Properties

Label 450.6.l
Level $450$
Weight $6$
Character orbit 450.l
Rep. character $\chi_{450}(19,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $248$
Sturm bound $540$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 450.l (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(540\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(450, [\chi])\).

Total New Old
Modular forms 1832 248 1584
Cusp forms 1768 248 1520
Eisenstein series 64 0 64

Trace form

\( 248q + 992q^{4} - 284q^{5} + O(q^{10}) \) \( 248q + 992q^{4} - 284q^{5} - 408q^{10} + 232q^{11} + 784q^{14} - 15872q^{16} + 1910q^{17} + 4546q^{19} - 2496q^{20} - 4720q^{22} + 12410q^{23} - 866q^{25} + 17200q^{26} + 3040q^{28} - 7078q^{29} + 1098q^{31} + 5960q^{34} - 2506q^{35} + 12950q^{37} + 6528q^{40} + 10250q^{41} + 8928q^{44} - 11744q^{46} + 84270q^{47} - 563632q^{49} - 29952q^{50} + 22350q^{53} + 4718q^{55} - 12544q^{56} - 111600q^{59} + 74410q^{61} - 27360q^{62} + 253952q^{64} + 158908q^{65} + 145930q^{67} + 12768q^{70} + 284002q^{71} - 121200q^{73} - 156624q^{74} + 9984q^{76} - 194920q^{77} + 8760q^{79} + 1536q^{80} + 357910q^{83} + 657556q^{85} - 174808q^{86} + 56960q^{88} + 209914q^{89} + 222116q^{91} - 451040q^{92} - 220512q^{94} - 351000q^{95} - 288740q^{97} - 206240q^{98} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(450, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(450, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(450, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)