Properties

Label 450.4.c.d
Level $450$
Weight $4$
Character orbit 450.c
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 4 q^{4} + 2 \beta q^{7} - 4 \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} - 4 q^{4} + 2 \beta q^{7} - 4 \beta q^{8} - 12 q^{11} - 29 \beta q^{13} - 8 q^{14} + 16 q^{16} + 33 \beta q^{17} + 100 q^{19} - 12 \beta q^{22} - 66 \beta q^{23} + 116 q^{26} - 8 \beta q^{28} - 90 q^{29} + 152 q^{31} + 16 \beta q^{32} - 132 q^{34} + 17 \beta q^{37} + 100 \beta q^{38} + 438 q^{41} + 16 \beta q^{43} + 48 q^{44} + 264 q^{46} - 102 \beta q^{47} + 327 q^{49} + 116 \beta q^{52} - 111 \beta q^{53} + 32 q^{56} - 90 \beta q^{58} + 420 q^{59} + 902 q^{61} + 152 \beta q^{62} - 64 q^{64} + 512 \beta q^{67} - 132 \beta q^{68} - 432 q^{71} + 181 \beta q^{73} - 68 q^{74} - 400 q^{76} - 24 \beta q^{77} + 160 q^{79} + 438 \beta q^{82} - 36 \beta q^{83} - 64 q^{86} + 48 \beta q^{88} + 810 q^{89} + 232 q^{91} + 264 \beta q^{92} + 408 q^{94} - 553 \beta q^{97} + 327 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 24 q^{11} - 16 q^{14} + 32 q^{16} + 200 q^{19} + 232 q^{26} - 180 q^{29} + 304 q^{31} - 264 q^{34} + 876 q^{41} + 96 q^{44} + 528 q^{46} + 654 q^{49} + 64 q^{56} + 840 q^{59} + 1804 q^{61} - 128 q^{64} - 864 q^{71} - 136 q^{74} - 800 q^{76} + 320 q^{79} - 128 q^{86} + 1620 q^{89} + 464 q^{91} + 816 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
2.00000i 0 −4.00000 0 0 4.00000i 8.00000i 0 0
199.2 2.00000i 0 −4.00000 0 0 4.00000i 8.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.c.d 2
3.b odd 2 1 50.4.b.a 2
5.b even 2 1 inner 450.4.c.d 2
5.c odd 4 1 90.4.a.a 1
5.c odd 4 1 450.4.a.q 1
12.b even 2 1 400.4.c.c 2
15.d odd 2 1 50.4.b.a 2
15.e even 4 1 10.4.a.a 1
15.e even 4 1 50.4.a.c 1
20.e even 4 1 720.4.a.j 1
45.k odd 12 2 810.4.e.w 2
45.l even 12 2 810.4.e.c 2
60.h even 2 1 400.4.c.c 2
60.l odd 4 1 80.4.a.f 1
60.l odd 4 1 400.4.a.b 1
105.k odd 4 1 490.4.a.o 1
105.k odd 4 1 2450.4.a.b 1
105.w odd 12 2 490.4.e.a 2
105.x even 12 2 490.4.e.i 2
120.q odd 4 1 320.4.a.b 1
120.q odd 4 1 1600.4.a.bx 1
120.w even 4 1 320.4.a.m 1
120.w even 4 1 1600.4.a.d 1
165.l odd 4 1 1210.4.a.b 1
195.s even 4 1 1690.4.a.a 1
240.z odd 4 1 1280.4.d.g 2
240.bb even 4 1 1280.4.d.j 2
240.bd odd 4 1 1280.4.d.g 2
240.bf even 4 1 1280.4.d.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 15.e even 4 1
50.4.a.c 1 15.e even 4 1
50.4.b.a 2 3.b odd 2 1
50.4.b.a 2 15.d odd 2 1
80.4.a.f 1 60.l odd 4 1
90.4.a.a 1 5.c odd 4 1
320.4.a.b 1 120.q odd 4 1
320.4.a.m 1 120.w even 4 1
400.4.a.b 1 60.l odd 4 1
400.4.c.c 2 12.b even 2 1
400.4.c.c 2 60.h even 2 1
450.4.a.q 1 5.c odd 4 1
450.4.c.d 2 1.a even 1 1 trivial
450.4.c.d 2 5.b even 2 1 inner
490.4.a.o 1 105.k odd 4 1
490.4.e.a 2 105.w odd 12 2
490.4.e.i 2 105.x even 12 2
720.4.a.j 1 20.e even 4 1
810.4.e.c 2 45.l even 12 2
810.4.e.w 2 45.k odd 12 2
1210.4.a.b 1 165.l odd 4 1
1280.4.d.g 2 240.z odd 4 1
1280.4.d.g 2 240.bd odd 4 1
1280.4.d.j 2 240.bb even 4 1
1280.4.d.j 2 240.bf even 4 1
1600.4.a.d 1 120.w even 4 1
1600.4.a.bx 1 120.q odd 4 1
1690.4.a.a 1 195.s even 4 1
2450.4.a.b 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3364 \) Copy content Toggle raw display
$17$ \( T^{2} + 4356 \) Copy content Toggle raw display
$19$ \( (T - 100)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 17424 \) Copy content Toggle raw display
$29$ \( (T + 90)^{2} \) Copy content Toggle raw display
$31$ \( (T - 152)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1156 \) Copy content Toggle raw display
$41$ \( (T - 438)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 1024 \) Copy content Toggle raw display
$47$ \( T^{2} + 41616 \) Copy content Toggle raw display
$53$ \( T^{2} + 49284 \) Copy content Toggle raw display
$59$ \( (T - 420)^{2} \) Copy content Toggle raw display
$61$ \( (T - 902)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1048576 \) Copy content Toggle raw display
$71$ \( (T + 432)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 131044 \) Copy content Toggle raw display
$79$ \( (T - 160)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 5184 \) Copy content Toggle raw display
$89$ \( (T - 810)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1223236 \) Copy content Toggle raw display
show more
show less