Properties

Label 450.4.e
Level $450$
Weight $4$
Character orbit 450.e
Rep. character $\chi_{450}(151,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $114$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(450, [\chi])\).

Total New Old
Modular forms 564 114 450
Cusp forms 516 114 402
Eisenstein series 48 0 48

Trace form

\( 114 q + 2 q^{2} - 5 q^{3} - 228 q^{4} - 2 q^{6} + 12 q^{7} - 16 q^{8} + 115 q^{9} + 11 q^{11} - 8 q^{12} - 24 q^{13} - 100 q^{14} - 912 q^{16} - 270 q^{17} + 140 q^{18} + 210 q^{19} + 196 q^{21} - 18 q^{22}+ \cdots + 1058 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(450, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(450, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(450, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)