Properties

Label 450.4.c.a.199.1
Level $450$
Weight $4$
Character 450.199
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.4.c.a.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} +1.00000i q^{7} +8.00000i q^{8} +O(q^{10})\) \(q-2.00000i q^{2} -4.00000 q^{4} +1.00000i q^{7} +8.00000i q^{8} -42.0000 q^{11} -67.0000i q^{13} +2.00000 q^{14} +16.0000 q^{16} +54.0000i q^{17} +115.000 q^{19} +84.0000i q^{22} +162.000i q^{23} -134.000 q^{26} -4.00000i q^{28} -210.000 q^{29} -193.000 q^{31} -32.0000i q^{32} +108.000 q^{34} +286.000i q^{37} -230.000i q^{38} -12.0000 q^{41} +263.000i q^{43} +168.000 q^{44} +324.000 q^{46} +414.000i q^{47} +342.000 q^{49} +268.000i q^{52} +192.000i q^{53} -8.00000 q^{56} +420.000i q^{58} +690.000 q^{59} -733.000 q^{61} +386.000i q^{62} -64.0000 q^{64} -299.000i q^{67} -216.000i q^{68} +228.000 q^{71} +938.000i q^{73} +572.000 q^{74} -460.000 q^{76} -42.0000i q^{77} +160.000 q^{79} +24.0000i q^{82} +462.000i q^{83} +526.000 q^{86} -336.000i q^{88} -240.000 q^{89} +67.0000 q^{91} -648.000i q^{92} +828.000 q^{94} +511.000i q^{97} -684.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 84 q^{11} + 4 q^{14} + 32 q^{16} + 230 q^{19} - 268 q^{26} - 420 q^{29} - 386 q^{31} + 216 q^{34} - 24 q^{41} + 336 q^{44} + 648 q^{46} + 684 q^{49} - 16 q^{56} + 1380 q^{59} - 1466 q^{61} - 128 q^{64} + 456 q^{71} + 1144 q^{74} - 920 q^{76} + 320 q^{79} + 1052 q^{86} - 480 q^{89} + 134 q^{91} + 1656 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.0539949i 0.999636 + 0.0269975i \(0.00859460\pi\)
−0.999636 + 0.0269975i \(0.991405\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) −42.0000 −1.15123 −0.575613 0.817723i \(-0.695236\pi\)
−0.575613 + 0.817723i \(0.695236\pi\)
\(12\) 0 0
\(13\) − 67.0000i − 1.42942i −0.699421 0.714710i \(-0.746559\pi\)
0.699421 0.714710i \(-0.253441\pi\)
\(14\) 2.00000 0.0381802
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 54.0000i 0.770407i 0.922832 + 0.385204i \(0.125869\pi\)
−0.922832 + 0.385204i \(0.874131\pi\)
\(18\) 0 0
\(19\) 115.000 1.38857 0.694284 0.719701i \(-0.255721\pi\)
0.694284 + 0.719701i \(0.255721\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 84.0000i 0.814039i
\(23\) 162.000i 1.46867i 0.678789 + 0.734333i \(0.262505\pi\)
−0.678789 + 0.734333i \(0.737495\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −134.000 −1.01075
\(27\) 0 0
\(28\) − 4.00000i − 0.0269975i
\(29\) −210.000 −1.34469 −0.672345 0.740238i \(-0.734713\pi\)
−0.672345 + 0.740238i \(0.734713\pi\)
\(30\) 0 0
\(31\) −193.000 −1.11819 −0.559094 0.829104i \(-0.688851\pi\)
−0.559094 + 0.829104i \(0.688851\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 0 0
\(34\) 108.000 0.544760
\(35\) 0 0
\(36\) 0 0
\(37\) 286.000i 1.27076i 0.772200 + 0.635380i \(0.219156\pi\)
−0.772200 + 0.635380i \(0.780844\pi\)
\(38\) − 230.000i − 0.981866i
\(39\) 0 0
\(40\) 0 0
\(41\) −12.0000 −0.0457094 −0.0228547 0.999739i \(-0.507276\pi\)
−0.0228547 + 0.999739i \(0.507276\pi\)
\(42\) 0 0
\(43\) 263.000i 0.932724i 0.884594 + 0.466362i \(0.154436\pi\)
−0.884594 + 0.466362i \(0.845564\pi\)
\(44\) 168.000 0.575613
\(45\) 0 0
\(46\) 324.000 1.03850
\(47\) 414.000i 1.28485i 0.766347 + 0.642427i \(0.222072\pi\)
−0.766347 + 0.642427i \(0.777928\pi\)
\(48\) 0 0
\(49\) 342.000 0.997085
\(50\) 0 0
\(51\) 0 0
\(52\) 268.000i 0.714710i
\(53\) 192.000i 0.497608i 0.968554 + 0.248804i \(0.0800375\pi\)
−0.968554 + 0.248804i \(0.919962\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −8.00000 −0.0190901
\(57\) 0 0
\(58\) 420.000i 0.950840i
\(59\) 690.000 1.52255 0.761274 0.648430i \(-0.224574\pi\)
0.761274 + 0.648430i \(0.224574\pi\)
\(60\) 0 0
\(61\) −733.000 −1.53854 −0.769271 0.638923i \(-0.779380\pi\)
−0.769271 + 0.638923i \(0.779380\pi\)
\(62\) 386.000i 0.790678i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 299.000i − 0.545204i −0.962127 0.272602i \(-0.912116\pi\)
0.962127 0.272602i \(-0.0878842\pi\)
\(68\) − 216.000i − 0.385204i
\(69\) 0 0
\(70\) 0 0
\(71\) 228.000 0.381107 0.190554 0.981677i \(-0.438972\pi\)
0.190554 + 0.981677i \(0.438972\pi\)
\(72\) 0 0
\(73\) 938.000i 1.50390i 0.659221 + 0.751949i \(0.270886\pi\)
−0.659221 + 0.751949i \(0.729114\pi\)
\(74\) 572.000 0.898563
\(75\) 0 0
\(76\) −460.000 −0.694284
\(77\) − 42.0000i − 0.0621603i
\(78\) 0 0
\(79\) 160.000 0.227866 0.113933 0.993488i \(-0.463655\pi\)
0.113933 + 0.993488i \(0.463655\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 24.0000i 0.0323214i
\(83\) 462.000i 0.610977i 0.952196 + 0.305488i \(0.0988197\pi\)
−0.952196 + 0.305488i \(0.901180\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 526.000 0.659535
\(87\) 0 0
\(88\) − 336.000i − 0.407020i
\(89\) −240.000 −0.285842 −0.142921 0.989734i \(-0.545650\pi\)
−0.142921 + 0.989734i \(0.545650\pi\)
\(90\) 0 0
\(91\) 67.0000 0.0771814
\(92\) − 648.000i − 0.734333i
\(93\) 0 0
\(94\) 828.000 0.908529
\(95\) 0 0
\(96\) 0 0
\(97\) 511.000i 0.534889i 0.963573 + 0.267444i \(0.0861791\pi\)
−0.963573 + 0.267444i \(0.913821\pi\)
\(98\) − 684.000i − 0.705045i
\(99\) 0 0
\(100\) 0 0
\(101\) −912.000 −0.898489 −0.449245 0.893409i \(-0.648307\pi\)
−0.449245 + 0.893409i \(0.648307\pi\)
\(102\) 0 0
\(103\) 668.000i 0.639029i 0.947581 + 0.319515i \(0.103520\pi\)
−0.947581 + 0.319515i \(0.896480\pi\)
\(104\) 536.000 0.505376
\(105\) 0 0
\(106\) 384.000 0.351862
\(107\) − 1296.00i − 1.17093i −0.810699 0.585463i \(-0.800913\pi\)
0.810699 0.585463i \(-0.199087\pi\)
\(108\) 0 0
\(109\) 1735.00 1.52461 0.762307 0.647216i \(-0.224067\pi\)
0.762307 + 0.647216i \(0.224067\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 16.0000i 0.0134987i
\(113\) 1092.00i 0.909086i 0.890725 + 0.454543i \(0.150197\pi\)
−0.890725 + 0.454543i \(0.849803\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 840.000 0.672345
\(117\) 0 0
\(118\) − 1380.00i − 1.07660i
\(119\) −54.0000 −0.0415981
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 1466.00i 1.08791i
\(123\) 0 0
\(124\) 772.000 0.559094
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 0.0111793i 0.999984 + 0.00558965i \(0.00177925\pi\)
−0.999984 + 0.00558965i \(0.998221\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −1992.00 −1.32856 −0.664282 0.747482i \(-0.731263\pi\)
−0.664282 + 0.747482i \(0.731263\pi\)
\(132\) 0 0
\(133\) 115.000i 0.0749757i
\(134\) −598.000 −0.385517
\(135\) 0 0
\(136\) −432.000 −0.272380
\(137\) − 2346.00i − 1.46301i −0.681836 0.731505i \(-0.738818\pi\)
0.681836 0.731505i \(-0.261182\pi\)
\(138\) 0 0
\(139\) −2900.00 −1.76960 −0.884801 0.465968i \(-0.845706\pi\)
−0.884801 + 0.465968i \(0.845706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 456.000i − 0.269484i
\(143\) 2814.00i 1.64558i
\(144\) 0 0
\(145\) 0 0
\(146\) 1876.00 1.06342
\(147\) 0 0
\(148\) − 1144.00i − 0.635380i
\(149\) −2070.00 −1.13813 −0.569064 0.822293i \(-0.692694\pi\)
−0.569064 + 0.822293i \(0.692694\pi\)
\(150\) 0 0
\(151\) 2237.00 1.20559 0.602796 0.797895i \(-0.294053\pi\)
0.602796 + 0.797895i \(0.294053\pi\)
\(152\) 920.000i 0.490933i
\(153\) 0 0
\(154\) −84.0000 −0.0439540
\(155\) 0 0
\(156\) 0 0
\(157\) 241.000i 0.122509i 0.998122 + 0.0612544i \(0.0195101\pi\)
−0.998122 + 0.0612544i \(0.980490\pi\)
\(158\) − 320.000i − 0.161126i
\(159\) 0 0
\(160\) 0 0
\(161\) −162.000 −0.0793006
\(162\) 0 0
\(163\) − 3547.00i − 1.70443i −0.523190 0.852216i \(-0.675258\pi\)
0.523190 0.852216i \(-0.324742\pi\)
\(164\) 48.0000 0.0228547
\(165\) 0 0
\(166\) 924.000 0.432026
\(167\) 984.000i 0.455953i 0.973667 + 0.227977i \(0.0732110\pi\)
−0.973667 + 0.227977i \(0.926789\pi\)
\(168\) 0 0
\(169\) −2292.00 −1.04324
\(170\) 0 0
\(171\) 0 0
\(172\) − 1052.00i − 0.466362i
\(173\) − 3618.00i − 1.59001i −0.606604 0.795004i \(-0.707469\pi\)
0.606604 0.795004i \(-0.292531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −672.000 −0.287806
\(177\) 0 0
\(178\) 480.000i 0.202121i
\(179\) −150.000 −0.0626342 −0.0313171 0.999509i \(-0.509970\pi\)
−0.0313171 + 0.999509i \(0.509970\pi\)
\(180\) 0 0
\(181\) 197.000 0.0809000 0.0404500 0.999182i \(-0.487121\pi\)
0.0404500 + 0.999182i \(0.487121\pi\)
\(182\) − 134.000i − 0.0545755i
\(183\) 0 0
\(184\) −1296.00 −0.519252
\(185\) 0 0
\(186\) 0 0
\(187\) − 2268.00i − 0.886912i
\(188\) − 1656.00i − 0.642427i
\(189\) 0 0
\(190\) 0 0
\(191\) −1302.00 −0.493243 −0.246622 0.969112i \(-0.579320\pi\)
−0.246622 + 0.969112i \(0.579320\pi\)
\(192\) 0 0
\(193\) 4163.00i 1.55264i 0.630340 + 0.776319i \(0.282916\pi\)
−0.630340 + 0.776319i \(0.717084\pi\)
\(194\) 1022.00 0.378223
\(195\) 0 0
\(196\) −1368.00 −0.498542
\(197\) 3054.00i 1.10451i 0.833675 + 0.552255i \(0.186233\pi\)
−0.833675 + 0.552255i \(0.813767\pi\)
\(198\) 0 0
\(199\) −3425.00 −1.22006 −0.610030 0.792379i \(-0.708842\pi\)
−0.610030 + 0.792379i \(0.708842\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1824.00i 0.635328i
\(203\) − 210.000i − 0.0726065i
\(204\) 0 0
\(205\) 0 0
\(206\) 1336.00 0.451862
\(207\) 0 0
\(208\) − 1072.00i − 0.357355i
\(209\) −4830.00 −1.59856
\(210\) 0 0
\(211\) −2443.00 −0.797076 −0.398538 0.917152i \(-0.630482\pi\)
−0.398538 + 0.917152i \(0.630482\pi\)
\(212\) − 768.000i − 0.248804i
\(213\) 0 0
\(214\) −2592.00 −0.827969
\(215\) 0 0
\(216\) 0 0
\(217\) − 193.000i − 0.0603765i
\(218\) − 3470.00i − 1.07806i
\(219\) 0 0
\(220\) 0 0
\(221\) 3618.00 1.10124
\(222\) 0 0
\(223\) 23.0000i 0.00690670i 0.999994 + 0.00345335i \(0.00109924\pi\)
−0.999994 + 0.00345335i \(0.998901\pi\)
\(224\) 32.0000 0.00954504
\(225\) 0 0
\(226\) 2184.00 0.642821
\(227\) − 1956.00i − 0.571913i −0.958243 0.285957i \(-0.907689\pi\)
0.958243 0.285957i \(-0.0923113\pi\)
\(228\) 0 0
\(229\) −1805.00 −0.520864 −0.260432 0.965492i \(-0.583865\pi\)
−0.260432 + 0.965492i \(0.583865\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 1680.00i − 0.475420i
\(233\) − 3468.00i − 0.975091i −0.873098 0.487546i \(-0.837892\pi\)
0.873098 0.487546i \(-0.162108\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2760.00 −0.761274
\(237\) 0 0
\(238\) 108.000i 0.0294143i
\(239\) 2640.00 0.714508 0.357254 0.934007i \(-0.383713\pi\)
0.357254 + 0.934007i \(0.383713\pi\)
\(240\) 0 0
\(241\) −5383.00 −1.43879 −0.719397 0.694599i \(-0.755582\pi\)
−0.719397 + 0.694599i \(0.755582\pi\)
\(242\) − 866.000i − 0.230035i
\(243\) 0 0
\(244\) 2932.00 0.769271
\(245\) 0 0
\(246\) 0 0
\(247\) − 7705.00i − 1.98485i
\(248\) − 1544.00i − 0.395339i
\(249\) 0 0
\(250\) 0 0
\(251\) 5028.00 1.26440 0.632200 0.774805i \(-0.282152\pi\)
0.632200 + 0.774805i \(0.282152\pi\)
\(252\) 0 0
\(253\) − 6804.00i − 1.69077i
\(254\) 32.0000 0.00790496
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 564.000i 0.136892i 0.997655 + 0.0684462i \(0.0218042\pi\)
−0.997655 + 0.0684462i \(0.978196\pi\)
\(258\) 0 0
\(259\) −286.000 −0.0686146
\(260\) 0 0
\(261\) 0 0
\(262\) 3984.00i 0.939436i
\(263\) 1812.00i 0.424839i 0.977179 + 0.212420i \(0.0681344\pi\)
−0.977179 + 0.212420i \(0.931866\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 230.000 0.0530158
\(267\) 0 0
\(268\) 1196.00i 0.272602i
\(269\) −5190.00 −1.17636 −0.588178 0.808731i \(-0.700155\pi\)
−0.588178 + 0.808731i \(0.700155\pi\)
\(270\) 0 0
\(271\) 4592.00 1.02931 0.514657 0.857396i \(-0.327919\pi\)
0.514657 + 0.857396i \(0.327919\pi\)
\(272\) 864.000i 0.192602i
\(273\) 0 0
\(274\) −4692.00 −1.03450
\(275\) 0 0
\(276\) 0 0
\(277\) 2191.00i 0.475251i 0.971357 + 0.237625i \(0.0763690\pi\)
−0.971357 + 0.237625i \(0.923631\pi\)
\(278\) 5800.00i 1.25130i
\(279\) 0 0
\(280\) 0 0
\(281\) −7842.00 −1.66482 −0.832410 0.554160i \(-0.813040\pi\)
−0.832410 + 0.554160i \(0.813040\pi\)
\(282\) 0 0
\(283\) − 247.000i − 0.0518821i −0.999663 0.0259410i \(-0.991742\pi\)
0.999663 0.0259410i \(-0.00825821\pi\)
\(284\) −912.000 −0.190554
\(285\) 0 0
\(286\) 5628.00 1.16360
\(287\) − 12.0000i − 0.00246808i
\(288\) 0 0
\(289\) 1997.00 0.406473
\(290\) 0 0
\(291\) 0 0
\(292\) − 3752.00i − 0.751949i
\(293\) 5442.00i 1.08507i 0.840034 + 0.542534i \(0.182535\pi\)
−0.840034 + 0.542534i \(0.817465\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2288.00 −0.449281
\(297\) 0 0
\(298\) 4140.00i 0.804778i
\(299\) 10854.0 2.09934
\(300\) 0 0
\(301\) −263.000 −0.0503624
\(302\) − 4474.00i − 0.852483i
\(303\) 0 0
\(304\) 1840.00 0.347142
\(305\) 0 0
\(306\) 0 0
\(307\) 3871.00i 0.719641i 0.933022 + 0.359820i \(0.117162\pi\)
−0.933022 + 0.359820i \(0.882838\pi\)
\(308\) 168.000i 0.0310802i
\(309\) 0 0
\(310\) 0 0
\(311\) 5718.00 1.04257 0.521283 0.853384i \(-0.325454\pi\)
0.521283 + 0.853384i \(0.325454\pi\)
\(312\) 0 0
\(313\) − 3637.00i − 0.656790i −0.944540 0.328395i \(-0.893492\pi\)
0.944540 0.328395i \(-0.106508\pi\)
\(314\) 482.000 0.0866269
\(315\) 0 0
\(316\) −640.000 −0.113933
\(317\) − 1296.00i − 0.229623i −0.993387 0.114812i \(-0.963374\pi\)
0.993387 0.114812i \(-0.0366265\pi\)
\(318\) 0 0
\(319\) 8820.00 1.54804
\(320\) 0 0
\(321\) 0 0
\(322\) 324.000i 0.0560740i
\(323\) 6210.00i 1.06976i
\(324\) 0 0
\(325\) 0 0
\(326\) −7094.00 −1.20522
\(327\) 0 0
\(328\) − 96.0000i − 0.0161607i
\(329\) −414.000 −0.0693756
\(330\) 0 0
\(331\) 5132.00 0.852206 0.426103 0.904675i \(-0.359886\pi\)
0.426103 + 0.904675i \(0.359886\pi\)
\(332\) − 1848.00i − 0.305488i
\(333\) 0 0
\(334\) 1968.00 0.322408
\(335\) 0 0
\(336\) 0 0
\(337\) 6751.00i 1.09125i 0.838030 + 0.545624i \(0.183707\pi\)
−0.838030 + 0.545624i \(0.816293\pi\)
\(338\) 4584.00i 0.737683i
\(339\) 0 0
\(340\) 0 0
\(341\) 8106.00 1.28729
\(342\) 0 0
\(343\) 685.000i 0.107832i
\(344\) −2104.00 −0.329768
\(345\) 0 0
\(346\) −7236.00 −1.12431
\(347\) − 5226.00i − 0.808491i −0.914651 0.404246i \(-0.867534\pi\)
0.914651 0.404246i \(-0.132466\pi\)
\(348\) 0 0
\(349\) 6190.00 0.949407 0.474704 0.880146i \(-0.342555\pi\)
0.474704 + 0.880146i \(0.342555\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1344.00i 0.203510i
\(353\) − 6618.00i − 0.997849i −0.866646 0.498924i \(-0.833729\pi\)
0.866646 0.498924i \(-0.166271\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 960.000 0.142921
\(357\) 0 0
\(358\) 300.000i 0.0442891i
\(359\) −3420.00 −0.502787 −0.251394 0.967885i \(-0.580889\pi\)
−0.251394 + 0.967885i \(0.580889\pi\)
\(360\) 0 0
\(361\) 6366.00 0.928124
\(362\) − 394.000i − 0.0572049i
\(363\) 0 0
\(364\) −268.000 −0.0385907
\(365\) 0 0
\(366\) 0 0
\(367\) 871.000i 0.123885i 0.998080 + 0.0619425i \(0.0197296\pi\)
−0.998080 + 0.0619425i \(0.980270\pi\)
\(368\) 2592.00i 0.367167i
\(369\) 0 0
\(370\) 0 0
\(371\) −192.000 −0.0268683
\(372\) 0 0
\(373\) 6383.00i 0.886057i 0.896508 + 0.443028i \(0.146096\pi\)
−0.896508 + 0.443028i \(0.853904\pi\)
\(374\) −4536.00 −0.627142
\(375\) 0 0
\(376\) −3312.00 −0.454264
\(377\) 14070.0i 1.92213i
\(378\) 0 0
\(379\) 9865.00 1.33702 0.668511 0.743703i \(-0.266932\pi\)
0.668511 + 0.743703i \(0.266932\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2604.00i 0.348775i
\(383\) − 9828.00i − 1.31119i −0.755111 0.655597i \(-0.772417\pi\)
0.755111 0.655597i \(-0.227583\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8326.00 1.09788
\(387\) 0 0
\(388\) − 2044.00i − 0.267444i
\(389\) 12540.0 1.63446 0.817228 0.576315i \(-0.195510\pi\)
0.817228 + 0.576315i \(0.195510\pi\)
\(390\) 0 0
\(391\) −8748.00 −1.13147
\(392\) 2736.00i 0.352523i
\(393\) 0 0
\(394\) 6108.00 0.781007
\(395\) 0 0
\(396\) 0 0
\(397\) 1381.00i 0.174585i 0.996183 + 0.0872927i \(0.0278215\pi\)
−0.996183 + 0.0872927i \(0.972178\pi\)
\(398\) 6850.00i 0.862712i
\(399\) 0 0
\(400\) 0 0
\(401\) −14232.0 −1.77235 −0.886175 0.463351i \(-0.846647\pi\)
−0.886175 + 0.463351i \(0.846647\pi\)
\(402\) 0 0
\(403\) 12931.0i 1.59836i
\(404\) 3648.00 0.449245
\(405\) 0 0
\(406\) −420.000 −0.0513405
\(407\) − 12012.0i − 1.46293i
\(408\) 0 0
\(409\) −2645.00 −0.319772 −0.159886 0.987135i \(-0.551113\pi\)
−0.159886 + 0.987135i \(0.551113\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 2672.00i − 0.319515i
\(413\) 690.000i 0.0822099i
\(414\) 0 0
\(415\) 0 0
\(416\) −2144.00 −0.252688
\(417\) 0 0
\(418\) 9660.00i 1.13035i
\(419\) 3000.00 0.349784 0.174892 0.984588i \(-0.444042\pi\)
0.174892 + 0.984588i \(0.444042\pi\)
\(420\) 0 0
\(421\) −11338.0 −1.31254 −0.656271 0.754525i \(-0.727867\pi\)
−0.656271 + 0.754525i \(0.727867\pi\)
\(422\) 4886.00i 0.563618i
\(423\) 0 0
\(424\) −1536.00 −0.175931
\(425\) 0 0
\(426\) 0 0
\(427\) − 733.000i − 0.0830734i
\(428\) 5184.00i 0.585463i
\(429\) 0 0
\(430\) 0 0
\(431\) 3258.00 0.364112 0.182056 0.983288i \(-0.441725\pi\)
0.182056 + 0.983288i \(0.441725\pi\)
\(432\) 0 0
\(433\) 1163.00i 0.129077i 0.997915 + 0.0645384i \(0.0205575\pi\)
−0.997915 + 0.0645384i \(0.979443\pi\)
\(434\) −386.000 −0.0426926
\(435\) 0 0
\(436\) −6940.00 −0.762307
\(437\) 18630.0i 2.03934i
\(438\) 0 0
\(439\) −6695.00 −0.727870 −0.363935 0.931424i \(-0.618567\pi\)
−0.363935 + 0.931424i \(0.618567\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 7236.00i − 0.778691i
\(443\) − 16368.0i − 1.75546i −0.479159 0.877728i \(-0.659058\pi\)
0.479159 0.877728i \(-0.340942\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 46.0000 0.00488377
\(447\) 0 0
\(448\) − 64.0000i − 0.00674937i
\(449\) 16380.0 1.72165 0.860824 0.508903i \(-0.169949\pi\)
0.860824 + 0.508903i \(0.169949\pi\)
\(450\) 0 0
\(451\) 504.000 0.0526218
\(452\) − 4368.00i − 0.454543i
\(453\) 0 0
\(454\) −3912.00 −0.404404
\(455\) 0 0
\(456\) 0 0
\(457\) 13786.0i 1.41112i 0.708650 + 0.705560i \(0.249304\pi\)
−0.708650 + 0.705560i \(0.750696\pi\)
\(458\) 3610.00i 0.368306i
\(459\) 0 0
\(460\) 0 0
\(461\) −11832.0 −1.19538 −0.597691 0.801726i \(-0.703915\pi\)
−0.597691 + 0.801726i \(0.703915\pi\)
\(462\) 0 0
\(463\) 3008.00i 0.301930i 0.988539 + 0.150965i \(0.0482381\pi\)
−0.988539 + 0.150965i \(0.951762\pi\)
\(464\) −3360.00 −0.336173
\(465\) 0 0
\(466\) −6936.00 −0.689494
\(467\) 4434.00i 0.439360i 0.975572 + 0.219680i \(0.0705013\pi\)
−0.975572 + 0.219680i \(0.929499\pi\)
\(468\) 0 0
\(469\) 299.000 0.0294382
\(470\) 0 0
\(471\) 0 0
\(472\) 5520.00i 0.538302i
\(473\) − 11046.0i − 1.07378i
\(474\) 0 0
\(475\) 0 0
\(476\) 216.000 0.0207990
\(477\) 0 0
\(478\) − 5280.00i − 0.505233i
\(479\) 7410.00 0.706830 0.353415 0.935467i \(-0.385020\pi\)
0.353415 + 0.935467i \(0.385020\pi\)
\(480\) 0 0
\(481\) 19162.0 1.81645
\(482\) 10766.0i 1.01738i
\(483\) 0 0
\(484\) −1732.00 −0.162660
\(485\) 0 0
\(486\) 0 0
\(487\) 8671.00i 0.806818i 0.915020 + 0.403409i \(0.132175\pi\)
−0.915020 + 0.403409i \(0.867825\pi\)
\(488\) − 5864.00i − 0.543957i
\(489\) 0 0
\(490\) 0 0
\(491\) 19368.0 1.78017 0.890087 0.455790i \(-0.150643\pi\)
0.890087 + 0.455790i \(0.150643\pi\)
\(492\) 0 0
\(493\) − 11340.0i − 1.03596i
\(494\) −15410.0 −1.40350
\(495\) 0 0
\(496\) −3088.00 −0.279547
\(497\) 228.000i 0.0205779i
\(498\) 0 0
\(499\) 8875.00 0.796192 0.398096 0.917344i \(-0.369671\pi\)
0.398096 + 0.917344i \(0.369671\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 10056.0i − 0.894066i
\(503\) 10452.0i 0.926504i 0.886227 + 0.463252i \(0.153318\pi\)
−0.886227 + 0.463252i \(0.846682\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −13608.0 −1.19555
\(507\) 0 0
\(508\) − 64.0000i − 0.00558965i
\(509\) −19770.0 −1.72159 −0.860796 0.508951i \(-0.830033\pi\)
−0.860796 + 0.508951i \(0.830033\pi\)
\(510\) 0 0
\(511\) −938.000 −0.0812029
\(512\) − 512.000i − 0.0441942i
\(513\) 0 0
\(514\) 1128.00 0.0967976
\(515\) 0 0
\(516\) 0 0
\(517\) − 17388.0i − 1.47916i
\(518\) 572.000i 0.0485178i
\(519\) 0 0
\(520\) 0 0
\(521\) 11238.0 0.945001 0.472501 0.881330i \(-0.343351\pi\)
0.472501 + 0.881330i \(0.343351\pi\)
\(522\) 0 0
\(523\) − 7447.00i − 0.622628i −0.950307 0.311314i \(-0.899231\pi\)
0.950307 0.311314i \(-0.100769\pi\)
\(524\) 7968.00 0.664282
\(525\) 0 0
\(526\) 3624.00 0.300407
\(527\) − 10422.0i − 0.861460i
\(528\) 0 0
\(529\) −14077.0 −1.15698
\(530\) 0 0
\(531\) 0 0
\(532\) − 460.000i − 0.0374878i
\(533\) 804.000i 0.0653379i
\(534\) 0 0
\(535\) 0 0
\(536\) 2392.00 0.192759
\(537\) 0 0
\(538\) 10380.0i 0.831810i
\(539\) −14364.0 −1.14787
\(540\) 0 0
\(541\) −17623.0 −1.40050 −0.700251 0.713896i \(-0.746929\pi\)
−0.700251 + 0.713896i \(0.746929\pi\)
\(542\) − 9184.00i − 0.727835i
\(543\) 0 0
\(544\) 1728.00 0.136190
\(545\) 0 0
\(546\) 0 0
\(547\) 10096.0i 0.789166i 0.918860 + 0.394583i \(0.129111\pi\)
−0.918860 + 0.394583i \(0.870889\pi\)
\(548\) 9384.00i 0.731505i
\(549\) 0 0
\(550\) 0 0
\(551\) −24150.0 −1.86720
\(552\) 0 0
\(553\) 160.000i 0.0123036i
\(554\) 4382.00 0.336053
\(555\) 0 0
\(556\) 11600.0 0.884801
\(557\) 14514.0i 1.10409i 0.833814 + 0.552045i \(0.186152\pi\)
−0.833814 + 0.552045i \(0.813848\pi\)
\(558\) 0 0
\(559\) 17621.0 1.33325
\(560\) 0 0
\(561\) 0 0
\(562\) 15684.0i 1.17721i
\(563\) 10242.0i 0.766694i 0.923604 + 0.383347i \(0.125229\pi\)
−0.923604 + 0.383347i \(0.874771\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −494.000 −0.0366862
\(567\) 0 0
\(568\) 1824.00i 0.134742i
\(569\) −6750.00 −0.497319 −0.248660 0.968591i \(-0.579990\pi\)
−0.248660 + 0.968591i \(0.579990\pi\)
\(570\) 0 0
\(571\) 17117.0 1.25451 0.627254 0.778815i \(-0.284179\pi\)
0.627254 + 0.778815i \(0.284179\pi\)
\(572\) − 11256.0i − 0.822792i
\(573\) 0 0
\(574\) −24.0000 −0.00174519
\(575\) 0 0
\(576\) 0 0
\(577\) 301.000i 0.0217171i 0.999941 + 0.0108586i \(0.00345646\pi\)
−0.999941 + 0.0108586i \(0.996544\pi\)
\(578\) − 3994.00i − 0.287420i
\(579\) 0 0
\(580\) 0 0
\(581\) −462.000 −0.0329897
\(582\) 0 0
\(583\) − 8064.00i − 0.572859i
\(584\) −7504.00 −0.531708
\(585\) 0 0
\(586\) 10884.0 0.767259
\(587\) − 15456.0i − 1.08678i −0.839482 0.543388i \(-0.817141\pi\)
0.839482 0.543388i \(-0.182859\pi\)
\(588\) 0 0
\(589\) −22195.0 −1.55268
\(590\) 0 0
\(591\) 0 0
\(592\) 4576.00i 0.317690i
\(593\) 9492.00i 0.657318i 0.944449 + 0.328659i \(0.106597\pi\)
−0.944449 + 0.328659i \(0.893403\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8280.00 0.569064
\(597\) 0 0
\(598\) − 21708.0i − 1.48446i
\(599\) 1500.00 0.102318 0.0511589 0.998691i \(-0.483709\pi\)
0.0511589 + 0.998691i \(0.483709\pi\)
\(600\) 0 0
\(601\) 14627.0 0.992758 0.496379 0.868106i \(-0.334663\pi\)
0.496379 + 0.868106i \(0.334663\pi\)
\(602\) 526.000i 0.0356116i
\(603\) 0 0
\(604\) −8948.00 −0.602796
\(605\) 0 0
\(606\) 0 0
\(607\) − 16184.0i − 1.08219i −0.840962 0.541094i \(-0.818010\pi\)
0.840962 0.541094i \(-0.181990\pi\)
\(608\) − 3680.00i − 0.245467i
\(609\) 0 0
\(610\) 0 0
\(611\) 27738.0 1.83659
\(612\) 0 0
\(613\) − 18502.0i − 1.21907i −0.792760 0.609534i \(-0.791357\pi\)
0.792760 0.609534i \(-0.208643\pi\)
\(614\) 7742.00 0.508863
\(615\) 0 0
\(616\) 336.000 0.0219770
\(617\) − 13896.0i − 0.906697i −0.891333 0.453348i \(-0.850229\pi\)
0.891333 0.453348i \(-0.149771\pi\)
\(618\) 0 0
\(619\) 9895.00 0.642510 0.321255 0.946993i \(-0.395895\pi\)
0.321255 + 0.946993i \(0.395895\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 11436.0i − 0.737206i
\(623\) − 240.000i − 0.0154340i
\(624\) 0 0
\(625\) 0 0
\(626\) −7274.00 −0.464421
\(627\) 0 0
\(628\) − 964.000i − 0.0612544i
\(629\) −15444.0 −0.979003
\(630\) 0 0
\(631\) 467.000 0.0294627 0.0147314 0.999891i \(-0.495311\pi\)
0.0147314 + 0.999891i \(0.495311\pi\)
\(632\) 1280.00i 0.0805628i
\(633\) 0 0
\(634\) −2592.00 −0.162368
\(635\) 0 0
\(636\) 0 0
\(637\) − 22914.0i − 1.42525i
\(638\) − 17640.0i − 1.09463i
\(639\) 0 0
\(640\) 0 0
\(641\) −30612.0 −1.88627 −0.943137 0.332405i \(-0.892140\pi\)
−0.943137 + 0.332405i \(0.892140\pi\)
\(642\) 0 0
\(643\) − 1852.00i − 0.113586i −0.998386 0.0567930i \(-0.981913\pi\)
0.998386 0.0567930i \(-0.0180875\pi\)
\(644\) 648.000 0.0396503
\(645\) 0 0
\(646\) 12420.0 0.756437
\(647\) − 21156.0i − 1.28551i −0.766070 0.642757i \(-0.777790\pi\)
0.766070 0.642757i \(-0.222210\pi\)
\(648\) 0 0
\(649\) −28980.0 −1.75280
\(650\) 0 0
\(651\) 0 0
\(652\) 14188.0i 0.852216i
\(653\) 9702.00i 0.581422i 0.956811 + 0.290711i \(0.0938918\pi\)
−0.956811 + 0.290711i \(0.906108\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −192.000 −0.0114273
\(657\) 0 0
\(658\) 828.000i 0.0490559i
\(659\) 1980.00 0.117041 0.0585204 0.998286i \(-0.481362\pi\)
0.0585204 + 0.998286i \(0.481362\pi\)
\(660\) 0 0
\(661\) −20158.0 −1.18617 −0.593083 0.805142i \(-0.702089\pi\)
−0.593083 + 0.805142i \(0.702089\pi\)
\(662\) − 10264.0i − 0.602601i
\(663\) 0 0
\(664\) −3696.00 −0.216013
\(665\) 0 0
\(666\) 0 0
\(667\) − 34020.0i − 1.97490i
\(668\) − 3936.00i − 0.227977i
\(669\) 0 0
\(670\) 0 0
\(671\) 30786.0 1.77121
\(672\) 0 0
\(673\) − 16882.0i − 0.966944i −0.875360 0.483472i \(-0.839376\pi\)
0.875360 0.483472i \(-0.160624\pi\)
\(674\) 13502.0 0.771628
\(675\) 0 0
\(676\) 9168.00 0.521620
\(677\) 20934.0i 1.18842i 0.804311 + 0.594209i \(0.202535\pi\)
−0.804311 + 0.594209i \(0.797465\pi\)
\(678\) 0 0
\(679\) −511.000 −0.0288813
\(680\) 0 0
\(681\) 0 0
\(682\) − 16212.0i − 0.910249i
\(683\) 8712.00i 0.488075i 0.969766 + 0.244038i \(0.0784720\pi\)
−0.969766 + 0.244038i \(0.921528\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1370.00 0.0762490
\(687\) 0 0
\(688\) 4208.00i 0.233181i
\(689\) 12864.0 0.711291
\(690\) 0 0
\(691\) −14128.0 −0.777792 −0.388896 0.921282i \(-0.627144\pi\)
−0.388896 + 0.921282i \(0.627144\pi\)
\(692\) 14472.0i 0.795004i
\(693\) 0 0
\(694\) −10452.0 −0.571689
\(695\) 0 0
\(696\) 0 0
\(697\) − 648.000i − 0.0352148i
\(698\) − 12380.0i − 0.671332i
\(699\) 0 0
\(700\) 0 0
\(701\) 28278.0 1.52360 0.761801 0.647811i \(-0.224315\pi\)
0.761801 + 0.647811i \(0.224315\pi\)
\(702\) 0 0
\(703\) 32890.0i 1.76454i
\(704\) 2688.00 0.143903
\(705\) 0 0
\(706\) −13236.0 −0.705586
\(707\) − 912.000i − 0.0485138i
\(708\) 0 0
\(709\) −8885.00 −0.470639 −0.235320 0.971918i \(-0.575614\pi\)
−0.235320 + 0.971918i \(0.575614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 1920.00i − 0.101060i
\(713\) − 31266.0i − 1.64225i
\(714\) 0 0
\(715\) 0 0
\(716\) 600.000 0.0313171
\(717\) 0 0
\(718\) 6840.00i 0.355524i
\(719\) −7530.00 −0.390572 −0.195286 0.980746i \(-0.562564\pi\)
−0.195286 + 0.980746i \(0.562564\pi\)
\(720\) 0 0
\(721\) −668.000 −0.0345043
\(722\) − 12732.0i − 0.656283i
\(723\) 0 0
\(724\) −788.000 −0.0404500
\(725\) 0 0
\(726\) 0 0
\(727\) 1801.00i 0.0918781i 0.998944 + 0.0459391i \(0.0146280\pi\)
−0.998944 + 0.0459391i \(0.985372\pi\)
\(728\) 536.000i 0.0272877i
\(729\) 0 0
\(730\) 0 0
\(731\) −14202.0 −0.718577
\(732\) 0 0
\(733\) − 7882.00i − 0.397174i −0.980083 0.198587i \(-0.936365\pi\)
0.980083 0.198587i \(-0.0636352\pi\)
\(734\) 1742.00 0.0876000
\(735\) 0 0
\(736\) 5184.00 0.259626
\(737\) 12558.0i 0.627652i
\(738\) 0 0
\(739\) −33860.0 −1.68547 −0.842734 0.538331i \(-0.819055\pi\)
−0.842734 + 0.538331i \(0.819055\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 384.000i 0.0189988i
\(743\) 20652.0i 1.01972i 0.860259 + 0.509858i \(0.170302\pi\)
−0.860259 + 0.509858i \(0.829698\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 12766.0 0.626537
\(747\) 0 0
\(748\) 9072.00i 0.443456i
\(749\) 1296.00 0.0632240
\(750\) 0 0
\(751\) 7472.00 0.363059 0.181529 0.983386i \(-0.441895\pi\)
0.181529 + 0.983386i \(0.441895\pi\)
\(752\) 6624.00i 0.321213i
\(753\) 0 0
\(754\) 28140.0 1.35915
\(755\) 0 0
\(756\) 0 0
\(757\) 32251.0i 1.54846i 0.632906 + 0.774229i \(0.281862\pi\)
−0.632906 + 0.774229i \(0.718138\pi\)
\(758\) − 19730.0i − 0.945417i
\(759\) 0 0
\(760\) 0 0
\(761\) −16812.0 −0.800834 −0.400417 0.916333i \(-0.631135\pi\)
−0.400417 + 0.916333i \(0.631135\pi\)
\(762\) 0 0
\(763\) 1735.00i 0.0823214i
\(764\) 5208.00 0.246622
\(765\) 0 0
\(766\) −19656.0 −0.927154
\(767\) − 46230.0i − 2.17636i
\(768\) 0 0
\(769\) 34645.0 1.62462 0.812309 0.583228i \(-0.198211\pi\)
0.812309 + 0.583228i \(0.198211\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 16652.0i − 0.776319i
\(773\) 8412.00i 0.391408i 0.980663 + 0.195704i \(0.0626992\pi\)
−0.980663 + 0.195704i \(0.937301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4088.00 −0.189112
\(777\) 0 0
\(778\) − 25080.0i − 1.15573i
\(779\) −1380.00 −0.0634706
\(780\) 0 0
\(781\) −9576.00 −0.438740
\(782\) 17496.0i 0.800071i
\(783\) 0 0
\(784\) 5472.00 0.249271
\(785\) 0 0
\(786\) 0 0
\(787\) − 18329.0i − 0.830188i −0.909778 0.415094i \(-0.863749\pi\)
0.909778 0.415094i \(-0.136251\pi\)
\(788\) − 12216.0i − 0.552255i
\(789\) 0 0
\(790\) 0 0
\(791\) −1092.00 −0.0490860
\(792\) 0 0
\(793\) 49111.0i 2.19922i
\(794\) 2762.00 0.123451
\(795\) 0 0
\(796\) 13700.0 0.610030
\(797\) 16044.0i 0.713059i 0.934284 + 0.356529i \(0.116040\pi\)
−0.934284 + 0.356529i \(0.883960\pi\)
\(798\) 0 0
\(799\) −22356.0 −0.989860
\(800\) 0 0
\(801\) 0 0
\(802\) 28464.0i 1.25324i
\(803\) − 39396.0i − 1.73133i
\(804\) 0 0
\(805\) 0 0
\(806\) 25862.0 1.13021
\(807\) 0 0
\(808\) − 7296.00i − 0.317664i
\(809\) −24000.0 −1.04301 −0.521505 0.853248i \(-0.674629\pi\)
−0.521505 + 0.853248i \(0.674629\pi\)
\(810\) 0 0
\(811\) 5117.00 0.221556 0.110778 0.993845i \(-0.464666\pi\)
0.110778 + 0.993845i \(0.464666\pi\)
\(812\) 840.000i 0.0363032i
\(813\) 0 0
\(814\) −24024.0 −1.03445
\(815\) 0 0
\(816\) 0 0
\(817\) 30245.0i 1.29515i
\(818\) 5290.00i 0.226113i
\(819\) 0 0
\(820\) 0 0
\(821\) −13542.0 −0.575663 −0.287831 0.957681i \(-0.592934\pi\)
−0.287831 + 0.957681i \(0.592934\pi\)
\(822\) 0 0
\(823\) 1283.00i 0.0543409i 0.999631 + 0.0271705i \(0.00864969\pi\)
−0.999631 + 0.0271705i \(0.991350\pi\)
\(824\) −5344.00 −0.225931
\(825\) 0 0
\(826\) 1380.00 0.0581312
\(827\) 16344.0i 0.687227i 0.939111 + 0.343613i \(0.111651\pi\)
−0.939111 + 0.343613i \(0.888349\pi\)
\(828\) 0 0
\(829\) 790.000 0.0330975 0.0165488 0.999863i \(-0.494732\pi\)
0.0165488 + 0.999863i \(0.494732\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4288.00i 0.178677i
\(833\) 18468.0i 0.768161i
\(834\) 0 0
\(835\) 0 0
\(836\) 19320.0 0.799278
\(837\) 0 0
\(838\) − 6000.00i − 0.247335i
\(839\) −9990.00 −0.411076 −0.205538 0.978649i \(-0.565894\pi\)
−0.205538 + 0.978649i \(0.565894\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 22676.0i 0.928108i
\(843\) 0 0
\(844\) 9772.00 0.398538
\(845\) 0 0
\(846\) 0 0
\(847\) 433.000i 0.0175656i
\(848\) 3072.00i 0.124402i
\(849\) 0 0
\(850\) 0 0
\(851\) −46332.0 −1.86632
\(852\) 0 0
\(853\) 24743.0i 0.993182i 0.867985 + 0.496591i \(0.165415\pi\)
−0.867985 + 0.496591i \(0.834585\pi\)
\(854\) −1466.00 −0.0587418
\(855\) 0 0
\(856\) 10368.0 0.413985
\(857\) − 23556.0i − 0.938924i −0.882953 0.469462i \(-0.844448\pi\)
0.882953 0.469462i \(-0.155552\pi\)
\(858\) 0 0
\(859\) 34000.0 1.35048 0.675242 0.737597i \(-0.264039\pi\)
0.675242 + 0.737597i \(0.264039\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 6516.00i − 0.257466i
\(863\) 37032.0i 1.46070i 0.683073 + 0.730350i \(0.260643\pi\)
−0.683073 + 0.730350i \(0.739357\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2326.00 0.0912710
\(867\) 0 0
\(868\) 772.000i 0.0301882i
\(869\) −6720.00 −0.262325
\(870\) 0 0
\(871\) −20033.0 −0.779325
\(872\) 13880.0i 0.539032i
\(873\) 0 0
\(874\) 37260.0 1.44203
\(875\) 0 0
\(876\) 0 0
\(877\) − 2519.00i − 0.0969904i −0.998823 0.0484952i \(-0.984557\pi\)
0.998823 0.0484952i \(-0.0154426\pi\)
\(878\) 13390.0i 0.514682i
\(879\) 0 0
\(880\) 0 0
\(881\) −43992.0 −1.68232 −0.841162 0.540783i \(-0.818128\pi\)
−0.841162 + 0.540783i \(0.818128\pi\)
\(882\) 0 0
\(883\) − 19177.0i − 0.730869i −0.930837 0.365435i \(-0.880920\pi\)
0.930837 0.365435i \(-0.119080\pi\)
\(884\) −14472.0 −0.550618
\(885\) 0 0
\(886\) −32736.0 −1.24130
\(887\) 44994.0i 1.70321i 0.524181 + 0.851607i \(0.324372\pi\)
−0.524181 + 0.851607i \(0.675628\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.000603625 0
\(890\) 0 0
\(891\) 0 0
\(892\) − 92.0000i − 0.00345335i
\(893\) 47610.0i 1.78411i
\(894\) 0 0
\(895\) 0 0
\(896\) −128.000 −0.00477252
\(897\) 0 0
\(898\) − 32760.0i − 1.21739i
\(899\) 40530.0 1.50362
\(900\) 0 0
\(901\) −10368.0 −0.383361
\(902\) − 1008.00i − 0.0372092i
\(903\) 0 0
\(904\) −8736.00 −0.321410
\(905\) 0 0
\(906\) 0 0
\(907\) 52396.0i 1.91817i 0.283117 + 0.959085i \(0.408631\pi\)
−0.283117 + 0.959085i \(0.591369\pi\)
\(908\) 7824.00i 0.285957i
\(909\) 0 0
\(910\) 0 0
\(911\) −7242.00 −0.263379 −0.131689 0.991291i \(-0.542040\pi\)
−0.131689 + 0.991291i \(0.542040\pi\)
\(912\) 0 0
\(913\) − 19404.0i − 0.703372i
\(914\) 27572.0 0.997813
\(915\) 0 0
\(916\) 7220.00 0.260432
\(917\) − 1992.00i − 0.0717357i
\(918\) 0 0
\(919\) −4085.00 −0.146629 −0.0733143 0.997309i \(-0.523358\pi\)
−0.0733143 + 0.997309i \(0.523358\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 23664.0i 0.845263i
\(923\) − 15276.0i − 0.544762i
\(924\) 0 0
\(925\) 0 0
\(926\) 6016.00 0.213497
\(927\) 0 0
\(928\) 6720.00i 0.237710i
\(929\) −3030.00 −0.107009 −0.0535043 0.998568i \(-0.517039\pi\)
−0.0535043 + 0.998568i \(0.517039\pi\)
\(930\) 0 0
\(931\) 39330.0 1.38452
\(932\) 13872.0i 0.487546i
\(933\) 0 0
\(934\) 8868.00 0.310674
\(935\) 0 0
\(936\) 0 0
\(937\) − 5759.00i − 0.200788i −0.994948 0.100394i \(-0.967990\pi\)
0.994948 0.100394i \(-0.0320103\pi\)
\(938\) − 598.000i − 0.0208160i
\(939\) 0 0
\(940\) 0 0
\(941\) 258.000 0.00893790 0.00446895 0.999990i \(-0.498577\pi\)
0.00446895 + 0.999990i \(0.498577\pi\)
\(942\) 0 0
\(943\) − 1944.00i − 0.0671319i
\(944\) 11040.0 0.380637
\(945\) 0 0
\(946\) −22092.0 −0.759274
\(947\) 1374.00i 0.0471478i 0.999722 + 0.0235739i \(0.00750451\pi\)
−0.999722 + 0.0235739i \(0.992495\pi\)
\(948\) 0 0
\(949\) 62846.0 2.14970
\(950\) 0 0
\(951\) 0 0
\(952\) − 432.000i − 0.0147071i
\(953\) − 9288.00i − 0.315706i −0.987463 0.157853i \(-0.949543\pi\)
0.987463 0.157853i \(-0.0504572\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10560.0 −0.357254
\(957\) 0 0
\(958\) − 14820.0i − 0.499804i
\(959\) 2346.00 0.0789951
\(960\) 0 0
\(961\) 7458.00 0.250344
\(962\) − 38324.0i − 1.28442i
\(963\) 0 0
\(964\) 21532.0 0.719397
\(965\) 0 0
\(966\) 0 0
\(967\) 21616.0i 0.718846i 0.933175 + 0.359423i \(0.117026\pi\)
−0.933175 + 0.359423i \(0.882974\pi\)
\(968\) 3464.00i 0.115018i
\(969\) 0 0
\(970\) 0 0
\(971\) 19098.0 0.631188 0.315594 0.948894i \(-0.397796\pi\)
0.315594 + 0.948894i \(0.397796\pi\)
\(972\) 0 0
\(973\) − 2900.00i − 0.0955496i
\(974\) 17342.0 0.570507
\(975\) 0 0
\(976\) −11728.0 −0.384635
\(977\) − 18246.0i − 0.597483i −0.954334 0.298742i \(-0.903433\pi\)
0.954334 0.298742i \(-0.0965669\pi\)
\(978\) 0 0
\(979\) 10080.0 0.329069
\(980\) 0 0
\(981\) 0 0
\(982\) − 38736.0i − 1.25877i
\(983\) 38772.0i 1.25802i 0.777397 + 0.629011i \(0.216540\pi\)
−0.777397 + 0.629011i \(0.783460\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −22680.0 −0.732534
\(987\) 0 0
\(988\) 30820.0i 0.992424i
\(989\) −42606.0 −1.36986
\(990\) 0 0
\(991\) −23053.0 −0.738953 −0.369477 0.929240i \(-0.620463\pi\)
−0.369477 + 0.929240i \(0.620463\pi\)
\(992\) 6176.00i 0.197670i
\(993\) 0 0
\(994\) 456.000 0.0145507
\(995\) 0 0
\(996\) 0 0
\(997\) 10366.0i 0.329282i 0.986354 + 0.164641i \(0.0526466\pi\)
−0.986354 + 0.164641i \(0.947353\pi\)
\(998\) − 17750.0i − 0.562992i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.c.a.199.1 2
3.2 odd 2 150.4.c.e.49.2 2
5.2 odd 4 450.4.a.o.1.1 1
5.3 odd 4 450.4.a.f.1.1 1
5.4 even 2 inner 450.4.c.a.199.2 2
12.11 even 2 1200.4.f.c.49.2 2
15.2 even 4 150.4.a.a.1.1 1
15.8 even 4 150.4.a.h.1.1 yes 1
15.14 odd 2 150.4.c.e.49.1 2
60.23 odd 4 1200.4.a.i.1.1 1
60.47 odd 4 1200.4.a.bb.1.1 1
60.59 even 2 1200.4.f.c.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.a.1.1 1 15.2 even 4
150.4.a.h.1.1 yes 1 15.8 even 4
150.4.c.e.49.1 2 15.14 odd 2
150.4.c.e.49.2 2 3.2 odd 2
450.4.a.f.1.1 1 5.3 odd 4
450.4.a.o.1.1 1 5.2 odd 4
450.4.c.a.199.1 2 1.1 even 1 trivial
450.4.c.a.199.2 2 5.4 even 2 inner
1200.4.a.i.1.1 1 60.23 odd 4
1200.4.a.bb.1.1 1 60.47 odd 4
1200.4.f.c.49.1 2 60.59 even 2
1200.4.f.c.49.2 2 12.11 even 2