Properties

Label 450.4.a.p.1.1
Level $450$
Weight $4$
Character 450.1
Self dual yes
Analytic conductor $26.551$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} +2.00000 q^{7} +8.00000 q^{8} +O(q^{10})\) \(q+2.00000 q^{2} +4.00000 q^{4} +2.00000 q^{7} +8.00000 q^{8} -70.0000 q^{11} -54.0000 q^{13} +4.00000 q^{14} +16.0000 q^{16} -22.0000 q^{17} +24.0000 q^{19} -140.000 q^{22} -100.000 q^{23} -108.000 q^{26} +8.00000 q^{28} -216.000 q^{29} +208.000 q^{31} +32.0000 q^{32} -44.0000 q^{34} +254.000 q^{37} +48.0000 q^{38} +206.000 q^{41} -292.000 q^{43} -280.000 q^{44} -200.000 q^{46} -320.000 q^{47} -339.000 q^{49} -216.000 q^{52} -402.000 q^{53} +16.0000 q^{56} -432.000 q^{58} +370.000 q^{59} -550.000 q^{61} +416.000 q^{62} +64.0000 q^{64} -728.000 q^{67} -88.0000 q^{68} +540.000 q^{71} -604.000 q^{73} +508.000 q^{74} +96.0000 q^{76} -140.000 q^{77} +792.000 q^{79} +412.000 q^{82} +404.000 q^{83} -584.000 q^{86} -560.000 q^{88} +938.000 q^{89} -108.000 q^{91} -400.000 q^{92} -640.000 q^{94} -56.0000 q^{97} -678.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −70.0000 −1.91871 −0.959354 0.282204i \(-0.908934\pi\)
−0.959354 + 0.282204i \(0.908934\pi\)
\(12\) 0 0
\(13\) −54.0000 −1.15207 −0.576035 0.817425i \(-0.695401\pi\)
−0.576035 + 0.817425i \(0.695401\pi\)
\(14\) 4.00000 0.0763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −22.0000 −0.313870 −0.156935 0.987609i \(-0.550161\pi\)
−0.156935 + 0.987609i \(0.550161\pi\)
\(18\) 0 0
\(19\) 24.0000 0.289788 0.144894 0.989447i \(-0.453716\pi\)
0.144894 + 0.989447i \(0.453716\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −140.000 −1.35673
\(23\) −100.000 −0.906584 −0.453292 0.891362i \(-0.649751\pi\)
−0.453292 + 0.891362i \(0.649751\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −108.000 −0.814636
\(27\) 0 0
\(28\) 8.00000 0.0539949
\(29\) −216.000 −1.38311 −0.691555 0.722324i \(-0.743074\pi\)
−0.691555 + 0.722324i \(0.743074\pi\)
\(30\) 0 0
\(31\) 208.000 1.20509 0.602547 0.798084i \(-0.294153\pi\)
0.602547 + 0.798084i \(0.294153\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −44.0000 −0.221939
\(35\) 0 0
\(36\) 0 0
\(37\) 254.000 1.12858 0.564288 0.825578i \(-0.309151\pi\)
0.564288 + 0.825578i \(0.309151\pi\)
\(38\) 48.0000 0.204911
\(39\) 0 0
\(40\) 0 0
\(41\) 206.000 0.784678 0.392339 0.919821i \(-0.371666\pi\)
0.392339 + 0.919821i \(0.371666\pi\)
\(42\) 0 0
\(43\) −292.000 −1.03557 −0.517786 0.855510i \(-0.673244\pi\)
−0.517786 + 0.855510i \(0.673244\pi\)
\(44\) −280.000 −0.959354
\(45\) 0 0
\(46\) −200.000 −0.641052
\(47\) −320.000 −0.993123 −0.496562 0.868001i \(-0.665404\pi\)
−0.496562 + 0.868001i \(0.665404\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 0 0
\(52\) −216.000 −0.576035
\(53\) −402.000 −1.04187 −0.520933 0.853597i \(-0.674416\pi\)
−0.520933 + 0.853597i \(0.674416\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 16.0000 0.0381802
\(57\) 0 0
\(58\) −432.000 −0.978007
\(59\) 370.000 0.816439 0.408219 0.912884i \(-0.366150\pi\)
0.408219 + 0.912884i \(0.366150\pi\)
\(60\) 0 0
\(61\) −550.000 −1.15443 −0.577215 0.816592i \(-0.695861\pi\)
−0.577215 + 0.816592i \(0.695861\pi\)
\(62\) 416.000 0.852130
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −728.000 −1.32745 −0.663727 0.747975i \(-0.731026\pi\)
−0.663727 + 0.747975i \(0.731026\pi\)
\(68\) −88.0000 −0.156935
\(69\) 0 0
\(70\) 0 0
\(71\) 540.000 0.902623 0.451311 0.892367i \(-0.350956\pi\)
0.451311 + 0.892367i \(0.350956\pi\)
\(72\) 0 0
\(73\) −604.000 −0.968395 −0.484198 0.874959i \(-0.660888\pi\)
−0.484198 + 0.874959i \(0.660888\pi\)
\(74\) 508.000 0.798024
\(75\) 0 0
\(76\) 96.0000 0.144894
\(77\) −140.000 −0.207201
\(78\) 0 0
\(79\) 792.000 1.12794 0.563968 0.825797i \(-0.309274\pi\)
0.563968 + 0.825797i \(0.309274\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 412.000 0.554851
\(83\) 404.000 0.534274 0.267137 0.963659i \(-0.413922\pi\)
0.267137 + 0.963659i \(0.413922\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −584.000 −0.732260
\(87\) 0 0
\(88\) −560.000 −0.678366
\(89\) 938.000 1.11717 0.558583 0.829449i \(-0.311345\pi\)
0.558583 + 0.829449i \(0.311345\pi\)
\(90\) 0 0
\(91\) −108.000 −0.124412
\(92\) −400.000 −0.453292
\(93\) 0 0
\(94\) −640.000 −0.702244
\(95\) 0 0
\(96\) 0 0
\(97\) −56.0000 −0.0586179 −0.0293090 0.999570i \(-0.509331\pi\)
−0.0293090 + 0.999570i \(0.509331\pi\)
\(98\) −678.000 −0.698861
\(99\) 0 0
\(100\) 0 0
\(101\) 592.000 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(102\) 0 0
\(103\) −62.0000 −0.0593111 −0.0296555 0.999560i \(-0.509441\pi\)
−0.0296555 + 0.999560i \(0.509441\pi\)
\(104\) −432.000 −0.407318
\(105\) 0 0
\(106\) −804.000 −0.736711
\(107\) 84.0000 0.0758933 0.0379467 0.999280i \(-0.487918\pi\)
0.0379467 + 0.999280i \(0.487918\pi\)
\(108\) 0 0
\(109\) 370.000 0.325134 0.162567 0.986698i \(-0.448023\pi\)
0.162567 + 0.986698i \(0.448023\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 32.0000 0.0269975
\(113\) −1746.00 −1.45354 −0.726769 0.686882i \(-0.758979\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −864.000 −0.691555
\(117\) 0 0
\(118\) 740.000 0.577310
\(119\) −44.0000 −0.0338947
\(120\) 0 0
\(121\) 3569.00 2.68144
\(122\) −1100.00 −0.816306
\(123\) 0 0
\(124\) 832.000 0.602547
\(125\) 0 0
\(126\) 0 0
\(127\) −1630.00 −1.13889 −0.569445 0.822029i \(-0.692842\pi\)
−0.569445 + 0.822029i \(0.692842\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 870.000 0.580246 0.290123 0.956989i \(-0.406304\pi\)
0.290123 + 0.956989i \(0.406304\pi\)
\(132\) 0 0
\(133\) 48.0000 0.0312942
\(134\) −1456.00 −0.938651
\(135\) 0 0
\(136\) −176.000 −0.110970
\(137\) 918.000 0.572482 0.286241 0.958158i \(-0.407594\pi\)
0.286241 + 0.958158i \(0.407594\pi\)
\(138\) 0 0
\(139\) −596.000 −0.363684 −0.181842 0.983328i \(-0.558206\pi\)
−0.181842 + 0.983328i \(0.558206\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1080.00 0.638251
\(143\) 3780.00 2.21049
\(144\) 0 0
\(145\) 0 0
\(146\) −1208.00 −0.684759
\(147\) 0 0
\(148\) 1016.00 0.564288
\(149\) −1076.00 −0.591606 −0.295803 0.955249i \(-0.595587\pi\)
−0.295803 + 0.955249i \(0.595587\pi\)
\(150\) 0 0
\(151\) −32.0000 −0.0172458 −0.00862292 0.999963i \(-0.502745\pi\)
−0.00862292 + 0.999963i \(0.502745\pi\)
\(152\) 192.000 0.102456
\(153\) 0 0
\(154\) −280.000 −0.146513
\(155\) 0 0
\(156\) 0 0
\(157\) 2554.00 1.29829 0.649145 0.760665i \(-0.275127\pi\)
0.649145 + 0.760665i \(0.275127\pi\)
\(158\) 1584.00 0.797571
\(159\) 0 0
\(160\) 0 0
\(161\) −200.000 −0.0979019
\(162\) 0 0
\(163\) −752.000 −0.361357 −0.180678 0.983542i \(-0.557829\pi\)
−0.180678 + 0.983542i \(0.557829\pi\)
\(164\) 824.000 0.392339
\(165\) 0 0
\(166\) 808.000 0.377789
\(167\) 2700.00 1.25109 0.625546 0.780188i \(-0.284876\pi\)
0.625546 + 0.780188i \(0.284876\pi\)
\(168\) 0 0
\(169\) 719.000 0.327264
\(170\) 0 0
\(171\) 0 0
\(172\) −1168.00 −0.517786
\(173\) −1334.00 −0.586255 −0.293128 0.956073i \(-0.594696\pi\)
−0.293128 + 0.956073i \(0.594696\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1120.00 −0.479677
\(177\) 0 0
\(178\) 1876.00 0.789956
\(179\) 1714.00 0.715700 0.357850 0.933779i \(-0.383510\pi\)
0.357850 + 0.933779i \(0.383510\pi\)
\(180\) 0 0
\(181\) −4006.00 −1.64510 −0.822551 0.568691i \(-0.807450\pi\)
−0.822551 + 0.568691i \(0.807450\pi\)
\(182\) −216.000 −0.0879724
\(183\) 0 0
\(184\) −800.000 −0.320526
\(185\) 0 0
\(186\) 0 0
\(187\) 1540.00 0.602224
\(188\) −1280.00 −0.496562
\(189\) 0 0
\(190\) 0 0
\(191\) 684.000 0.259123 0.129562 0.991571i \(-0.458643\pi\)
0.129562 + 0.991571i \(0.458643\pi\)
\(192\) 0 0
\(193\) 4484.00 1.67236 0.836180 0.548455i \(-0.184784\pi\)
0.836180 + 0.548455i \(0.184784\pi\)
\(194\) −112.000 −0.0414491
\(195\) 0 0
\(196\) −1356.00 −0.494169
\(197\) −1058.00 −0.382636 −0.191318 0.981528i \(-0.561276\pi\)
−0.191318 + 0.981528i \(0.561276\pi\)
\(198\) 0 0
\(199\) −1128.00 −0.401818 −0.200909 0.979610i \(-0.564390\pi\)
−0.200909 + 0.979610i \(0.564390\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1184.00 0.412406
\(203\) −432.000 −0.149362
\(204\) 0 0
\(205\) 0 0
\(206\) −124.000 −0.0419393
\(207\) 0 0
\(208\) −864.000 −0.288017
\(209\) −1680.00 −0.556019
\(210\) 0 0
\(211\) 780.000 0.254490 0.127245 0.991871i \(-0.459387\pi\)
0.127245 + 0.991871i \(0.459387\pi\)
\(212\) −1608.00 −0.520933
\(213\) 0 0
\(214\) 168.000 0.0536647
\(215\) 0 0
\(216\) 0 0
\(217\) 416.000 0.130138
\(218\) 740.000 0.229904
\(219\) 0 0
\(220\) 0 0
\(221\) 1188.00 0.361600
\(222\) 0 0
\(223\) 2570.00 0.771749 0.385874 0.922551i \(-0.373900\pi\)
0.385874 + 0.922551i \(0.373900\pi\)
\(224\) 64.0000 0.0190901
\(225\) 0 0
\(226\) −3492.00 −1.02781
\(227\) −2836.00 −0.829216 −0.414608 0.910000i \(-0.636081\pi\)
−0.414608 + 0.910000i \(0.636081\pi\)
\(228\) 0 0
\(229\) −610.000 −0.176026 −0.0880130 0.996119i \(-0.528052\pi\)
−0.0880130 + 0.996119i \(0.528052\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1728.00 −0.489003
\(233\) 3514.00 0.988025 0.494012 0.869455i \(-0.335530\pi\)
0.494012 + 0.869455i \(0.335530\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1480.00 0.408219
\(237\) 0 0
\(238\) −88.0000 −0.0239672
\(239\) 1844.00 0.499073 0.249536 0.968365i \(-0.419722\pi\)
0.249536 + 0.968365i \(0.419722\pi\)
\(240\) 0 0
\(241\) 982.000 0.262474 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(242\) 7138.00 1.89607
\(243\) 0 0
\(244\) −2200.00 −0.577215
\(245\) 0 0
\(246\) 0 0
\(247\) −1296.00 −0.333856
\(248\) 1664.00 0.426065
\(249\) 0 0
\(250\) 0 0
\(251\) 3174.00 0.798172 0.399086 0.916914i \(-0.369328\pi\)
0.399086 + 0.916914i \(0.369328\pi\)
\(252\) 0 0
\(253\) 7000.00 1.73947
\(254\) −3260.00 −0.805317
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1194.00 −0.289804 −0.144902 0.989446i \(-0.546287\pi\)
−0.144902 + 0.989446i \(0.546287\pi\)
\(258\) 0 0
\(259\) 508.000 0.121875
\(260\) 0 0
\(261\) 0 0
\(262\) 1740.00 0.410296
\(263\) 140.000 0.0328242 0.0164121 0.999865i \(-0.494776\pi\)
0.0164121 + 0.999865i \(0.494776\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 96.0000 0.0221283
\(267\) 0 0
\(268\) −2912.00 −0.663727
\(269\) −5256.00 −1.19132 −0.595658 0.803238i \(-0.703109\pi\)
−0.595658 + 0.803238i \(0.703109\pi\)
\(270\) 0 0
\(271\) 544.000 0.121940 0.0609698 0.998140i \(-0.480581\pi\)
0.0609698 + 0.998140i \(0.480581\pi\)
\(272\) −352.000 −0.0784674
\(273\) 0 0
\(274\) 1836.00 0.404806
\(275\) 0 0
\(276\) 0 0
\(277\) −946.000 −0.205197 −0.102599 0.994723i \(-0.532716\pi\)
−0.102599 + 0.994723i \(0.532716\pi\)
\(278\) −1192.00 −0.257163
\(279\) 0 0
\(280\) 0 0
\(281\) −1278.00 −0.271313 −0.135657 0.990756i \(-0.543314\pi\)
−0.135657 + 0.990756i \(0.543314\pi\)
\(282\) 0 0
\(283\) −7424.00 −1.55940 −0.779701 0.626152i \(-0.784629\pi\)
−0.779701 + 0.626152i \(0.784629\pi\)
\(284\) 2160.00 0.451311
\(285\) 0 0
\(286\) 7560.00 1.56305
\(287\) 412.000 0.0847373
\(288\) 0 0
\(289\) −4429.00 −0.901486
\(290\) 0 0
\(291\) 0 0
\(292\) −2416.00 −0.484198
\(293\) −1362.00 −0.271566 −0.135783 0.990739i \(-0.543355\pi\)
−0.135783 + 0.990739i \(0.543355\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2032.00 0.399012
\(297\) 0 0
\(298\) −2152.00 −0.418329
\(299\) 5400.00 1.04445
\(300\) 0 0
\(301\) −584.000 −0.111831
\(302\) −64.0000 −0.0121947
\(303\) 0 0
\(304\) 384.000 0.0724471
\(305\) 0 0
\(306\) 0 0
\(307\) 7740.00 1.43891 0.719455 0.694539i \(-0.244392\pi\)
0.719455 + 0.694539i \(0.244392\pi\)
\(308\) −560.000 −0.103601
\(309\) 0 0
\(310\) 0 0
\(311\) −4980.00 −0.908006 −0.454003 0.891000i \(-0.650004\pi\)
−0.454003 + 0.891000i \(0.650004\pi\)
\(312\) 0 0
\(313\) −604.000 −0.109074 −0.0545369 0.998512i \(-0.517368\pi\)
−0.0545369 + 0.998512i \(0.517368\pi\)
\(314\) 5108.00 0.918029
\(315\) 0 0
\(316\) 3168.00 0.563968
\(317\) −8566.00 −1.51771 −0.758856 0.651259i \(-0.774241\pi\)
−0.758856 + 0.651259i \(0.774241\pi\)
\(318\) 0 0
\(319\) 15120.0 2.65379
\(320\) 0 0
\(321\) 0 0
\(322\) −400.000 −0.0692271
\(323\) −528.000 −0.0909557
\(324\) 0 0
\(325\) 0 0
\(326\) −1504.00 −0.255518
\(327\) 0 0
\(328\) 1648.00 0.277426
\(329\) −640.000 −0.107247
\(330\) 0 0
\(331\) 3472.00 0.576551 0.288275 0.957548i \(-0.406918\pi\)
0.288275 + 0.957548i \(0.406918\pi\)
\(332\) 1616.00 0.267137
\(333\) 0 0
\(334\) 5400.00 0.884655
\(335\) 0 0
\(336\) 0 0
\(337\) −5668.00 −0.916189 −0.458094 0.888904i \(-0.651468\pi\)
−0.458094 + 0.888904i \(0.651468\pi\)
\(338\) 1438.00 0.231411
\(339\) 0 0
\(340\) 0 0
\(341\) −14560.0 −2.31222
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) −2336.00 −0.366130
\(345\) 0 0
\(346\) −2668.00 −0.414545
\(347\) 10836.0 1.67639 0.838194 0.545371i \(-0.183611\pi\)
0.838194 + 0.545371i \(0.183611\pi\)
\(348\) 0 0
\(349\) −8990.00 −1.37886 −0.689432 0.724350i \(-0.742140\pi\)
−0.689432 + 0.724350i \(0.742140\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2240.00 −0.339183
\(353\) −5078.00 −0.765651 −0.382825 0.923821i \(-0.625049\pi\)
−0.382825 + 0.923821i \(0.625049\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3752.00 0.558583
\(357\) 0 0
\(358\) 3428.00 0.506077
\(359\) 3696.00 0.543363 0.271682 0.962387i \(-0.412420\pi\)
0.271682 + 0.962387i \(0.412420\pi\)
\(360\) 0 0
\(361\) −6283.00 −0.916023
\(362\) −8012.00 −1.16326
\(363\) 0 0
\(364\) −432.000 −0.0622059
\(365\) 0 0
\(366\) 0 0
\(367\) −286.000 −0.0406787 −0.0203393 0.999793i \(-0.506475\pi\)
−0.0203393 + 0.999793i \(0.506475\pi\)
\(368\) −1600.00 −0.226646
\(369\) 0 0
\(370\) 0 0
\(371\) −804.000 −0.112511
\(372\) 0 0
\(373\) −8262.00 −1.14689 −0.573445 0.819244i \(-0.694393\pi\)
−0.573445 + 0.819244i \(0.694393\pi\)
\(374\) 3080.00 0.425837
\(375\) 0 0
\(376\) −2560.00 −0.351122
\(377\) 11664.0 1.59344
\(378\) 0 0
\(379\) −2956.00 −0.400632 −0.200316 0.979731i \(-0.564197\pi\)
−0.200316 + 0.979731i \(0.564197\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1368.00 0.183228
\(383\) −5240.00 −0.699090 −0.349545 0.936920i \(-0.613664\pi\)
−0.349545 + 0.936920i \(0.613664\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8968.00 1.18254
\(387\) 0 0
\(388\) −224.000 −0.0293090
\(389\) 884.000 0.115220 0.0576100 0.998339i \(-0.481652\pi\)
0.0576100 + 0.998339i \(0.481652\pi\)
\(390\) 0 0
\(391\) 2200.00 0.284549
\(392\) −2712.00 −0.349430
\(393\) 0 0
\(394\) −2116.00 −0.270565
\(395\) 0 0
\(396\) 0 0
\(397\) −3394.00 −0.429068 −0.214534 0.976717i \(-0.568823\pi\)
−0.214534 + 0.976717i \(0.568823\pi\)
\(398\) −2256.00 −0.284128
\(399\) 0 0
\(400\) 0 0
\(401\) 6826.00 0.850060 0.425030 0.905179i \(-0.360263\pi\)
0.425030 + 0.905179i \(0.360263\pi\)
\(402\) 0 0
\(403\) −11232.0 −1.38835
\(404\) 2368.00 0.291615
\(405\) 0 0
\(406\) −864.000 −0.105615
\(407\) −17780.0 −2.16541
\(408\) 0 0
\(409\) 7814.00 0.944688 0.472344 0.881414i \(-0.343408\pi\)
0.472344 + 0.881414i \(0.343408\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −248.000 −0.0296555
\(413\) 740.000 0.0881671
\(414\) 0 0
\(415\) 0 0
\(416\) −1728.00 −0.203659
\(417\) 0 0
\(418\) −3360.00 −0.393165
\(419\) −8290.00 −0.966570 −0.483285 0.875463i \(-0.660557\pi\)
−0.483285 + 0.875463i \(0.660557\pi\)
\(420\) 0 0
\(421\) 2110.00 0.244264 0.122132 0.992514i \(-0.461027\pi\)
0.122132 + 0.992514i \(0.461027\pi\)
\(422\) 1560.00 0.179952
\(423\) 0 0
\(424\) −3216.00 −0.368356
\(425\) 0 0
\(426\) 0 0
\(427\) −1100.00 −0.124667
\(428\) 336.000 0.0379467
\(429\) 0 0
\(430\) 0 0
\(431\) 12080.0 1.35005 0.675027 0.737793i \(-0.264132\pi\)
0.675027 + 0.737793i \(0.264132\pi\)
\(432\) 0 0
\(433\) −16492.0 −1.83038 −0.915190 0.403022i \(-0.867960\pi\)
−0.915190 + 0.403022i \(0.867960\pi\)
\(434\) 832.000 0.0920214
\(435\) 0 0
\(436\) 1480.00 0.162567
\(437\) −2400.00 −0.262718
\(438\) 0 0
\(439\) −15048.0 −1.63600 −0.817998 0.575222i \(-0.804916\pi\)
−0.817998 + 0.575222i \(0.804916\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2376.00 0.255690
\(443\) −9876.00 −1.05919 −0.529597 0.848249i \(-0.677657\pi\)
−0.529597 + 0.848249i \(0.677657\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5140.00 0.545709
\(447\) 0 0
\(448\) 128.000 0.0134987
\(449\) −17166.0 −1.80426 −0.902131 0.431462i \(-0.857998\pi\)
−0.902131 + 0.431462i \(0.857998\pi\)
\(450\) 0 0
\(451\) −14420.0 −1.50557
\(452\) −6984.00 −0.726769
\(453\) 0 0
\(454\) −5672.00 −0.586344
\(455\) 0 0
\(456\) 0 0
\(457\) −14848.0 −1.51983 −0.759913 0.650025i \(-0.774758\pi\)
−0.759913 + 0.650025i \(0.774758\pi\)
\(458\) −1220.00 −0.124469
\(459\) 0 0
\(460\) 0 0
\(461\) 1260.00 0.127297 0.0636486 0.997972i \(-0.479726\pi\)
0.0636486 + 0.997972i \(0.479726\pi\)
\(462\) 0 0
\(463\) 11238.0 1.12802 0.564011 0.825767i \(-0.309258\pi\)
0.564011 + 0.825767i \(0.309258\pi\)
\(464\) −3456.00 −0.345778
\(465\) 0 0
\(466\) 7028.00 0.698639
\(467\) 14772.0 1.46374 0.731870 0.681444i \(-0.238648\pi\)
0.731870 + 0.681444i \(0.238648\pi\)
\(468\) 0 0
\(469\) −1456.00 −0.143351
\(470\) 0 0
\(471\) 0 0
\(472\) 2960.00 0.288655
\(473\) 20440.0 1.98696
\(474\) 0 0
\(475\) 0 0
\(476\) −176.000 −0.0169474
\(477\) 0 0
\(478\) 3688.00 0.352898
\(479\) 6116.00 0.583397 0.291699 0.956510i \(-0.405780\pi\)
0.291699 + 0.956510i \(0.405780\pi\)
\(480\) 0 0
\(481\) −13716.0 −1.30020
\(482\) 1964.00 0.185597
\(483\) 0 0
\(484\) 14276.0 1.34072
\(485\) 0 0
\(486\) 0 0
\(487\) −15906.0 −1.48002 −0.740010 0.672596i \(-0.765179\pi\)
−0.740010 + 0.672596i \(0.765179\pi\)
\(488\) −4400.00 −0.408153
\(489\) 0 0
\(490\) 0 0
\(491\) −18714.0 −1.72006 −0.860032 0.510241i \(-0.829556\pi\)
−0.860032 + 0.510241i \(0.829556\pi\)
\(492\) 0 0
\(493\) 4752.00 0.434116
\(494\) −2592.00 −0.236072
\(495\) 0 0
\(496\) 3328.00 0.301273
\(497\) 1080.00 0.0974741
\(498\) 0 0
\(499\) −4056.00 −0.363871 −0.181935 0.983310i \(-0.558236\pi\)
−0.181935 + 0.983310i \(0.558236\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6348.00 0.564393
\(503\) 6288.00 0.557392 0.278696 0.960379i \(-0.410098\pi\)
0.278696 + 0.960379i \(0.410098\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 14000.0 1.22999
\(507\) 0 0
\(508\) −6520.00 −0.569445
\(509\) −2856.00 −0.248703 −0.124352 0.992238i \(-0.539685\pi\)
−0.124352 + 0.992238i \(0.539685\pi\)
\(510\) 0 0
\(511\) −1208.00 −0.104577
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −2388.00 −0.204922
\(515\) 0 0
\(516\) 0 0
\(517\) 22400.0 1.90551
\(518\) 1016.00 0.0861785
\(519\) 0 0
\(520\) 0 0
\(521\) −17078.0 −1.43609 −0.718043 0.695999i \(-0.754962\pi\)
−0.718043 + 0.695999i \(0.754962\pi\)
\(522\) 0 0
\(523\) 8560.00 0.715684 0.357842 0.933782i \(-0.383513\pi\)
0.357842 + 0.933782i \(0.383513\pi\)
\(524\) 3480.00 0.290123
\(525\) 0 0
\(526\) 280.000 0.0232102
\(527\) −4576.00 −0.378242
\(528\) 0 0
\(529\) −2167.00 −0.178105
\(530\) 0 0
\(531\) 0 0
\(532\) 192.000 0.0156471
\(533\) −11124.0 −0.904004
\(534\) 0 0
\(535\) 0 0
\(536\) −5824.00 −0.469326
\(537\) 0 0
\(538\) −10512.0 −0.842388
\(539\) 23730.0 1.89633
\(540\) 0 0
\(541\) 15970.0 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(542\) 1088.00 0.0862244
\(543\) 0 0
\(544\) −704.000 −0.0554848
\(545\) 0 0
\(546\) 0 0
\(547\) 15524.0 1.21345 0.606726 0.794911i \(-0.292482\pi\)
0.606726 + 0.794911i \(0.292482\pi\)
\(548\) 3672.00 0.286241
\(549\) 0 0
\(550\) 0 0
\(551\) −5184.00 −0.400809
\(552\) 0 0
\(553\) 1584.00 0.121806
\(554\) −1892.00 −0.145096
\(555\) 0 0
\(556\) −2384.00 −0.181842
\(557\) 6774.00 0.515303 0.257651 0.966238i \(-0.417051\pi\)
0.257651 + 0.966238i \(0.417051\pi\)
\(558\) 0 0
\(559\) 15768.0 1.19305
\(560\) 0 0
\(561\) 0 0
\(562\) −2556.00 −0.191848
\(563\) −10484.0 −0.784810 −0.392405 0.919793i \(-0.628357\pi\)
−0.392405 + 0.919793i \(0.628357\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −14848.0 −1.10266
\(567\) 0 0
\(568\) 4320.00 0.319125
\(569\) −23302.0 −1.71682 −0.858410 0.512964i \(-0.828547\pi\)
−0.858410 + 0.512964i \(0.828547\pi\)
\(570\) 0 0
\(571\) 21520.0 1.57720 0.788602 0.614903i \(-0.210805\pi\)
0.788602 + 0.614903i \(0.210805\pi\)
\(572\) 15120.0 1.10524
\(573\) 0 0
\(574\) 824.000 0.0599183
\(575\) 0 0
\(576\) 0 0
\(577\) −3856.00 −0.278210 −0.139105 0.990278i \(-0.544423\pi\)
−0.139105 + 0.990278i \(0.544423\pi\)
\(578\) −8858.00 −0.637447
\(579\) 0 0
\(580\) 0 0
\(581\) 808.000 0.0576962
\(582\) 0 0
\(583\) 28140.0 1.99904
\(584\) −4832.00 −0.342379
\(585\) 0 0
\(586\) −2724.00 −0.192026
\(587\) −26796.0 −1.88414 −0.942069 0.335418i \(-0.891122\pi\)
−0.942069 + 0.335418i \(0.891122\pi\)
\(588\) 0 0
\(589\) 4992.00 0.349222
\(590\) 0 0
\(591\) 0 0
\(592\) 4064.00 0.282144
\(593\) 9870.00 0.683495 0.341747 0.939792i \(-0.388981\pi\)
0.341747 + 0.939792i \(0.388981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4304.00 −0.295803
\(597\) 0 0
\(598\) 10800.0 0.738537
\(599\) 13296.0 0.906945 0.453472 0.891270i \(-0.350185\pi\)
0.453472 + 0.891270i \(0.350185\pi\)
\(600\) 0 0
\(601\) −9262.00 −0.628627 −0.314314 0.949319i \(-0.601774\pi\)
−0.314314 + 0.949319i \(0.601774\pi\)
\(602\) −1168.00 −0.0790766
\(603\) 0 0
\(604\) −128.000 −0.00862292
\(605\) 0 0
\(606\) 0 0
\(607\) −5498.00 −0.367639 −0.183820 0.982960i \(-0.558846\pi\)
−0.183820 + 0.982960i \(0.558846\pi\)
\(608\) 768.000 0.0512278
\(609\) 0 0
\(610\) 0 0
\(611\) 17280.0 1.14415
\(612\) 0 0
\(613\) −394.000 −0.0259600 −0.0129800 0.999916i \(-0.504132\pi\)
−0.0129800 + 0.999916i \(0.504132\pi\)
\(614\) 15480.0 1.01746
\(615\) 0 0
\(616\) −1120.00 −0.0732566
\(617\) 7370.00 0.480883 0.240442 0.970664i \(-0.422708\pi\)
0.240442 + 0.970664i \(0.422708\pi\)
\(618\) 0 0
\(619\) 25316.0 1.64384 0.821919 0.569604i \(-0.192903\pi\)
0.821919 + 0.569604i \(0.192903\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9960.00 −0.642057
\(623\) 1876.00 0.120643
\(624\) 0 0
\(625\) 0 0
\(626\) −1208.00 −0.0771268
\(627\) 0 0
\(628\) 10216.0 0.649145
\(629\) −5588.00 −0.354226
\(630\) 0 0
\(631\) 2552.00 0.161004 0.0805020 0.996754i \(-0.474348\pi\)
0.0805020 + 0.996754i \(0.474348\pi\)
\(632\) 6336.00 0.398786
\(633\) 0 0
\(634\) −17132.0 −1.07318
\(635\) 0 0
\(636\) 0 0
\(637\) 18306.0 1.13863
\(638\) 30240.0 1.87651
\(639\) 0 0
\(640\) 0 0
\(641\) −8050.00 −0.496031 −0.248016 0.968756i \(-0.579778\pi\)
−0.248016 + 0.968756i \(0.579778\pi\)
\(642\) 0 0
\(643\) 19368.0 1.18787 0.593934 0.804514i \(-0.297574\pi\)
0.593934 + 0.804514i \(0.297574\pi\)
\(644\) −800.000 −0.0489510
\(645\) 0 0
\(646\) −1056.00 −0.0643154
\(647\) 9912.00 0.602289 0.301144 0.953579i \(-0.402631\pi\)
0.301144 + 0.953579i \(0.402631\pi\)
\(648\) 0 0
\(649\) −25900.0 −1.56651
\(650\) 0 0
\(651\) 0 0
\(652\) −3008.00 −0.180678
\(653\) 27986.0 1.67715 0.838573 0.544789i \(-0.183390\pi\)
0.838573 + 0.544789i \(0.183390\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3296.00 0.196169
\(657\) 0 0
\(658\) −1280.00 −0.0758353
\(659\) −7562.00 −0.447001 −0.223501 0.974704i \(-0.571748\pi\)
−0.223501 + 0.974704i \(0.571748\pi\)
\(660\) 0 0
\(661\) 20234.0 1.19064 0.595319 0.803490i \(-0.297026\pi\)
0.595319 + 0.803490i \(0.297026\pi\)
\(662\) 6944.00 0.407683
\(663\) 0 0
\(664\) 3232.00 0.188894
\(665\) 0 0
\(666\) 0 0
\(667\) 21600.0 1.25391
\(668\) 10800.0 0.625546
\(669\) 0 0
\(670\) 0 0
\(671\) 38500.0 2.21502
\(672\) 0 0
\(673\) −25332.0 −1.45093 −0.725466 0.688258i \(-0.758376\pi\)
−0.725466 + 0.688258i \(0.758376\pi\)
\(674\) −11336.0 −0.647843
\(675\) 0 0
\(676\) 2876.00 0.163632
\(677\) −18358.0 −1.04218 −0.521090 0.853502i \(-0.674474\pi\)
−0.521090 + 0.853502i \(0.674474\pi\)
\(678\) 0 0
\(679\) −112.000 −0.00633014
\(680\) 0 0
\(681\) 0 0
\(682\) −29120.0 −1.63499
\(683\) −124.000 −0.00694689 −0.00347345 0.999994i \(-0.501106\pi\)
−0.00347345 + 0.999994i \(0.501106\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2728.00 −0.151830
\(687\) 0 0
\(688\) −4672.00 −0.258893
\(689\) 21708.0 1.20030
\(690\) 0 0
\(691\) −17456.0 −0.961009 −0.480505 0.876992i \(-0.659547\pi\)
−0.480505 + 0.876992i \(0.659547\pi\)
\(692\) −5336.00 −0.293128
\(693\) 0 0
\(694\) 21672.0 1.18539
\(695\) 0 0
\(696\) 0 0
\(697\) −4532.00 −0.246287
\(698\) −17980.0 −0.975004
\(699\) 0 0
\(700\) 0 0
\(701\) 17816.0 0.959916 0.479958 0.877291i \(-0.340652\pi\)
0.479958 + 0.877291i \(0.340652\pi\)
\(702\) 0 0
\(703\) 6096.00 0.327048
\(704\) −4480.00 −0.239839
\(705\) 0 0
\(706\) −10156.0 −0.541397
\(707\) 1184.00 0.0629829
\(708\) 0 0
\(709\) −14298.0 −0.757366 −0.378683 0.925526i \(-0.623623\pi\)
−0.378683 + 0.925526i \(0.623623\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7504.00 0.394978
\(713\) −20800.0 −1.09252
\(714\) 0 0
\(715\) 0 0
\(716\) 6856.00 0.357850
\(717\) 0 0
\(718\) 7392.00 0.384216
\(719\) 18440.0 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(720\) 0 0
\(721\) −124.000 −0.00640499
\(722\) −12566.0 −0.647726
\(723\) 0 0
\(724\) −16024.0 −0.822551
\(725\) 0 0
\(726\) 0 0
\(727\) −9666.00 −0.493112 −0.246556 0.969129i \(-0.579299\pi\)
−0.246556 + 0.969129i \(0.579299\pi\)
\(728\) −864.000 −0.0439862
\(729\) 0 0
\(730\) 0 0
\(731\) 6424.00 0.325035
\(732\) 0 0
\(733\) 6094.00 0.307076 0.153538 0.988143i \(-0.450933\pi\)
0.153538 + 0.988143i \(0.450933\pi\)
\(734\) −572.000 −0.0287642
\(735\) 0 0
\(736\) −3200.00 −0.160263
\(737\) 50960.0 2.54700
\(738\) 0 0
\(739\) 9952.00 0.495386 0.247693 0.968839i \(-0.420328\pi\)
0.247693 + 0.968839i \(0.420328\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1608.00 −0.0795573
\(743\) −2208.00 −0.109022 −0.0545112 0.998513i \(-0.517360\pi\)
−0.0545112 + 0.998513i \(0.517360\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −16524.0 −0.810974
\(747\) 0 0
\(748\) 6160.00 0.301112
\(749\) 168.000 0.00819571
\(750\) 0 0
\(751\) −9400.00 −0.456739 −0.228369 0.973575i \(-0.573339\pi\)
−0.228369 + 0.973575i \(0.573339\pi\)
\(752\) −5120.00 −0.248281
\(753\) 0 0
\(754\) 23328.0 1.12673
\(755\) 0 0
\(756\) 0 0
\(757\) 22574.0 1.08384 0.541919 0.840430i \(-0.317698\pi\)
0.541919 + 0.840430i \(0.317698\pi\)
\(758\) −5912.00 −0.283290
\(759\) 0 0
\(760\) 0 0
\(761\) −7278.00 −0.346685 −0.173343 0.984862i \(-0.555457\pi\)
−0.173343 + 0.984862i \(0.555457\pi\)
\(762\) 0 0
\(763\) 740.000 0.0351111
\(764\) 2736.00 0.129562
\(765\) 0 0
\(766\) −10480.0 −0.494331
\(767\) −19980.0 −0.940595
\(768\) 0 0
\(769\) −16542.0 −0.775708 −0.387854 0.921721i \(-0.626784\pi\)
−0.387854 + 0.921721i \(0.626784\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17936.0 0.836180
\(773\) −28926.0 −1.34592 −0.672960 0.739679i \(-0.734977\pi\)
−0.672960 + 0.739679i \(0.734977\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −448.000 −0.0207246
\(777\) 0 0
\(778\) 1768.00 0.0814728
\(779\) 4944.00 0.227390
\(780\) 0 0
\(781\) −37800.0 −1.73187
\(782\) 4400.00 0.201207
\(783\) 0 0
\(784\) −5424.00 −0.247085
\(785\) 0 0
\(786\) 0 0
\(787\) −20608.0 −0.933413 −0.466706 0.884412i \(-0.654560\pi\)
−0.466706 + 0.884412i \(0.654560\pi\)
\(788\) −4232.00 −0.191318
\(789\) 0 0
\(790\) 0 0
\(791\) −3492.00 −0.156967
\(792\) 0 0
\(793\) 29700.0 1.32998
\(794\) −6788.00 −0.303397
\(795\) 0 0
\(796\) −4512.00 −0.200909
\(797\) −41350.0 −1.83776 −0.918878 0.394541i \(-0.870904\pi\)
−0.918878 + 0.394541i \(0.870904\pi\)
\(798\) 0 0
\(799\) 7040.00 0.311711
\(800\) 0 0
\(801\) 0 0
\(802\) 13652.0 0.601083
\(803\) 42280.0 1.85807
\(804\) 0 0
\(805\) 0 0
\(806\) −22464.0 −0.981713
\(807\) 0 0
\(808\) 4736.00 0.206203
\(809\) −1794.00 −0.0779650 −0.0389825 0.999240i \(-0.512412\pi\)
−0.0389825 + 0.999240i \(0.512412\pi\)
\(810\) 0 0
\(811\) 22756.0 0.985291 0.492646 0.870230i \(-0.336030\pi\)
0.492646 + 0.870230i \(0.336030\pi\)
\(812\) −1728.00 −0.0746809
\(813\) 0 0
\(814\) −35560.0 −1.53118
\(815\) 0 0
\(816\) 0 0
\(817\) −7008.00 −0.300097
\(818\) 15628.0 0.667995
\(819\) 0 0
\(820\) 0 0
\(821\) 23632.0 1.00458 0.502291 0.864698i \(-0.332490\pi\)
0.502291 + 0.864698i \(0.332490\pi\)
\(822\) 0 0
\(823\) −33210.0 −1.40660 −0.703298 0.710896i \(-0.748290\pi\)
−0.703298 + 0.710896i \(0.748290\pi\)
\(824\) −496.000 −0.0209696
\(825\) 0 0
\(826\) 1480.00 0.0623436
\(827\) 30476.0 1.28144 0.640722 0.767773i \(-0.278635\pi\)
0.640722 + 0.767773i \(0.278635\pi\)
\(828\) 0 0
\(829\) 29802.0 1.24857 0.624286 0.781196i \(-0.285390\pi\)
0.624286 + 0.781196i \(0.285390\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3456.00 −0.144009
\(833\) 7458.00 0.310209
\(834\) 0 0
\(835\) 0 0
\(836\) −6720.00 −0.278010
\(837\) 0 0
\(838\) −16580.0 −0.683468
\(839\) 28024.0 1.15315 0.576577 0.817043i \(-0.304388\pi\)
0.576577 + 0.817043i \(0.304388\pi\)
\(840\) 0 0
\(841\) 22267.0 0.912994
\(842\) 4220.00 0.172721
\(843\) 0 0
\(844\) 3120.00 0.127245
\(845\) 0 0
\(846\) 0 0
\(847\) 7138.00 0.289569
\(848\) −6432.00 −0.260467
\(849\) 0 0
\(850\) 0 0
\(851\) −25400.0 −1.02315
\(852\) 0 0
\(853\) −3938.00 −0.158071 −0.0790355 0.996872i \(-0.525184\pi\)
−0.0790355 + 0.996872i \(0.525184\pi\)
\(854\) −2200.00 −0.0881528
\(855\) 0 0
\(856\) 672.000 0.0268323
\(857\) −8094.00 −0.322621 −0.161310 0.986904i \(-0.551572\pi\)
−0.161310 + 0.986904i \(0.551572\pi\)
\(858\) 0 0
\(859\) 9044.00 0.359229 0.179614 0.983737i \(-0.442515\pi\)
0.179614 + 0.983737i \(0.442515\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24160.0 0.954632
\(863\) −6252.00 −0.246606 −0.123303 0.992369i \(-0.539349\pi\)
−0.123303 + 0.992369i \(0.539349\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −32984.0 −1.29427
\(867\) 0 0
\(868\) 1664.00 0.0650689
\(869\) −55440.0 −2.16418
\(870\) 0 0
\(871\) 39312.0 1.52932
\(872\) 2960.00 0.114952
\(873\) 0 0
\(874\) −4800.00 −0.185769
\(875\) 0 0
\(876\) 0 0
\(877\) −40166.0 −1.54653 −0.773267 0.634081i \(-0.781379\pi\)
−0.773267 + 0.634081i \(0.781379\pi\)
\(878\) −30096.0 −1.15682
\(879\) 0 0
\(880\) 0 0
\(881\) 12834.0 0.490793 0.245396 0.969423i \(-0.421082\pi\)
0.245396 + 0.969423i \(0.421082\pi\)
\(882\) 0 0
\(883\) −27192.0 −1.03633 −0.518167 0.855279i \(-0.673386\pi\)
−0.518167 + 0.855279i \(0.673386\pi\)
\(884\) 4752.00 0.180800
\(885\) 0 0
\(886\) −19752.0 −0.748963
\(887\) 42060.0 1.59215 0.796075 0.605198i \(-0.206906\pi\)
0.796075 + 0.605198i \(0.206906\pi\)
\(888\) 0 0
\(889\) −3260.00 −0.122989
\(890\) 0 0
\(891\) 0 0
\(892\) 10280.0 0.385874
\(893\) −7680.00 −0.287796
\(894\) 0 0
\(895\) 0 0
\(896\) 256.000 0.00954504
\(897\) 0 0
\(898\) −34332.0 −1.27581
\(899\) −44928.0 −1.66678
\(900\) 0 0
\(901\) 8844.00 0.327010
\(902\) −28840.0 −1.06460
\(903\) 0 0
\(904\) −13968.0 −0.513904
\(905\) 0 0
\(906\) 0 0
\(907\) −41172.0 −1.50727 −0.753635 0.657293i \(-0.771701\pi\)
−0.753635 + 0.657293i \(0.771701\pi\)
\(908\) −11344.0 −0.414608
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 0.00174568 0.000872838 1.00000i \(-0.499722\pi\)
0.000872838 1.00000i \(0.499722\pi\)
\(912\) 0 0
\(913\) −28280.0 −1.02512
\(914\) −29696.0 −1.07468
\(915\) 0 0
\(916\) −2440.00 −0.0880130
\(917\) 1740.00 0.0626607
\(918\) 0 0
\(919\) −34584.0 −1.24137 −0.620686 0.784059i \(-0.713146\pi\)
−0.620686 + 0.784059i \(0.713146\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2520.00 0.0900128
\(923\) −29160.0 −1.03988
\(924\) 0 0
\(925\) 0 0
\(926\) 22476.0 0.797632
\(927\) 0 0
\(928\) −6912.00 −0.244502
\(929\) 3474.00 0.122689 0.0613446 0.998117i \(-0.480461\pi\)
0.0613446 + 0.998117i \(0.480461\pi\)
\(930\) 0 0
\(931\) −8136.00 −0.286409
\(932\) 14056.0 0.494012
\(933\) 0 0
\(934\) 29544.0 1.03502
\(935\) 0 0
\(936\) 0 0
\(937\) −44408.0 −1.54829 −0.774144 0.633009i \(-0.781819\pi\)
−0.774144 + 0.633009i \(0.781819\pi\)
\(938\) −2912.00 −0.101365
\(939\) 0 0
\(940\) 0 0
\(941\) −20188.0 −0.699373 −0.349686 0.936867i \(-0.613712\pi\)
−0.349686 + 0.936867i \(0.613712\pi\)
\(942\) 0 0
\(943\) −20600.0 −0.711377
\(944\) 5920.00 0.204110
\(945\) 0 0
\(946\) 40880.0 1.40499
\(947\) −31212.0 −1.07102 −0.535509 0.844530i \(-0.679880\pi\)
−0.535509 + 0.844530i \(0.679880\pi\)
\(948\) 0 0
\(949\) 32616.0 1.11566
\(950\) 0 0
\(951\) 0 0
\(952\) −352.000 −0.0119836
\(953\) 20182.0 0.686001 0.343001 0.939335i \(-0.388557\pi\)
0.343001 + 0.939335i \(0.388557\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7376.00 0.249536
\(957\) 0 0
\(958\) 12232.0 0.412524
\(959\) 1836.00 0.0618222
\(960\) 0 0
\(961\) 13473.0 0.452251
\(962\) −27432.0 −0.919380
\(963\) 0 0
\(964\) 3928.00 0.131237
\(965\) 0 0
\(966\) 0 0
\(967\) 53722.0 1.78654 0.893269 0.449522i \(-0.148406\pi\)
0.893269 + 0.449522i \(0.148406\pi\)
\(968\) 28552.0 0.948033
\(969\) 0 0
\(970\) 0 0
\(971\) −22554.0 −0.745409 −0.372705 0.927950i \(-0.621570\pi\)
−0.372705 + 0.927950i \(0.621570\pi\)
\(972\) 0 0
\(973\) −1192.00 −0.0392742
\(974\) −31812.0 −1.04653
\(975\) 0 0
\(976\) −8800.00 −0.288608
\(977\) −18126.0 −0.593554 −0.296777 0.954947i \(-0.595912\pi\)
−0.296777 + 0.954947i \(0.595912\pi\)
\(978\) 0 0
\(979\) −65660.0 −2.14352
\(980\) 0 0
\(981\) 0 0
\(982\) −37428.0 −1.21627
\(983\) 6232.00 0.202207 0.101104 0.994876i \(-0.467763\pi\)
0.101104 + 0.994876i \(0.467763\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 9504.00 0.306967
\(987\) 0 0
\(988\) −5184.00 −0.166928
\(989\) 29200.0 0.938833
\(990\) 0 0
\(991\) 15184.0 0.486716 0.243358 0.969937i \(-0.421751\pi\)
0.243358 + 0.969937i \(0.421751\pi\)
\(992\) 6656.00 0.213032
\(993\) 0 0
\(994\) 2160.00 0.0689246
\(995\) 0 0
\(996\) 0 0
\(997\) 29922.0 0.950491 0.475245 0.879853i \(-0.342359\pi\)
0.475245 + 0.879853i \(0.342359\pi\)
\(998\) −8112.00 −0.257295
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.a.p.1.1 1
3.2 odd 2 150.4.a.d.1.1 1
5.2 odd 4 90.4.c.a.19.2 2
5.3 odd 4 90.4.c.a.19.1 2
5.4 even 2 450.4.a.e.1.1 1
12.11 even 2 1200.4.a.h.1.1 1
15.2 even 4 30.4.c.a.19.1 2
15.8 even 4 30.4.c.a.19.2 yes 2
15.14 odd 2 150.4.a.f.1.1 1
20.3 even 4 720.4.f.c.289.1 2
20.7 even 4 720.4.f.c.289.2 2
60.23 odd 4 240.4.f.d.49.1 2
60.47 odd 4 240.4.f.d.49.2 2
60.59 even 2 1200.4.a.bc.1.1 1
120.53 even 4 960.4.f.c.769.1 2
120.77 even 4 960.4.f.c.769.2 2
120.83 odd 4 960.4.f.d.769.2 2
120.107 odd 4 960.4.f.d.769.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.c.a.19.1 2 15.2 even 4
30.4.c.a.19.2 yes 2 15.8 even 4
90.4.c.a.19.1 2 5.3 odd 4
90.4.c.a.19.2 2 5.2 odd 4
150.4.a.d.1.1 1 3.2 odd 2
150.4.a.f.1.1 1 15.14 odd 2
240.4.f.d.49.1 2 60.23 odd 4
240.4.f.d.49.2 2 60.47 odd 4
450.4.a.e.1.1 1 5.4 even 2
450.4.a.p.1.1 1 1.1 even 1 trivial
720.4.f.c.289.1 2 20.3 even 4
720.4.f.c.289.2 2 20.7 even 4
960.4.f.c.769.1 2 120.53 even 4
960.4.f.c.769.2 2 120.77 even 4
960.4.f.d.769.1 2 120.107 odd 4
960.4.f.d.769.2 2 120.83 odd 4
1200.4.a.h.1.1 1 12.11 even 2
1200.4.a.bc.1.1 1 60.59 even 2