Defining parameters
Level: | \( N \) | \(=\) | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 450.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(360\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(450, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 564 | 108 | 456 |
Cusp forms | 516 | 108 | 408 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(450, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(450, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(450, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)