Properties

Label 450.4.c.j.199.1
Level $450$
Weight $4$
Character 450.199
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.4.c.j.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} -4.00000i q^{7} +8.00000i q^{8} +48.0000 q^{11} -2.00000i q^{13} -8.00000 q^{14} +16.0000 q^{16} +114.000i q^{17} -140.000 q^{19} -96.0000i q^{22} +72.0000i q^{23} -4.00000 q^{26} +16.0000i q^{28} +210.000 q^{29} +272.000 q^{31} -32.0000i q^{32} +228.000 q^{34} -334.000i q^{37} +280.000i q^{38} +198.000 q^{41} +268.000i q^{43} -192.000 q^{44} +144.000 q^{46} -216.000i q^{47} +327.000 q^{49} +8.00000i q^{52} -78.0000i q^{53} +32.0000 q^{56} -420.000i q^{58} +240.000 q^{59} +302.000 q^{61} -544.000i q^{62} -64.0000 q^{64} +596.000i q^{67} -456.000i q^{68} +768.000 q^{71} +478.000i q^{73} -668.000 q^{74} +560.000 q^{76} -192.000i q^{77} +640.000 q^{79} -396.000i q^{82} -348.000i q^{83} +536.000 q^{86} +384.000i q^{88} +210.000 q^{89} -8.00000 q^{91} -288.000i q^{92} -432.000 q^{94} -1534.00i q^{97} -654.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 96 q^{11} - 16 q^{14} + 32 q^{16} - 280 q^{19} - 8 q^{26} + 420 q^{29} + 544 q^{31} + 456 q^{34} + 396 q^{41} - 384 q^{44} + 288 q^{46} + 654 q^{49} + 64 q^{56} + 480 q^{59} + 604 q^{61}+ \cdots - 864 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 0.215980i −0.994152 0.107990i \(-0.965559\pi\)
0.994152 0.107990i \(-0.0344414\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 0 0
\(13\) − 2.00000i − 0.0426692i −0.999772 0.0213346i \(-0.993208\pi\)
0.999772 0.0213346i \(-0.00679154\pi\)
\(14\) −8.00000 −0.152721
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 114.000i 1.62642i 0.581974 + 0.813208i \(0.302281\pi\)
−0.581974 + 0.813208i \(0.697719\pi\)
\(18\) 0 0
\(19\) −140.000 −1.69043 −0.845216 0.534425i \(-0.820528\pi\)
−0.845216 + 0.534425i \(0.820528\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 96.0000i − 0.930330i
\(23\) 72.0000i 0.652741i 0.945242 + 0.326370i \(0.105826\pi\)
−0.945242 + 0.326370i \(0.894174\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.00000 −0.0301717
\(27\) 0 0
\(28\) 16.0000i 0.107990i
\(29\) 210.000 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(30\) 0 0
\(31\) 272.000 1.57589 0.787946 0.615745i \(-0.211145\pi\)
0.787946 + 0.615745i \(0.211145\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 0 0
\(34\) 228.000 1.15005
\(35\) 0 0
\(36\) 0 0
\(37\) − 334.000i − 1.48403i −0.670381 0.742017i \(-0.733869\pi\)
0.670381 0.742017i \(-0.266131\pi\)
\(38\) 280.000i 1.19532i
\(39\) 0 0
\(40\) 0 0
\(41\) 198.000 0.754205 0.377102 0.926172i \(-0.376920\pi\)
0.377102 + 0.926172i \(0.376920\pi\)
\(42\) 0 0
\(43\) 268.000i 0.950456i 0.879863 + 0.475228i \(0.157634\pi\)
−0.879863 + 0.475228i \(0.842366\pi\)
\(44\) −192.000 −0.657843
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) − 216.000i − 0.670358i −0.942154 0.335179i \(-0.891203\pi\)
0.942154 0.335179i \(-0.108797\pi\)
\(48\) 0 0
\(49\) 327.000 0.953353
\(50\) 0 0
\(51\) 0 0
\(52\) 8.00000i 0.0213346i
\(53\) − 78.0000i − 0.202153i −0.994879 0.101077i \(-0.967771\pi\)
0.994879 0.101077i \(-0.0322287\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 32.0000 0.0763604
\(57\) 0 0
\(58\) − 420.000i − 0.950840i
\(59\) 240.000 0.529582 0.264791 0.964306i \(-0.414697\pi\)
0.264791 + 0.964306i \(0.414697\pi\)
\(60\) 0 0
\(61\) 302.000 0.633888 0.316944 0.948444i \(-0.397343\pi\)
0.316944 + 0.948444i \(0.397343\pi\)
\(62\) − 544.000i − 1.11432i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 596.000i 1.08676i 0.839487 + 0.543381i \(0.182856\pi\)
−0.839487 + 0.543381i \(0.817144\pi\)
\(68\) − 456.000i − 0.813208i
\(69\) 0 0
\(70\) 0 0
\(71\) 768.000 1.28373 0.641865 0.766818i \(-0.278161\pi\)
0.641865 + 0.766818i \(0.278161\pi\)
\(72\) 0 0
\(73\) 478.000i 0.766379i 0.923670 + 0.383190i \(0.125174\pi\)
−0.923670 + 0.383190i \(0.874826\pi\)
\(74\) −668.000 −1.04937
\(75\) 0 0
\(76\) 560.000 0.845216
\(77\) − 192.000i − 0.284161i
\(78\) 0 0
\(79\) 640.000 0.911464 0.455732 0.890117i \(-0.349378\pi\)
0.455732 + 0.890117i \(0.349378\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 396.000i − 0.533303i
\(83\) − 348.000i − 0.460216i −0.973165 0.230108i \(-0.926092\pi\)
0.973165 0.230108i \(-0.0739080\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 536.000 0.672074
\(87\) 0 0
\(88\) 384.000i 0.465165i
\(89\) 210.000 0.250112 0.125056 0.992150i \(-0.460089\pi\)
0.125056 + 0.992150i \(0.460089\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) − 288.000i − 0.326370i
\(93\) 0 0
\(94\) −432.000 −0.474015
\(95\) 0 0
\(96\) 0 0
\(97\) − 1534.00i − 1.60571i −0.596173 0.802856i \(-0.703313\pi\)
0.596173 0.802856i \(-0.296687\pi\)
\(98\) − 654.000i − 0.674122i
\(99\) 0 0
\(100\) 0 0
\(101\) −1722.00 −1.69649 −0.848245 0.529605i \(-0.822340\pi\)
−0.848245 + 0.529605i \(0.822340\pi\)
\(102\) 0 0
\(103\) − 1052.00i − 1.00638i −0.864177 0.503188i \(-0.832160\pi\)
0.864177 0.503188i \(-0.167840\pi\)
\(104\) 16.0000 0.0150859
\(105\) 0 0
\(106\) −156.000 −0.142944
\(107\) 564.000i 0.509570i 0.966998 + 0.254785i \(0.0820046\pi\)
−0.966998 + 0.254785i \(0.917995\pi\)
\(108\) 0 0
\(109\) 610.000 0.536031 0.268016 0.963415i \(-0.413632\pi\)
0.268016 + 0.963415i \(0.413632\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 64.0000i − 0.0539949i
\(113\) 1302.00i 1.08391i 0.840407 + 0.541955i \(0.182316\pi\)
−0.840407 + 0.541955i \(0.817684\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −840.000 −0.672345
\(117\) 0 0
\(118\) − 480.000i − 0.374471i
\(119\) 456.000 0.351273
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) − 604.000i − 0.448226i
\(123\) 0 0
\(124\) −1088.00 −0.787946
\(125\) 0 0
\(126\) 0 0
\(127\) − 124.000i − 0.0866395i −0.999061 0.0433198i \(-0.986207\pi\)
0.999061 0.0433198i \(-0.0137934\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −192.000 −0.128054 −0.0640272 0.997948i \(-0.520394\pi\)
−0.0640272 + 0.997948i \(0.520394\pi\)
\(132\) 0 0
\(133\) 560.000i 0.365099i
\(134\) 1192.00 0.768456
\(135\) 0 0
\(136\) −912.000 −0.575025
\(137\) 2514.00i 1.56778i 0.620901 + 0.783889i \(0.286767\pi\)
−0.620901 + 0.783889i \(0.713233\pi\)
\(138\) 0 0
\(139\) −1340.00 −0.817679 −0.408839 0.912606i \(-0.634066\pi\)
−0.408839 + 0.912606i \(0.634066\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 1536.00i − 0.907734i
\(143\) − 96.0000i − 0.0561393i
\(144\) 0 0
\(145\) 0 0
\(146\) 956.000 0.541912
\(147\) 0 0
\(148\) 1336.00i 0.742017i
\(149\) 1410.00 0.775246 0.387623 0.921818i \(-0.373296\pi\)
0.387623 + 0.921818i \(0.373296\pi\)
\(150\) 0 0
\(151\) −2128.00 −1.14685 −0.573424 0.819258i \(-0.694385\pi\)
−0.573424 + 0.819258i \(0.694385\pi\)
\(152\) − 1120.00i − 0.597658i
\(153\) 0 0
\(154\) −384.000 −0.200932
\(155\) 0 0
\(156\) 0 0
\(157\) 3026.00i 1.53822i 0.639114 + 0.769112i \(0.279301\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(158\) − 1280.00i − 0.644502i
\(159\) 0 0
\(160\) 0 0
\(161\) 288.000 0.140979
\(162\) 0 0
\(163\) − 2612.00i − 1.25514i −0.778561 0.627569i \(-0.784050\pi\)
0.778561 0.627569i \(-0.215950\pi\)
\(164\) −792.000 −0.377102
\(165\) 0 0
\(166\) −696.000 −0.325422
\(167\) 24.0000i 0.0111208i 0.999985 + 0.00556041i \(0.00176994\pi\)
−0.999985 + 0.00556041i \(0.998230\pi\)
\(168\) 0 0
\(169\) 2193.00 0.998179
\(170\) 0 0
\(171\) 0 0
\(172\) − 1072.00i − 0.475228i
\(173\) 1962.00i 0.862243i 0.902294 + 0.431122i \(0.141882\pi\)
−0.902294 + 0.431122i \(0.858118\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 768.000 0.328921
\(177\) 0 0
\(178\) − 420.000i − 0.176856i
\(179\) −120.000 −0.0501074 −0.0250537 0.999686i \(-0.507976\pi\)
−0.0250537 + 0.999686i \(0.507976\pi\)
\(180\) 0 0
\(181\) 902.000 0.370415 0.185208 0.982699i \(-0.440704\pi\)
0.185208 + 0.982699i \(0.440704\pi\)
\(182\) 16.0000i 0.00651648i
\(183\) 0 0
\(184\) −576.000 −0.230779
\(185\) 0 0
\(186\) 0 0
\(187\) 5472.00i 2.13985i
\(188\) 864.000i 0.335179i
\(189\) 0 0
\(190\) 0 0
\(191\) 168.000 0.0636443 0.0318221 0.999494i \(-0.489869\pi\)
0.0318221 + 0.999494i \(0.489869\pi\)
\(192\) 0 0
\(193\) 1318.00i 0.491563i 0.969325 + 0.245782i \(0.0790446\pi\)
−0.969325 + 0.245782i \(0.920955\pi\)
\(194\) −3068.00 −1.13541
\(195\) 0 0
\(196\) −1308.00 −0.476676
\(197\) 4014.00i 1.45170i 0.687851 + 0.725852i \(0.258554\pi\)
−0.687851 + 0.725852i \(0.741446\pi\)
\(198\) 0 0
\(199\) −2000.00 −0.712443 −0.356222 0.934401i \(-0.615935\pi\)
−0.356222 + 0.934401i \(0.615935\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3444.00i 1.19960i
\(203\) − 840.000i − 0.290426i
\(204\) 0 0
\(205\) 0 0
\(206\) −2104.00 −0.711615
\(207\) 0 0
\(208\) − 32.0000i − 0.0106673i
\(209\) −6720.00 −2.22408
\(210\) 0 0
\(211\) −3868.00 −1.26201 −0.631005 0.775779i \(-0.717357\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(212\) 312.000i 0.101077i
\(213\) 0 0
\(214\) 1128.00 0.360320
\(215\) 0 0
\(216\) 0 0
\(217\) − 1088.00i − 0.340361i
\(218\) − 1220.00i − 0.379031i
\(219\) 0 0
\(220\) 0 0
\(221\) 228.000 0.0693979
\(222\) 0 0
\(223\) 3148.00i 0.945317i 0.881246 + 0.472658i \(0.156706\pi\)
−0.881246 + 0.472658i \(0.843294\pi\)
\(224\) −128.000 −0.0381802
\(225\) 0 0
\(226\) 2604.00 0.766440
\(227\) − 2556.00i − 0.747347i −0.927560 0.373673i \(-0.878098\pi\)
0.927560 0.373673i \(-0.121902\pi\)
\(228\) 0 0
\(229\) 610.000 0.176026 0.0880130 0.996119i \(-0.471948\pi\)
0.0880130 + 0.996119i \(0.471948\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1680.00i 0.475420i
\(233\) − 2058.00i − 0.578644i −0.957232 0.289322i \(-0.906570\pi\)
0.957232 0.289322i \(-0.0934298\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −960.000 −0.264791
\(237\) 0 0
\(238\) − 912.000i − 0.248387i
\(239\) 4920.00 1.33158 0.665792 0.746138i \(-0.268094\pi\)
0.665792 + 0.746138i \(0.268094\pi\)
\(240\) 0 0
\(241\) −1438.00 −0.384356 −0.192178 0.981360i \(-0.561555\pi\)
−0.192178 + 0.981360i \(0.561555\pi\)
\(242\) − 1946.00i − 0.516916i
\(243\) 0 0
\(244\) −1208.00 −0.316944
\(245\) 0 0
\(246\) 0 0
\(247\) 280.000i 0.0721294i
\(248\) 2176.00i 0.557162i
\(249\) 0 0
\(250\) 0 0
\(251\) −792.000 −0.199166 −0.0995829 0.995029i \(-0.531751\pi\)
−0.0995829 + 0.995029i \(0.531751\pi\)
\(252\) 0 0
\(253\) 3456.00i 0.858802i
\(254\) −248.000 −0.0612634
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 2166.00i − 0.525725i −0.964833 0.262863i \(-0.915333\pi\)
0.964833 0.262863i \(-0.0846666\pi\)
\(258\) 0 0
\(259\) −1336.00 −0.320521
\(260\) 0 0
\(261\) 0 0
\(262\) 384.000i 0.0905481i
\(263\) 3192.00i 0.748392i 0.927350 + 0.374196i \(0.122081\pi\)
−0.927350 + 0.374196i \(0.877919\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1120.00 0.258164
\(267\) 0 0
\(268\) − 2384.00i − 0.543381i
\(269\) 5490.00 1.24435 0.622177 0.782877i \(-0.286248\pi\)
0.622177 + 0.782877i \(0.286248\pi\)
\(270\) 0 0
\(271\) −6328.00 −1.41845 −0.709223 0.704985i \(-0.750954\pi\)
−0.709223 + 0.704985i \(0.750954\pi\)
\(272\) 1824.00i 0.406604i
\(273\) 0 0
\(274\) 5028.00 1.10859
\(275\) 0 0
\(276\) 0 0
\(277\) − 574.000i − 0.124507i −0.998060 0.0622533i \(-0.980171\pi\)
0.998060 0.0622533i \(-0.0198287\pi\)
\(278\) 2680.00i 0.578186i
\(279\) 0 0
\(280\) 0 0
\(281\) −4242.00 −0.900557 −0.450278 0.892888i \(-0.648675\pi\)
−0.450278 + 0.892888i \(0.648675\pi\)
\(282\) 0 0
\(283\) 628.000i 0.131911i 0.997823 + 0.0659553i \(0.0210095\pi\)
−0.997823 + 0.0659553i \(0.978991\pi\)
\(284\) −3072.00 −0.641865
\(285\) 0 0
\(286\) −192.000 −0.0396965
\(287\) − 792.000i − 0.162893i
\(288\) 0 0
\(289\) −8083.00 −1.64523
\(290\) 0 0
\(291\) 0 0
\(292\) − 1912.00i − 0.383190i
\(293\) − 558.000i − 0.111258i −0.998451 0.0556292i \(-0.982284\pi\)
0.998451 0.0556292i \(-0.0177165\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2672.00 0.524685
\(297\) 0 0
\(298\) − 2820.00i − 0.548182i
\(299\) 144.000 0.0278520
\(300\) 0 0
\(301\) 1072.00 0.205279
\(302\) 4256.00i 0.810945i
\(303\) 0 0
\(304\) −2240.00 −0.422608
\(305\) 0 0
\(306\) 0 0
\(307\) − 6964.00i − 1.29465i −0.762216 0.647323i \(-0.775888\pi\)
0.762216 0.647323i \(-0.224112\pi\)
\(308\) 768.000i 0.142081i
\(309\) 0 0
\(310\) 0 0
\(311\) −2832.00 −0.516360 −0.258180 0.966097i \(-0.583123\pi\)
−0.258180 + 0.966097i \(0.583123\pi\)
\(312\) 0 0
\(313\) − 8642.00i − 1.56062i −0.625392 0.780311i \(-0.715061\pi\)
0.625392 0.780311i \(-0.284939\pi\)
\(314\) 6052.00 1.08769
\(315\) 0 0
\(316\) −2560.00 −0.455732
\(317\) 2214.00i 0.392273i 0.980577 + 0.196137i \(0.0628396\pi\)
−0.980577 + 0.196137i \(0.937160\pi\)
\(318\) 0 0
\(319\) 10080.0 1.76919
\(320\) 0 0
\(321\) 0 0
\(322\) − 576.000i − 0.0996870i
\(323\) − 15960.0i − 2.74934i
\(324\) 0 0
\(325\) 0 0
\(326\) −5224.00 −0.887517
\(327\) 0 0
\(328\) 1584.00i 0.266652i
\(329\) −864.000 −0.144784
\(330\) 0 0
\(331\) 10772.0 1.78877 0.894385 0.447299i \(-0.147614\pi\)
0.894385 + 0.447299i \(0.147614\pi\)
\(332\) 1392.00i 0.230108i
\(333\) 0 0
\(334\) 48.0000 0.00786360
\(335\) 0 0
\(336\) 0 0
\(337\) − 1654.00i − 0.267356i −0.991025 0.133678i \(-0.957321\pi\)
0.991025 0.133678i \(-0.0426789\pi\)
\(338\) − 4386.00i − 0.705819i
\(339\) 0 0
\(340\) 0 0
\(341\) 13056.0 2.07338
\(342\) 0 0
\(343\) − 2680.00i − 0.421885i
\(344\) −2144.00 −0.336037
\(345\) 0 0
\(346\) 3924.00 0.609698
\(347\) − 2196.00i − 0.339733i −0.985467 0.169867i \(-0.945666\pi\)
0.985467 0.169867i \(-0.0543337\pi\)
\(348\) 0 0
\(349\) −8270.00 −1.26843 −0.634216 0.773156i \(-0.718677\pi\)
−0.634216 + 0.773156i \(0.718677\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1536.00i − 0.232583i
\(353\) 10302.0i 1.55331i 0.629923 + 0.776657i \(0.283086\pi\)
−0.629923 + 0.776657i \(0.716914\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −840.000 −0.125056
\(357\) 0 0
\(358\) 240.000i 0.0354313i
\(359\) −2280.00 −0.335192 −0.167596 0.985856i \(-0.553600\pi\)
−0.167596 + 0.985856i \(0.553600\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) − 1804.00i − 0.261923i
\(363\) 0 0
\(364\) 32.0000 0.00460785
\(365\) 0 0
\(366\) 0 0
\(367\) − 8764.00i − 1.24653i −0.782010 0.623266i \(-0.785805\pi\)
0.782010 0.623266i \(-0.214195\pi\)
\(368\) 1152.00i 0.163185i
\(369\) 0 0
\(370\) 0 0
\(371\) −312.000 −0.0436610
\(372\) 0 0
\(373\) 1318.00i 0.182958i 0.995807 + 0.0914792i \(0.0291595\pi\)
−0.995807 + 0.0914792i \(0.970841\pi\)
\(374\) 10944.0 1.51310
\(375\) 0 0
\(376\) 1728.00 0.237007
\(377\) − 420.000i − 0.0573769i
\(378\) 0 0
\(379\) −1100.00 −0.149085 −0.0745425 0.997218i \(-0.523750\pi\)
−0.0745425 + 0.997218i \(0.523750\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 336.000i − 0.0450033i
\(383\) − 3528.00i − 0.470685i −0.971912 0.235343i \(-0.924379\pi\)
0.971912 0.235343i \(-0.0756212\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2636.00 0.347588
\(387\) 0 0
\(388\) 6136.00i 0.802856i
\(389\) −9630.00 −1.25517 −0.627584 0.778549i \(-0.715956\pi\)
−0.627584 + 0.778549i \(0.715956\pi\)
\(390\) 0 0
\(391\) −8208.00 −1.06163
\(392\) 2616.00i 0.337061i
\(393\) 0 0
\(394\) 8028.00 1.02651
\(395\) 0 0
\(396\) 0 0
\(397\) − 3094.00i − 0.391142i −0.980690 0.195571i \(-0.937344\pi\)
0.980690 0.195571i \(-0.0626560\pi\)
\(398\) 4000.00i 0.503774i
\(399\) 0 0
\(400\) 0 0
\(401\) 1638.00 0.203985 0.101992 0.994785i \(-0.467478\pi\)
0.101992 + 0.994785i \(0.467478\pi\)
\(402\) 0 0
\(403\) − 544.000i − 0.0672421i
\(404\) 6888.00 0.848245
\(405\) 0 0
\(406\) −1680.00 −0.205362
\(407\) − 16032.0i − 1.95252i
\(408\) 0 0
\(409\) 13750.0 1.66233 0.831166 0.556024i \(-0.187674\pi\)
0.831166 + 0.556024i \(0.187674\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4208.00i 0.503188i
\(413\) − 960.000i − 0.114379i
\(414\) 0 0
\(415\) 0 0
\(416\) −64.0000 −0.00754293
\(417\) 0 0
\(418\) 13440.0i 1.57266i
\(419\) −12480.0 −1.45510 −0.727551 0.686053i \(-0.759342\pi\)
−0.727551 + 0.686053i \(0.759342\pi\)
\(420\) 0 0
\(421\) 7262.00 0.840685 0.420342 0.907366i \(-0.361910\pi\)
0.420342 + 0.907366i \(0.361910\pi\)
\(422\) 7736.00i 0.892376i
\(423\) 0 0
\(424\) 624.000 0.0714720
\(425\) 0 0
\(426\) 0 0
\(427\) − 1208.00i − 0.136907i
\(428\) − 2256.00i − 0.254785i
\(429\) 0 0
\(430\) 0 0
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) 0 0
\(433\) − 1802.00i − 0.199997i −0.994988 0.0999984i \(-0.968116\pi\)
0.994988 0.0999984i \(-0.0318838\pi\)
\(434\) −2176.00 −0.240671
\(435\) 0 0
\(436\) −2440.00 −0.268016
\(437\) − 10080.0i − 1.10341i
\(438\) 0 0
\(439\) 2320.00 0.252227 0.126113 0.992016i \(-0.459750\pi\)
0.126113 + 0.992016i \(0.459750\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 456.000i − 0.0490717i
\(443\) 11172.0i 1.19819i 0.800678 + 0.599095i \(0.204473\pi\)
−0.800678 + 0.599095i \(0.795527\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6296.00 0.668440
\(447\) 0 0
\(448\) 256.000i 0.0269975i
\(449\) 6810.00 0.715777 0.357888 0.933764i \(-0.383497\pi\)
0.357888 + 0.933764i \(0.383497\pi\)
\(450\) 0 0
\(451\) 9504.00 0.992297
\(452\) − 5208.00i − 0.541955i
\(453\) 0 0
\(454\) −5112.00 −0.528454
\(455\) 0 0
\(456\) 0 0
\(457\) 17066.0i 1.74686i 0.486952 + 0.873429i \(0.338109\pi\)
−0.486952 + 0.873429i \(0.661891\pi\)
\(458\) − 1220.00i − 0.124469i
\(459\) 0 0
\(460\) 0 0
\(461\) 18918.0 1.91128 0.955639 0.294541i \(-0.0951667\pi\)
0.955639 + 0.294541i \(0.0951667\pi\)
\(462\) 0 0
\(463\) − 1052.00i − 0.105595i −0.998605 0.0527976i \(-0.983186\pi\)
0.998605 0.0527976i \(-0.0168138\pi\)
\(464\) 3360.00 0.336173
\(465\) 0 0
\(466\) −4116.00 −0.409163
\(467\) − 11076.0i − 1.09751i −0.835984 0.548754i \(-0.815102\pi\)
0.835984 0.548754i \(-0.184898\pi\)
\(468\) 0 0
\(469\) 2384.00 0.234718
\(470\) 0 0
\(471\) 0 0
\(472\) 1920.00i 0.187236i
\(473\) 12864.0i 1.25050i
\(474\) 0 0
\(475\) 0 0
\(476\) −1824.00 −0.175636
\(477\) 0 0
\(478\) − 9840.00i − 0.941571i
\(479\) −9000.00 −0.858498 −0.429249 0.903186i \(-0.641222\pi\)
−0.429249 + 0.903186i \(0.641222\pi\)
\(480\) 0 0
\(481\) −668.000 −0.0633226
\(482\) 2876.00i 0.271781i
\(483\) 0 0
\(484\) −3892.00 −0.365515
\(485\) 0 0
\(486\) 0 0
\(487\) − 8764.00i − 0.815472i −0.913100 0.407736i \(-0.866318\pi\)
0.913100 0.407736i \(-0.133682\pi\)
\(488\) 2416.00i 0.224113i
\(489\) 0 0
\(490\) 0 0
\(491\) −5592.00 −0.513978 −0.256989 0.966414i \(-0.582730\pi\)
−0.256989 + 0.966414i \(0.582730\pi\)
\(492\) 0 0
\(493\) 23940.0i 2.18703i
\(494\) 560.000 0.0510032
\(495\) 0 0
\(496\) 4352.00 0.393973
\(497\) − 3072.00i − 0.277260i
\(498\) 0 0
\(499\) −4700.00 −0.421645 −0.210823 0.977524i \(-0.567614\pi\)
−0.210823 + 0.977524i \(0.567614\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1584.00i 0.140831i
\(503\) − 11808.0i − 1.04671i −0.852116 0.523353i \(-0.824681\pi\)
0.852116 0.523353i \(-0.175319\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6912.00 0.607265
\(507\) 0 0
\(508\) 496.000i 0.0433198i
\(509\) 1170.00 0.101885 0.0509424 0.998702i \(-0.483778\pi\)
0.0509424 + 0.998702i \(0.483778\pi\)
\(510\) 0 0
\(511\) 1912.00 0.165522
\(512\) − 512.000i − 0.0441942i
\(513\) 0 0
\(514\) −4332.00 −0.371744
\(515\) 0 0
\(516\) 0 0
\(517\) − 10368.0i − 0.881981i
\(518\) 2672.00i 0.226643i
\(519\) 0 0
\(520\) 0 0
\(521\) 16638.0 1.39909 0.699543 0.714590i \(-0.253387\pi\)
0.699543 + 0.714590i \(0.253387\pi\)
\(522\) 0 0
\(523\) − 15692.0i − 1.31198i −0.754771 0.655988i \(-0.772252\pi\)
0.754771 0.655988i \(-0.227748\pi\)
\(524\) 768.000 0.0640272
\(525\) 0 0
\(526\) 6384.00 0.529193
\(527\) 31008.0i 2.56305i
\(528\) 0 0
\(529\) 6983.00 0.573929
\(530\) 0 0
\(531\) 0 0
\(532\) − 2240.00i − 0.182549i
\(533\) − 396.000i − 0.0321814i
\(534\) 0 0
\(535\) 0 0
\(536\) −4768.00 −0.384228
\(537\) 0 0
\(538\) − 10980.0i − 0.879891i
\(539\) 15696.0 1.25431
\(540\) 0 0
\(541\) −22018.0 −1.74977 −0.874887 0.484327i \(-0.839064\pi\)
−0.874887 + 0.484327i \(0.839064\pi\)
\(542\) 12656.0i 1.00299i
\(543\) 0 0
\(544\) 3648.00 0.287512
\(545\) 0 0
\(546\) 0 0
\(547\) − 4564.00i − 0.356751i −0.983963 0.178375i \(-0.942916\pi\)
0.983963 0.178375i \(-0.0570841\pi\)
\(548\) − 10056.0i − 0.783889i
\(549\) 0 0
\(550\) 0 0
\(551\) −29400.0 −2.27311
\(552\) 0 0
\(553\) − 2560.00i − 0.196858i
\(554\) −1148.00 −0.0880394
\(555\) 0 0
\(556\) 5360.00 0.408839
\(557\) 7734.00i 0.588331i 0.955755 + 0.294165i \(0.0950416\pi\)
−0.955755 + 0.294165i \(0.904958\pi\)
\(558\) 0 0
\(559\) 536.000 0.0405552
\(560\) 0 0
\(561\) 0 0
\(562\) 8484.00i 0.636790i
\(563\) − 20148.0i − 1.50824i −0.656739 0.754118i \(-0.728065\pi\)
0.656739 0.754118i \(-0.271935\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1256.00 0.0932749
\(567\) 0 0
\(568\) 6144.00i 0.453867i
\(569\) −24030.0 −1.77046 −0.885228 0.465156i \(-0.845998\pi\)
−0.885228 + 0.465156i \(0.845998\pi\)
\(570\) 0 0
\(571\) 2372.00 0.173844 0.0869222 0.996215i \(-0.472297\pi\)
0.0869222 + 0.996215i \(0.472297\pi\)
\(572\) 384.000i 0.0280697i
\(573\) 0 0
\(574\) −1584.00 −0.115183
\(575\) 0 0
\(576\) 0 0
\(577\) 8546.00i 0.616594i 0.951290 + 0.308297i \(0.0997590\pi\)
−0.951290 + 0.308297i \(0.900241\pi\)
\(578\) 16166.0i 1.16335i
\(579\) 0 0
\(580\) 0 0
\(581\) −1392.00 −0.0993974
\(582\) 0 0
\(583\) − 3744.00i − 0.265970i
\(584\) −3824.00 −0.270956
\(585\) 0 0
\(586\) −1116.00 −0.0786716
\(587\) 15444.0i 1.08593i 0.839755 + 0.542966i \(0.182699\pi\)
−0.839755 + 0.542966i \(0.817301\pi\)
\(588\) 0 0
\(589\) −38080.0 −2.66394
\(590\) 0 0
\(591\) 0 0
\(592\) − 5344.00i − 0.371009i
\(593\) 18342.0i 1.27018i 0.772439 + 0.635089i \(0.219037\pi\)
−0.772439 + 0.635089i \(0.780963\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5640.00 −0.387623
\(597\) 0 0
\(598\) − 288.000i − 0.0196943i
\(599\) 24600.0 1.67801 0.839006 0.544123i \(-0.183137\pi\)
0.839006 + 0.544123i \(0.183137\pi\)
\(600\) 0 0
\(601\) −8998.00 −0.610709 −0.305354 0.952239i \(-0.598775\pi\)
−0.305354 + 0.952239i \(0.598775\pi\)
\(602\) − 2144.00i − 0.145154i
\(603\) 0 0
\(604\) 8512.00 0.573424
\(605\) 0 0
\(606\) 0 0
\(607\) 4076.00i 0.272553i 0.990671 + 0.136277i \(0.0435136\pi\)
−0.990671 + 0.136277i \(0.956486\pi\)
\(608\) 4480.00i 0.298829i
\(609\) 0 0
\(610\) 0 0
\(611\) −432.000 −0.0286037
\(612\) 0 0
\(613\) 4078.00i 0.268693i 0.990934 + 0.134347i \(0.0428935\pi\)
−0.990934 + 0.134347i \(0.957106\pi\)
\(614\) −13928.0 −0.915453
\(615\) 0 0
\(616\) 1536.00 0.100466
\(617\) − 10086.0i − 0.658099i −0.944313 0.329049i \(-0.893272\pi\)
0.944313 0.329049i \(-0.106728\pi\)
\(618\) 0 0
\(619\) −8780.00 −0.570110 −0.285055 0.958511i \(-0.592012\pi\)
−0.285055 + 0.958511i \(0.592012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5664.00i 0.365122i
\(623\) − 840.000i − 0.0540191i
\(624\) 0 0
\(625\) 0 0
\(626\) −17284.0 −1.10353
\(627\) 0 0
\(628\) − 12104.0i − 0.769112i
\(629\) 38076.0 2.41366
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) 5120.00i 0.322251i
\(633\) 0 0
\(634\) 4428.00 0.277379
\(635\) 0 0
\(636\) 0 0
\(637\) − 654.000i − 0.0406788i
\(638\) − 20160.0i − 1.25101i
\(639\) 0 0
\(640\) 0 0
\(641\) −7602.00 −0.468426 −0.234213 0.972185i \(-0.575251\pi\)
−0.234213 + 0.972185i \(0.575251\pi\)
\(642\) 0 0
\(643\) − 24212.0i − 1.48496i −0.669869 0.742479i \(-0.733650\pi\)
0.669869 0.742479i \(-0.266350\pi\)
\(644\) −1152.00 −0.0704894
\(645\) 0 0
\(646\) −31920.0 −1.94408
\(647\) − 9456.00i − 0.574581i −0.957844 0.287290i \(-0.907246\pi\)
0.957844 0.287290i \(-0.0927545\pi\)
\(648\) 0 0
\(649\) 11520.0 0.696764
\(650\) 0 0
\(651\) 0 0
\(652\) 10448.0i 0.627569i
\(653\) − 9558.00i − 0.572792i −0.958111 0.286396i \(-0.907543\pi\)
0.958111 0.286396i \(-0.0924574\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3168.00 0.188551
\(657\) 0 0
\(658\) 1728.00i 0.102378i
\(659\) −29280.0 −1.73078 −0.865392 0.501095i \(-0.832931\pi\)
−0.865392 + 0.501095i \(0.832931\pi\)
\(660\) 0 0
\(661\) −29098.0 −1.71223 −0.856113 0.516789i \(-0.827127\pi\)
−0.856113 + 0.516789i \(0.827127\pi\)
\(662\) − 21544.0i − 1.26485i
\(663\) 0 0
\(664\) 2784.00 0.162711
\(665\) 0 0
\(666\) 0 0
\(667\) 15120.0i 0.877734i
\(668\) − 96.0000i − 0.00556041i
\(669\) 0 0
\(670\) 0 0
\(671\) 14496.0 0.833997
\(672\) 0 0
\(673\) 11638.0i 0.666585i 0.942823 + 0.333293i \(0.108160\pi\)
−0.942823 + 0.333293i \(0.891840\pi\)
\(674\) −3308.00 −0.189050
\(675\) 0 0
\(676\) −8772.00 −0.499090
\(677\) − 3426.00i − 0.194493i −0.995260 0.0972466i \(-0.968996\pi\)
0.995260 0.0972466i \(-0.0310035\pi\)
\(678\) 0 0
\(679\) −6136.00 −0.346801
\(680\) 0 0
\(681\) 0 0
\(682\) − 26112.0i − 1.46610i
\(683\) − 20148.0i − 1.12876i −0.825516 0.564379i \(-0.809116\pi\)
0.825516 0.564379i \(-0.190884\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −5360.00 −0.298317
\(687\) 0 0
\(688\) 4288.00i 0.237614i
\(689\) −156.000 −0.00862573
\(690\) 0 0
\(691\) −29428.0 −1.62011 −0.810053 0.586356i \(-0.800562\pi\)
−0.810053 + 0.586356i \(0.800562\pi\)
\(692\) − 7848.00i − 0.431122i
\(693\) 0 0
\(694\) −4392.00 −0.240228
\(695\) 0 0
\(696\) 0 0
\(697\) 22572.0i 1.22665i
\(698\) 16540.0i 0.896917i
\(699\) 0 0
\(700\) 0 0
\(701\) −16242.0 −0.875110 −0.437555 0.899192i \(-0.644155\pi\)
−0.437555 + 0.899192i \(0.644155\pi\)
\(702\) 0 0
\(703\) 46760.0i 2.50866i
\(704\) −3072.00 −0.164461
\(705\) 0 0
\(706\) 20604.0 1.09836
\(707\) 6888.00i 0.366407i
\(708\) 0 0
\(709\) −2030.00 −0.107529 −0.0537646 0.998554i \(-0.517122\pi\)
−0.0537646 + 0.998554i \(0.517122\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1680.00i 0.0884279i
\(713\) 19584.0i 1.02865i
\(714\) 0 0
\(715\) 0 0
\(716\) 480.000 0.0250537
\(717\) 0 0
\(718\) 4560.00i 0.237016i
\(719\) 6960.00 0.361007 0.180504 0.983574i \(-0.442227\pi\)
0.180504 + 0.983574i \(0.442227\pi\)
\(720\) 0 0
\(721\) −4208.00 −0.217357
\(722\) − 25482.0i − 1.31349i
\(723\) 0 0
\(724\) −3608.00 −0.185208
\(725\) 0 0
\(726\) 0 0
\(727\) 18596.0i 0.948676i 0.880343 + 0.474338i \(0.157313\pi\)
−0.880343 + 0.474338i \(0.842687\pi\)
\(728\) − 64.0000i − 0.00325824i
\(729\) 0 0
\(730\) 0 0
\(731\) −30552.0 −1.54584
\(732\) 0 0
\(733\) − 21242.0i − 1.07038i −0.844731 0.535192i \(-0.820239\pi\)
0.844731 0.535192i \(-0.179761\pi\)
\(734\) −17528.0 −0.881431
\(735\) 0 0
\(736\) 2304.00 0.115389
\(737\) 28608.0i 1.42984i
\(738\) 0 0
\(739\) 340.000 0.0169244 0.00846218 0.999964i \(-0.497306\pi\)
0.00846218 + 0.999964i \(0.497306\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 624.000i 0.0308730i
\(743\) − 21888.0i − 1.08074i −0.841426 0.540372i \(-0.818284\pi\)
0.841426 0.540372i \(-0.181716\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2636.00 0.129371
\(747\) 0 0
\(748\) − 21888.0i − 1.06993i
\(749\) 2256.00 0.110057
\(750\) 0 0
\(751\) 17792.0 0.864500 0.432250 0.901754i \(-0.357720\pi\)
0.432250 + 0.901754i \(0.357720\pi\)
\(752\) − 3456.00i − 0.167590i
\(753\) 0 0
\(754\) −840.000 −0.0405716
\(755\) 0 0
\(756\) 0 0
\(757\) 37346.0i 1.79308i 0.442960 + 0.896541i \(0.353928\pi\)
−0.442960 + 0.896541i \(0.646072\pi\)
\(758\) 2200.00i 0.105419i
\(759\) 0 0
\(760\) 0 0
\(761\) 11358.0 0.541034 0.270517 0.962715i \(-0.412805\pi\)
0.270517 + 0.962715i \(0.412805\pi\)
\(762\) 0 0
\(763\) − 2440.00i − 0.115772i
\(764\) −672.000 −0.0318221
\(765\) 0 0
\(766\) −7056.00 −0.332825
\(767\) − 480.000i − 0.0225969i
\(768\) 0 0
\(769\) 34270.0 1.60703 0.803516 0.595283i \(-0.202960\pi\)
0.803516 + 0.595283i \(0.202960\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 5272.00i − 0.245782i
\(773\) − 13278.0i − 0.617822i −0.951091 0.308911i \(-0.900035\pi\)
0.951091 0.308911i \(-0.0999645\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 12272.0 0.567705
\(777\) 0 0
\(778\) 19260.0i 0.887538i
\(779\) −27720.0 −1.27493
\(780\) 0 0
\(781\) 36864.0 1.68899
\(782\) 16416.0i 0.750684i
\(783\) 0 0
\(784\) 5232.00 0.238338
\(785\) 0 0
\(786\) 0 0
\(787\) − 11164.0i − 0.505659i −0.967511 0.252829i \(-0.918639\pi\)
0.967511 0.252829i \(-0.0813612\pi\)
\(788\) − 16056.0i − 0.725852i
\(789\) 0 0
\(790\) 0 0
\(791\) 5208.00 0.234103
\(792\) 0 0
\(793\) − 604.000i − 0.0270475i
\(794\) −6188.00 −0.276579
\(795\) 0 0
\(796\) 8000.00 0.356222
\(797\) 5094.00i 0.226397i 0.993572 + 0.113199i \(0.0361097\pi\)
−0.993572 + 0.113199i \(0.963890\pi\)
\(798\) 0 0
\(799\) 24624.0 1.09028
\(800\) 0 0
\(801\) 0 0
\(802\) − 3276.00i − 0.144239i
\(803\) 22944.0i 1.00831i
\(804\) 0 0
\(805\) 0 0
\(806\) −1088.00 −0.0475474
\(807\) 0 0
\(808\) − 13776.0i − 0.599799i
\(809\) −8790.00 −0.382002 −0.191001 0.981590i \(-0.561173\pi\)
−0.191001 + 0.981590i \(0.561173\pi\)
\(810\) 0 0
\(811\) 5852.00 0.253380 0.126690 0.991942i \(-0.459565\pi\)
0.126690 + 0.991942i \(0.459565\pi\)
\(812\) 3360.00i 0.145213i
\(813\) 0 0
\(814\) −32064.0 −1.38064
\(815\) 0 0
\(816\) 0 0
\(817\) − 37520.0i − 1.60668i
\(818\) − 27500.0i − 1.17545i
\(819\) 0 0
\(820\) 0 0
\(821\) 29478.0 1.25309 0.626546 0.779384i \(-0.284468\pi\)
0.626546 + 0.779384i \(0.284468\pi\)
\(822\) 0 0
\(823\) − 39332.0i − 1.66589i −0.553356 0.832945i \(-0.686653\pi\)
0.553356 0.832945i \(-0.313347\pi\)
\(824\) 8416.00 0.355807
\(825\) 0 0
\(826\) −1920.00 −0.0808781
\(827\) − 6756.00i − 0.284074i −0.989861 0.142037i \(-0.954635\pi\)
0.989861 0.142037i \(-0.0453652\pi\)
\(828\) 0 0
\(829\) −3950.00 −0.165488 −0.0827438 0.996571i \(-0.526368\pi\)
−0.0827438 + 0.996571i \(0.526368\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 128.000i 0.00533366i
\(833\) 37278.0i 1.55055i
\(834\) 0 0
\(835\) 0 0
\(836\) 26880.0 1.11204
\(837\) 0 0
\(838\) 24960.0i 1.02891i
\(839\) 12360.0 0.508599 0.254300 0.967126i \(-0.418155\pi\)
0.254300 + 0.967126i \(0.418155\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) − 14524.0i − 0.594454i
\(843\) 0 0
\(844\) 15472.0 0.631005
\(845\) 0 0
\(846\) 0 0
\(847\) − 3892.00i − 0.157887i
\(848\) − 1248.00i − 0.0505383i
\(849\) 0 0
\(850\) 0 0
\(851\) 24048.0 0.968690
\(852\) 0 0
\(853\) 35998.0i 1.44496i 0.691394 + 0.722478i \(0.256997\pi\)
−0.691394 + 0.722478i \(0.743003\pi\)
\(854\) −2416.00 −0.0968077
\(855\) 0 0
\(856\) −4512.00 −0.180160
\(857\) 21594.0i 0.860720i 0.902657 + 0.430360i \(0.141613\pi\)
−0.902657 + 0.430360i \(0.858387\pi\)
\(858\) 0 0
\(859\) −9260.00 −0.367808 −0.183904 0.982944i \(-0.558874\pi\)
−0.183904 + 0.982944i \(0.558874\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 19584.0i 0.773821i
\(863\) 31632.0i 1.24770i 0.781544 + 0.623850i \(0.214433\pi\)
−0.781544 + 0.623850i \(0.785567\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −3604.00 −0.141419
\(867\) 0 0
\(868\) 4352.00i 0.170180i
\(869\) 30720.0 1.19920
\(870\) 0 0
\(871\) 1192.00 0.0463713
\(872\) 4880.00i 0.189516i
\(873\) 0 0
\(874\) −20160.0 −0.780231
\(875\) 0 0
\(876\) 0 0
\(877\) − 39694.0i − 1.52836i −0.645003 0.764180i \(-0.723144\pi\)
0.645003 0.764180i \(-0.276856\pi\)
\(878\) − 4640.00i − 0.178351i
\(879\) 0 0
\(880\) 0 0
\(881\) −1242.00 −0.0474961 −0.0237480 0.999718i \(-0.507560\pi\)
−0.0237480 + 0.999718i \(0.507560\pi\)
\(882\) 0 0
\(883\) 2668.00i 0.101682i 0.998707 + 0.0508411i \(0.0161902\pi\)
−0.998707 + 0.0508411i \(0.983810\pi\)
\(884\) −912.000 −0.0346990
\(885\) 0 0
\(886\) 22344.0 0.847248
\(887\) 4344.00i 0.164439i 0.996614 + 0.0822194i \(0.0262008\pi\)
−0.996614 + 0.0822194i \(0.973799\pi\)
\(888\) 0 0
\(889\) −496.000 −0.0187124
\(890\) 0 0
\(891\) 0 0
\(892\) − 12592.0i − 0.472658i
\(893\) 30240.0i 1.13319i
\(894\) 0 0
\(895\) 0 0
\(896\) 512.000 0.0190901
\(897\) 0 0
\(898\) − 13620.0i − 0.506131i
\(899\) 57120.0 2.11909
\(900\) 0 0
\(901\) 8892.00 0.328785
\(902\) − 19008.0i − 0.701660i
\(903\) 0 0
\(904\) −10416.0 −0.383220
\(905\) 0 0
\(906\) 0 0
\(907\) 4436.00i 0.162398i 0.996698 + 0.0811990i \(0.0258749\pi\)
−0.996698 + 0.0811990i \(0.974125\pi\)
\(908\) 10224.0i 0.373673i
\(909\) 0 0
\(910\) 0 0
\(911\) −22752.0 −0.827450 −0.413725 0.910402i \(-0.635773\pi\)
−0.413725 + 0.910402i \(0.635773\pi\)
\(912\) 0 0
\(913\) − 16704.0i − 0.605500i
\(914\) 34132.0 1.23521
\(915\) 0 0
\(916\) −2440.00 −0.0880130
\(917\) 768.000i 0.0276571i
\(918\) 0 0
\(919\) 27160.0 0.974892 0.487446 0.873153i \(-0.337929\pi\)
0.487446 + 0.873153i \(0.337929\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 37836.0i − 1.35148i
\(923\) − 1536.00i − 0.0547758i
\(924\) 0 0
\(925\) 0 0
\(926\) −2104.00 −0.0746671
\(927\) 0 0
\(928\) − 6720.00i − 0.237710i
\(929\) −33030.0 −1.16650 −0.583250 0.812292i \(-0.698219\pi\)
−0.583250 + 0.812292i \(0.698219\pi\)
\(930\) 0 0
\(931\) −45780.0 −1.61158
\(932\) 8232.00i 0.289322i
\(933\) 0 0
\(934\) −22152.0 −0.776055
\(935\) 0 0
\(936\) 0 0
\(937\) − 29974.0i − 1.04505i −0.852625 0.522523i \(-0.824991\pi\)
0.852625 0.522523i \(-0.175009\pi\)
\(938\) − 4768.00i − 0.165971i
\(939\) 0 0
\(940\) 0 0
\(941\) −13962.0 −0.483686 −0.241843 0.970315i \(-0.577752\pi\)
−0.241843 + 0.970315i \(0.577752\pi\)
\(942\) 0 0
\(943\) 14256.0i 0.492300i
\(944\) 3840.00 0.132396
\(945\) 0 0
\(946\) 25728.0 0.884238
\(947\) − 35196.0i − 1.20773i −0.797088 0.603863i \(-0.793627\pi\)
0.797088 0.603863i \(-0.206373\pi\)
\(948\) 0 0
\(949\) 956.000 0.0327008
\(950\) 0 0
\(951\) 0 0
\(952\) 3648.00i 0.124194i
\(953\) − 28338.0i − 0.963230i −0.876383 0.481615i \(-0.840050\pi\)
0.876383 0.481615i \(-0.159950\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −19680.0 −0.665792
\(957\) 0 0
\(958\) 18000.0i 0.607050i
\(959\) 10056.0 0.338608
\(960\) 0 0
\(961\) 44193.0 1.48343
\(962\) 1336.00i 0.0447759i
\(963\) 0 0
\(964\) 5752.00 0.192178
\(965\) 0 0
\(966\) 0 0
\(967\) − 17524.0i − 0.582765i −0.956607 0.291383i \(-0.905885\pi\)
0.956607 0.291383i \(-0.0941153\pi\)
\(968\) 7784.00i 0.258458i
\(969\) 0 0
\(970\) 0 0
\(971\) 26808.0 0.886004 0.443002 0.896521i \(-0.353913\pi\)
0.443002 + 0.896521i \(0.353913\pi\)
\(972\) 0 0
\(973\) 5360.00i 0.176602i
\(974\) −17528.0 −0.576626
\(975\) 0 0
\(976\) 4832.00 0.158472
\(977\) 10914.0i 0.357390i 0.983905 + 0.178695i \(0.0571875\pi\)
−0.983905 + 0.178695i \(0.942813\pi\)
\(978\) 0 0
\(979\) 10080.0 0.329069
\(980\) 0 0
\(981\) 0 0
\(982\) 11184.0i 0.363438i
\(983\) 22272.0i 0.722652i 0.932440 + 0.361326i \(0.117676\pi\)
−0.932440 + 0.361326i \(0.882324\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 47880.0 1.54646
\(987\) 0 0
\(988\) − 1120.00i − 0.0360647i
\(989\) −19296.0 −0.620402
\(990\) 0 0
\(991\) 14072.0 0.451071 0.225536 0.974235i \(-0.427587\pi\)
0.225536 + 0.974235i \(0.427587\pi\)
\(992\) − 8704.00i − 0.278581i
\(993\) 0 0
\(994\) −6144.00 −0.196052
\(995\) 0 0
\(996\) 0 0
\(997\) 4826.00i 0.153301i 0.997058 + 0.0766504i \(0.0244225\pi\)
−0.997058 + 0.0766504i \(0.975577\pi\)
\(998\) 9400.00i 0.298148i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.c.j.199.1 2
3.2 odd 2 150.4.c.c.49.2 2
5.2 odd 4 450.4.a.r.1.1 1
5.3 odd 4 90.4.a.c.1.1 1
5.4 even 2 inner 450.4.c.j.199.2 2
12.11 even 2 1200.4.f.r.49.2 2
15.2 even 4 150.4.a.b.1.1 1
15.8 even 4 30.4.a.b.1.1 1
15.14 odd 2 150.4.c.c.49.1 2
20.3 even 4 720.4.a.y.1.1 1
45.13 odd 12 810.4.e.p.541.1 2
45.23 even 12 810.4.e.i.541.1 2
45.38 even 12 810.4.e.i.271.1 2
45.43 odd 12 810.4.e.p.271.1 2
60.23 odd 4 240.4.a.b.1.1 1
60.47 odd 4 1200.4.a.ba.1.1 1
60.59 even 2 1200.4.f.r.49.1 2
105.83 odd 4 1470.4.a.r.1.1 1
120.53 even 4 960.4.a.n.1.1 1
120.83 odd 4 960.4.a.bg.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.b.1.1 1 15.8 even 4
90.4.a.c.1.1 1 5.3 odd 4
150.4.a.b.1.1 1 15.2 even 4
150.4.c.c.49.1 2 15.14 odd 2
150.4.c.c.49.2 2 3.2 odd 2
240.4.a.b.1.1 1 60.23 odd 4
450.4.a.r.1.1 1 5.2 odd 4
450.4.c.j.199.1 2 1.1 even 1 trivial
450.4.c.j.199.2 2 5.4 even 2 inner
720.4.a.y.1.1 1 20.3 even 4
810.4.e.i.271.1 2 45.38 even 12
810.4.e.i.541.1 2 45.23 even 12
810.4.e.p.271.1 2 45.43 odd 12
810.4.e.p.541.1 2 45.13 odd 12
960.4.a.n.1.1 1 120.53 even 4
960.4.a.bg.1.1 1 120.83 odd 4
1200.4.a.ba.1.1 1 60.47 odd 4
1200.4.f.r.49.1 2 60.59 even 2
1200.4.f.r.49.2 2 12.11 even 2
1470.4.a.r.1.1 1 105.83 odd 4