Defining parameters
Level: | \( N \) | = | \( 4508 = 2^{2} \cdot 7^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 32 \) | ||
Sturm bound: | \(2483712\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4508))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 627528 | 348300 | 279228 |
Cusp forms | 614329 | 344224 | 270105 |
Eisenstein series | 13199 | 4076 | 9123 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4508))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4508))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(4508)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(322))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(644))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1127))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2254))\)\(^{\oplus 2}\)