Properties

Label 450.4.f
Level $450$
Weight $4$
Character orbit 450.f
Rep. character $\chi_{450}(107,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $36$
Newform subspaces $6$
Sturm bound $360$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(360\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(450, [\chi])\).

Total New Old
Modular forms 588 36 552
Cusp forms 492 36 456
Eisenstein series 96 0 96

Trace form

\( 36 q + 24 q^{7} - 204 q^{13} - 576 q^{16} + 624 q^{22} + 96 q^{28} - 576 q^{31} + 564 q^{37} - 1920 q^{43} - 576 q^{46} + 816 q^{52} + 888 q^{58} - 960 q^{61} + 1392 q^{67} + 468 q^{73} + 1152 q^{76} - 264 q^{82}+ \cdots - 3996 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(450, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
450.4.f.a 450.f 15.e $4$ $26.551$ \(\Q(\zeta_{8})\) None 450.4.f.a \(0\) \(0\) \(0\) \(-36\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(9\beta_1-9)q^{7}+\cdots\)
450.4.f.b 450.f 15.e $4$ $26.551$ \(\Q(\zeta_{8})\) None 90.4.f.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{3}-\beta_{2})q^{2}+4\beta_1 q^{4}+(-4\beta_1+4)q^{7}+\cdots\)
450.4.f.c 450.f 15.e $4$ $26.551$ \(\Q(\zeta_{8})\) None 450.4.f.a \(0\) \(0\) \(0\) \(36\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(-9\beta_1+9)q^{7}+\cdots\)
450.4.f.d 450.f 15.e $8$ $26.551$ \(\Q(\zeta_{24})\) None 450.4.f.d \(0\) \(0\) \(0\) \(-48\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{3}-\beta_{2})q^{2}-4\beta_1 q^{4}+(\beta_{4}-6\beta_1-6)q^{7}+\cdots\)
450.4.f.e 450.f 15.e $8$ $26.551$ 8.0.\(\cdots\).8 None 90.4.f.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{2}-\beta _{3})q^{2}-4\beta _{1}q^{4}+(1+\beta _{1}+\cdots)q^{7}+\cdots\)
450.4.f.f 450.f 15.e $8$ $26.551$ \(\Q(\zeta_{24})\) None 450.4.f.d \(0\) \(0\) \(0\) \(48\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(\beta_{5}-6\beta_1+6)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(450, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(450, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)