ( 4 - 5 \beta_{1} + 2 \beta_{2} + \beta_{3} - 3 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - 2 \beta_{8} + 3 \beta_{9} ) q^{58} + ( -1 + \beta_{2} - \beta_{3} - \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - 3 \beta_{7} + \beta_{8} + \beta_{9} ) q^{59} + ( 3 - 3 \beta_{1} + 4 \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{5} + \beta_{6} - 6 \beta_{7} + \beta_{8} + \beta_{9} ) q^{61} + ( -\beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{6} + 2 \beta_{7} + \beta_{8} - \beta_{9} ) q^{62} + ( 2 - 4 \beta_{1} - \beta_{2} + 2 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} + 2 \beta_{7} + 3 \beta_{9} ) q^{64} + ( 2 - \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{65} + ( 4 + \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - 3 \beta_{4} - \beta_{5} + 5 \beta_{6} - 2 \beta_{8} - \beta_{9} ) q^{67} + ( -4 + \beta_{1} + \beta_{3} - \beta_{4} - 2 \beta_{6} + \beta_{7} + \beta_{9} ) q^{68} + ( 4 - \beta_{1} + 2 \beta_{2} + 2 \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{70} + ( 2 \beta_{1} + 3 \beta_{2} - 4 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} - 3 \beta_{8} - 6 \beta_{9} ) q^{71} + ( -4 + 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + 3 \beta_{7} - 4 \beta_{9} ) q^{73} + ( -2 + \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{6} - 2 \beta_{7} + \beta_{8} - 4 \beta_{9} ) q^{74} + ( 4 - \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} + 4 \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} ) q^{76} + ( -\beta_{1} - \beta_{2} - \beta_{4} + \beta_{9} ) q^{77} + ( -4 + 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} + 6 \beta_{8} - 4 \beta_{9} ) q^{79} + ( -1 + 2 \beta_{2} - 2 \beta_{4} - 2 \beta_{5} + \beta_{7} - 2 \beta_{8} ) q^{80} + ( 2 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} + 3 \beta_{7} - 3 \beta_{8} + \beta_{9} ) q^{82} + ( -5 - 2 \beta_{2} + 3 \beta_{3} - 2 \beta_{5} - 5 \beta_{6} + \beta_{7} + 4 \beta_{8} + 3 \beta_{9} ) q^{83} + ( 2 \beta_{2} - 2 \beta_{4} + \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{85} + ( -4 + 5 \beta_{1} - \beta_{3} + 4 \beta_{4} + 3 \beta_{5} + 2 \beta_{6} + \beta_{7} - 3 \beta_{8} - 7 \beta_{9} ) q^{86} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} + 3 \beta_{4} - 2 \beta_{5} - 4 \beta_{6} + 2 \beta_{7} + 4 \beta_{8} - 3 \beta_{9} ) q^{88} + ( 4 - 4 \beta_{1} + \beta_{2} + \beta_{3} - 3 \beta_{4} + 5 \beta_{6} - 3 \beta_{7} + 3 \beta_{9} ) q^{89} + ( -1 + 3 \beta_{1} - 4 \beta_{2} + 3 \beta_{4} + 2 \beta_{5} + \beta_{8} - \beta_{9} ) q^{91} + ( -4 + \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{5} - 3 \beta_{6} + 3 \beta_{7} ) q^{92} + ( 5 - 5 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{6} - 3 \beta_{7} + \beta_{8} + 3 \beta_{9} ) q^{94} + ( -5 + \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - \beta_{8} - 3 \beta_{9} ) q^{95} + ( -7 - 2 \beta_{1} + \beta_{2} - 3 \beta_{4} - 2 \beta_{5} - 5 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 5 \beta_{9} ) q^{97} + ( -4 + \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - \beta_{5} - \beta_{6} + \beta_{7} + 2 \beta_{8} - 3 \beta_{9} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10q + 4q^{2} + 4q^{4} + q^{5} - 5q^{7} + 3q^{8} + O(q^{10})$$ $$10q + 4q^{2} + 4q^{4} + q^{5} - 5q^{7} + 3q^{8} - 4q^{10} + 3q^{11} - 18q^{13} - q^{14} - 4q^{16} + 11q^{17} + 3q^{20} - 18q^{22} + 2q^{23} - 27q^{25} - 11q^{26} - 22q^{28} + 9q^{29} - 22q^{31} + 10q^{32} - 10q^{34} + 6q^{35} - 35q^{37} - 2q^{38} - 19q^{40} + 4q^{41} - 20q^{43} - 9q^{44} - q^{46} - 7q^{47} - 27q^{49} - 16q^{50} - 7q^{52} + 24q^{53} - 11q^{55} - 12q^{56} + 2q^{58} - 17q^{59} - 4q^{61} - 8q^{62} + 3q^{64} + 16q^{65} - 6q^{67} - 28q^{68} + 26q^{70} + q^{71} - 31q^{73} - 11q^{74} + 20q^{76} - 3q^{77} - 10q^{79} - 24q^{80} - 9q^{82} - 22q^{83} - 6q^{85} - 38q^{86} - 3q^{88} - q^{89} + 10q^{91} - 27q^{92} + 33q^{94} - 39q^{95} - 57q^{97} - 40q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{10} - 2 x^{9} - 9 x^{8} + 14 x^{7} + 27 x^{6} - 27 x^{5} - 34 x^{4} + 14 x^{3} + 17 x^{2} + x - 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$3 \nu^{9} - 8 \nu^{8} - 22 \nu^{7} + 57 \nu^{6} + 46 \nu^{5} - 113 \nu^{4} - 34 \nu^{3} + 65 \nu^{2} + 12 \nu - 5$$ $$\beta_{3}$$ $$=$$ $$5 \nu^{9} - 13 \nu^{8} - 37 \nu^{7} + 92 \nu^{6} + 78 \nu^{5} - 181 \nu^{4} - 57 \nu^{3} + 104 \nu^{2} + 20 \nu - 8$$ $$\beta_{4}$$ $$=$$ $$-6 \nu^{9} + 15 \nu^{8} + 47 \nu^{7} - 108 \nu^{6} - 113 \nu^{5} + 221 \nu^{4} + 108 \nu^{3} - 139 \nu^{2} - 44 \nu + 13$$ $$\beta_{5}$$ $$=$$ $$10 \nu^{9} - 25 \nu^{8} - 78 \nu^{7} + 180 \nu^{6} + 184 \nu^{5} - 368 \nu^{4} - 165 \nu^{3} + 230 \nu^{2} + 60 \nu - 21$$ $$\beta_{6}$$ $$=$$ $$-11 \nu^{9} + 28 \nu^{8} + 84 \nu^{7} - 200 \nu^{6} - 191 \nu^{5} + 402 \nu^{4} + 165 \nu^{3} - 244 \nu^{2} - 63 \nu + 22$$ $$\beta_{7}$$ $$=$$ $$-18 \nu^{9} + 45 \nu^{8} + 139 \nu^{7} - 321 \nu^{6} - 321 \nu^{5} + 645 \nu^{4} + 278 \nu^{3} - 394 \nu^{2} - 102 \nu + 38$$ $$\beta_{8}$$ $$=$$ $$-21 \nu^{9} + 53 \nu^{8} + 162 \nu^{7} - 380 \nu^{6} - 375 \nu^{5} + 770 \nu^{4} + 331 \nu^{3} - 475 \nu^{2} - 127 \nu + 45$$ $$\beta_{9}$$ $$=$$ $$-22 \nu^{9} + 55 \nu^{8} + 170 \nu^{7} - 392 \nu^{6} - 394 \nu^{5} + 785 \nu^{4} + 346 \nu^{3} - 473 \nu^{2} - 130 \nu + 42$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$-\beta_{6} + \beta_{4} - \beta_{3} + \beta_{1} + 1$$ $$\nu^{3}$$ $$=$$ $$\beta_{8} - 2 \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} + 5 \beta_{1} - 1$$ $$\nu^{4}$$ $$=$$ $$-\beta_{9} + \beta_{8} + 2 \beta_{7} - 9 \beta_{6} + 2 \beta_{5} + 8 \beta_{4} - 6 \beta_{3} - 2 \beta_{2} + 10 \beta_{1} - 1$$ $$\nu^{5}$$ $$=$$ $$-\beta_{9} + 8 \beta_{8} + 3 \beta_{7} - 22 \beta_{6} + 9 \beta_{5} + 12 \beta_{4} - 9 \beta_{3} - 5 \beta_{2} + 34 \beta_{1} - 12$$ $$\nu^{6}$$ $$=$$ $$-8 \beta_{9} + 12 \beta_{8} + 19 \beta_{7} - 73 \beta_{6} + 22 \beta_{5} + 58 \beta_{4} - 37 \beta_{3} - 24 \beta_{2} + 83 \beta_{1} - 28$$ $$\nu^{7}$$ $$=$$ $$-12 \beta_{9} + 58 \beta_{8} + 37 \beta_{7} - 192 \beta_{6} + 73 \beta_{5} + 113 \beta_{4} - 71 \beta_{3} - 63 \beta_{2} + 252 \beta_{1} - 107$$ $$\nu^{8}$$ $$=$$ $$-58 \beta_{9} + 113 \beta_{8} + 152 \beta_{7} - 578 \beta_{6} + 192 \beta_{5} + 425 \beta_{4} - 247 \beta_{3} - 220 \beta_{2} + 661 \beta_{1} - 278$$ $$\nu^{9}$$ $$=$$ $$-113 \beta_{9} + 425 \beta_{8} + 345 \beta_{7} - 1565 \beta_{6} + 578 \beta_{5} + 967 \beta_{4} - 554 \beta_{3} - 591 \beta_{2} + 1920 \beta_{1} - 879$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.510671 −1.40552 0.208270 1.31567 1.95007 −2.07227 1.07636 −0.489003 2.78533 −0.858231
−2.15783 0 2.65622 2.23445 0 −3.60329 −1.41602 0 −4.82156
1.2 −1.36113 0 −0.147314 −0.590303 0 1.95900 2.92278 0 0.803481
1.3 −1.17266 0 −0.624870 −0.178789 0 −0.0809018 3.07808 0 0.209658
1.4 −0.0830530 0 −1.99310 −2.25024 0 −3.20647 0.331639 0 0.186890
1.5 0.392284 0 −1.84611 2.28693 0 2.71022 −1.50877 0 0.897127
1.6 0.756417 0 −1.42783 −0.386144 0 0.194914 −2.59287 0 −0.292086
1.7 1.37178 0 −0.118218 −1.17276 0 0.469303 −2.90573 0 −1.60876
1.8 1.62786 0 0.649933 1.79865 0 0.552233 −2.19772 0 2.92795
1.9 2.03947 0 2.15945 0.701114 0 −2.02991 0.325186 0 1.42990
1.10 2.58686 0 4.69185 −1.44291 0 −1.96509 6.96343 0 −3.73261
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.10 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$503$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4527.2.a.k 10
3.b odd 2 1 503.2.a.e 10
12.b even 2 1 8048.2.a.p 10

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
503.2.a.e 10 3.b odd 2 1
4527.2.a.k 10 1.a even 1 1 trivial
8048.2.a.p 10 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4527))$$:

 $$T_{2}^{10} - \cdots$$ $$T_{5}^{10} - \cdots$$ $$T_{7}^{10} + \cdots$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + 8 T - 46 T^{2} + 37 T^{3} + 56 T^{4} - 66 T^{5} - 13 T^{6} + 31 T^{7} - 4 T^{8} - 4 T^{9} + T^{10}$$
$3$ $$T^{10}$$
$5$ $$1 + 9 T + 18 T^{2} - 16 T^{3} - 59 T^{4} - 7 T^{5} + 41 T^{6} + 7 T^{7} - 11 T^{8} - T^{9} + T^{10}$$
$7$ $$-1 - 4 T + 86 T^{2} - 214 T^{3} + 23 T^{4} + 228 T^{5} + 8 T^{6} - 64 T^{7} - 9 T^{8} + 5 T^{9} + T^{10}$$
$11$ $$311 - 1920 T + 1973 T^{2} + 1781 T^{3} - 1961 T^{4} - 537 T^{5} + 515 T^{6} + 80 T^{7} - 41 T^{8} - 3 T^{9} + T^{10}$$
$13$ $$-19 + 4107 T + 5985 T^{2} - 481 T^{3} - 4882 T^{4} - 2777 T^{5} - 212 T^{6} + 307 T^{7} + 120 T^{8} + 18 T^{9} + T^{10}$$
$17$ $$30151 + 12996 T - 29792 T^{2} - 3190 T^{3} + 11026 T^{4} - 1710 T^{5} - 1167 T^{6} + 367 T^{7} + 2 T^{8} - 11 T^{9} + T^{10}$$
$19$ $$8863 - 26147 T - 7633 T^{2} + 23773 T^{3} - 3789 T^{4} - 4568 T^{5} + 1396 T^{6} + 144 T^{7} - 73 T^{8} + T^{10}$$
$23$ $$-2281 - 9002 T + 28798 T^{2} + 21377 T^{3} - 12083 T^{4} - 5432 T^{5} + 2080 T^{6} + 275 T^{7} - 102 T^{8} - 2 T^{9} + T^{10}$$
$29$ $$-1397 + 8766 T - 15421 T^{2} + 187 T^{3} + 20531 T^{4} - 13633 T^{5} + 487 T^{6} + 702 T^{7} - 65 T^{8} - 9 T^{9} + T^{10}$$
$31$ $$8207 - 5501 T - 57982 T^{2} + 31755 T^{3} + 27453 T^{4} - 2931 T^{5} - 3545 T^{6} - 233 T^{7} + 127 T^{8} + 22 T^{9} + T^{10}$$
$37$ $$-3774629 - 929679 T + 1565189 T^{2} + 560598 T^{3} - 111154 T^{4} - 71008 T^{5} - 5712 T^{6} + 1859 T^{7} + 437 T^{8} + 35 T^{9} + T^{10}$$
$41$ $$-17357 + 111711 T + 143286 T^{2} - 149773 T^{3} - 84240 T^{4} + 7004 T^{5} + 6310 T^{6} + 59 T^{7} - 150 T^{8} - 4 T^{9} + T^{10}$$
$43$ $$-147629 + 16858 T + 511389 T^{2} + 368059 T^{3} - 18426 T^{4} - 78150 T^{5} - 24232 T^{6} - 2646 T^{7} + 5 T^{8} + 20 T^{9} + T^{10}$$
$47$ $$34183 - 173434 T + 234373 T^{2} + 1951 T^{3} - 115790 T^{4} + 17637 T^{5} + 6796 T^{6} - 757 T^{7} - 148 T^{8} + 7 T^{9} + T^{10}$$
$53$ $$30585517 + 10539391 T - 9677101 T^{2} - 827393 T^{3} + 972179 T^{4} - 78887 T^{5} - 20053 T^{6} + 2987 T^{7} + 40 T^{8} - 24 T^{9} + T^{10}$$
$59$ $$-3373 - 22898 T - 4680 T^{2} + 157745 T^{3} + 106944 T^{4} - 453 T^{5} - 14454 T^{6} - 3243 T^{7} - 123 T^{8} + 17 T^{9} + T^{10}$$
$61$ $$160395869 + 192168049 T + 30652592 T^{2} - 9861764 T^{3} - 2056331 T^{4} + 177043 T^{5} + 43009 T^{6} - 1337 T^{7} - 358 T^{8} + 4 T^{9} + T^{10}$$
$67$ $$-52161527 - 188372124 T + 68241481 T^{2} + 3632530 T^{3} - 2954276 T^{4} + 44201 T^{5} + 47943 T^{6} - 1216 T^{7} - 352 T^{8} + 6 T^{9} + T^{10}$$
$71$ $$14183807 + 195049108 T + 61525134 T^{2} - 13001388 T^{3} - 3793615 T^{4} + 182955 T^{5} + 66864 T^{6} - 594 T^{7} - 448 T^{8} - T^{9} + T^{10}$$
$73$ $$-3955559 - 6719488 T - 1983330 T^{2} + 1173628 T^{3} + 568868 T^{4} - 14845 T^{5} - 33800 T^{6} - 3742 T^{7} + 127 T^{8} + 31 T^{9} + T^{10}$$
$79$ $$8912581 + 43253952 T + 49214936 T^{2} + 2538597 T^{3} - 5921284 T^{4} + 334500 T^{5} + 91361 T^{6} - 4173 T^{7} - 542 T^{8} + 10 T^{9} + T^{10}$$
$83$ $$40035623 + 2541538 T - 15595528 T^{2} - 801664 T^{3} + 1491862 T^{4} + 182619 T^{5} - 33621 T^{6} - 6610 T^{7} - 161 T^{8} + 22 T^{9} + T^{10}$$
$89$ $$-789547 + 7972537 T + 3494049 T^{2} - 1459657 T^{3} - 583997 T^{4} + 71001 T^{5} + 27890 T^{6} - 739 T^{7} - 380 T^{8} + T^{9} + T^{10}$$
$97$ $$3229338523 + 3026058216 T + 985216534 T^{2} + 111741584 T^{3} - 7165096 T^{4} - 2939025 T^{5} - 240656 T^{6} - 276 T^{7} + 1029 T^{8} + 57 T^{9} + T^{10}$$