Properties

Label 450.4.j
Level $450$
Weight $4$
Character orbit 450.j
Rep. character $\chi_{450}(49,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $108$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(450, [\chi])\).

Total New Old
Modular forms 564 108 456
Cusp forms 516 108 408
Eisenstein series 48 0 48

Trace form

\( 108 q + 216 q^{4} + 16 q^{6} - 92 q^{9} + 60 q^{11} - 24 q^{14} - 864 q^{16} + 424 q^{21} + 32 q^{24} - 624 q^{26} - 1152 q^{29} - 72 q^{31} + 32 q^{36} + 632 q^{39} + 756 q^{41} + 480 q^{44} - 1008 q^{46}+ \cdots - 4722 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(450, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(450, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(450, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)