Defining parameters
Level: | \( N \) | \(=\) | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 450.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(450, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 588 | 36 | 552 |
Cusp forms | 492 | 36 | 456 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(450, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
450.4.f.a | $4$ | $26.551$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-36\) | \(q+(\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(9\beta_1-9)q^{7}+\cdots\) |
450.4.f.b | $4$ | $26.551$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q+(-\beta_{3}-\beta_{2})q^{2}+4\beta_1 q^{4}+(-4\beta_1+4)q^{7}+\cdots\) |
450.4.f.c | $4$ | $26.551$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(36\) | \(q+(\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(-9\beta_1+9)q^{7}+\cdots\) |
450.4.f.d | $8$ | $26.551$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(-48\) | \(q+(-\beta_{3}-\beta_{2})q^{2}-4\beta_1 q^{4}+(\beta_{4}-6\beta_1-6)q^{7}+\cdots\) |
450.4.f.e | $8$ | $26.551$ | 8.0.\(\cdots\).8 | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+(-\beta _{2}-\beta _{3})q^{2}-4\beta _{1}q^{4}+(1+\beta _{1}+\cdots)q^{7}+\cdots\) |
450.4.f.f | $8$ | $26.551$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(48\) | \(q+(-\beta_{3}+\beta_{2})q^{2}+4\beta_1 q^{4}+(\beta_{5}-6\beta_1+6)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(450, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(450, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)