Properties

Label 450.4.a.l.1.1
Level $450$
Weight $4$
Character 450.1
Self dual yes
Analytic conductor $26.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -23.0000 q^{7} +8.00000 q^{8} +O(q^{10})\) \(q+2.00000 q^{2} +4.00000 q^{4} -23.0000 q^{7} +8.00000 q^{8} +30.0000 q^{11} -29.0000 q^{13} -46.0000 q^{14} +16.0000 q^{16} +78.0000 q^{17} +149.000 q^{19} +60.0000 q^{22} +150.000 q^{23} -58.0000 q^{26} -92.0000 q^{28} +234.000 q^{29} -217.000 q^{31} +32.0000 q^{32} +156.000 q^{34} -146.000 q^{37} +298.000 q^{38} +156.000 q^{41} +433.000 q^{43} +120.000 q^{44} +300.000 q^{46} +30.0000 q^{47} +186.000 q^{49} -116.000 q^{52} -552.000 q^{53} -184.000 q^{56} +468.000 q^{58} +270.000 q^{59} +275.000 q^{61} -434.000 q^{62} +64.0000 q^{64} -803.000 q^{67} +312.000 q^{68} -660.000 q^{71} +646.000 q^{73} -292.000 q^{74} +596.000 q^{76} -690.000 q^{77} +992.000 q^{79} +312.000 q^{82} -846.000 q^{83} +866.000 q^{86} +240.000 q^{88} +1488.00 q^{89} +667.000 q^{91} +600.000 q^{92} +60.0000 q^{94} +319.000 q^{97} +372.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −23.0000 −1.24188 −0.620942 0.783857i \(-0.713250\pi\)
−0.620942 + 0.783857i \(0.713250\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 30.0000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) −29.0000 −0.618704 −0.309352 0.950948i \(-0.600112\pi\)
−0.309352 + 0.950948i \(0.600112\pi\)
\(14\) −46.0000 −0.878144
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 78.0000 1.11281 0.556405 0.830911i \(-0.312180\pi\)
0.556405 + 0.830911i \(0.312180\pi\)
\(18\) 0 0
\(19\) 149.000 1.79910 0.899551 0.436815i \(-0.143894\pi\)
0.899551 + 0.436815i \(0.143894\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 60.0000 0.581456
\(23\) 150.000 1.35988 0.679938 0.733269i \(-0.262007\pi\)
0.679938 + 0.733269i \(0.262007\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −58.0000 −0.437490
\(27\) 0 0
\(28\) −92.0000 −0.620942
\(29\) 234.000 1.49837 0.749185 0.662361i \(-0.230446\pi\)
0.749185 + 0.662361i \(0.230446\pi\)
\(30\) 0 0
\(31\) −217.000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 156.000 0.786876
\(35\) 0 0
\(36\) 0 0
\(37\) −146.000 −0.648710 −0.324355 0.945936i \(-0.605147\pi\)
−0.324355 + 0.945936i \(0.605147\pi\)
\(38\) 298.000 1.27216
\(39\) 0 0
\(40\) 0 0
\(41\) 156.000 0.594222 0.297111 0.954843i \(-0.403977\pi\)
0.297111 + 0.954843i \(0.403977\pi\)
\(42\) 0 0
\(43\) 433.000 1.53563 0.767813 0.640675i \(-0.221345\pi\)
0.767813 + 0.640675i \(0.221345\pi\)
\(44\) 120.000 0.411152
\(45\) 0 0
\(46\) 300.000 0.961578
\(47\) 30.0000 0.0931053 0.0465527 0.998916i \(-0.485176\pi\)
0.0465527 + 0.998916i \(0.485176\pi\)
\(48\) 0 0
\(49\) 186.000 0.542274
\(50\) 0 0
\(51\) 0 0
\(52\) −116.000 −0.309352
\(53\) −552.000 −1.43062 −0.715312 0.698806i \(-0.753715\pi\)
−0.715312 + 0.698806i \(0.753715\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −184.000 −0.439072
\(57\) 0 0
\(58\) 468.000 1.05951
\(59\) 270.000 0.595780 0.297890 0.954600i \(-0.403717\pi\)
0.297890 + 0.954600i \(0.403717\pi\)
\(60\) 0 0
\(61\) 275.000 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(62\) −434.000 −0.889001
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −803.000 −1.46421 −0.732105 0.681192i \(-0.761462\pi\)
−0.732105 + 0.681192i \(0.761462\pi\)
\(68\) 312.000 0.556405
\(69\) 0 0
\(70\) 0 0
\(71\) −660.000 −1.10321 −0.551603 0.834107i \(-0.685984\pi\)
−0.551603 + 0.834107i \(0.685984\pi\)
\(72\) 0 0
\(73\) 646.000 1.03573 0.517867 0.855461i \(-0.326726\pi\)
0.517867 + 0.855461i \(0.326726\pi\)
\(74\) −292.000 −0.458707
\(75\) 0 0
\(76\) 596.000 0.899551
\(77\) −690.000 −1.02121
\(78\) 0 0
\(79\) 992.000 1.41277 0.706384 0.707829i \(-0.250325\pi\)
0.706384 + 0.707829i \(0.250325\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 312.000 0.420178
\(83\) −846.000 −1.11880 −0.559401 0.828897i \(-0.688969\pi\)
−0.559401 + 0.828897i \(0.688969\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 866.000 1.08585
\(87\) 0 0
\(88\) 240.000 0.290728
\(89\) 1488.00 1.77222 0.886111 0.463474i \(-0.153397\pi\)
0.886111 + 0.463474i \(0.153397\pi\)
\(90\) 0 0
\(91\) 667.000 0.768358
\(92\) 600.000 0.679938
\(93\) 0 0
\(94\) 60.0000 0.0658354
\(95\) 0 0
\(96\) 0 0
\(97\) 319.000 0.333913 0.166956 0.985964i \(-0.446606\pi\)
0.166956 + 0.985964i \(0.446606\pi\)
\(98\) 372.000 0.383446
\(99\) 0 0
\(100\) 0 0
\(101\) 792.000 0.780267 0.390133 0.920758i \(-0.372429\pi\)
0.390133 + 0.920758i \(0.372429\pi\)
\(102\) 0 0
\(103\) −812.000 −0.776784 −0.388392 0.921494i \(-0.626969\pi\)
−0.388392 + 0.921494i \(0.626969\pi\)
\(104\) −232.000 −0.218745
\(105\) 0 0
\(106\) −1104.00 −1.01160
\(107\) −1416.00 −1.27934 −0.639672 0.768648i \(-0.720930\pi\)
−0.639672 + 0.768648i \(0.720930\pi\)
\(108\) 0 0
\(109\) −55.0000 −0.0483307 −0.0241653 0.999708i \(-0.507693\pi\)
−0.0241653 + 0.999708i \(0.507693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −368.000 −0.310471
\(113\) 1404.00 1.16882 0.584412 0.811457i \(-0.301325\pi\)
0.584412 + 0.811457i \(0.301325\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 936.000 0.749185
\(117\) 0 0
\(118\) 540.000 0.421280
\(119\) −1794.00 −1.38198
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 550.000 0.408153
\(123\) 0 0
\(124\) −868.000 −0.628619
\(125\) 0 0
\(126\) 0 0
\(127\) −1280.00 −0.894344 −0.447172 0.894448i \(-0.647569\pi\)
−0.447172 + 0.894448i \(0.647569\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −480.000 −0.320136 −0.160068 0.987106i \(-0.551171\pi\)
−0.160068 + 0.987106i \(0.551171\pi\)
\(132\) 0 0
\(133\) −3427.00 −2.23428
\(134\) −1606.00 −1.03535
\(135\) 0 0
\(136\) 624.000 0.393438
\(137\) −282.000 −0.175860 −0.0879302 0.996127i \(-0.528025\pi\)
−0.0879302 + 0.996127i \(0.528025\pi\)
\(138\) 0 0
\(139\) 1604.00 0.978773 0.489387 0.872067i \(-0.337221\pi\)
0.489387 + 0.872067i \(0.337221\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1320.00 −0.780084
\(143\) −870.000 −0.508763
\(144\) 0 0
\(145\) 0 0
\(146\) 1292.00 0.732375
\(147\) 0 0
\(148\) −584.000 −0.324355
\(149\) 774.000 0.425561 0.212780 0.977100i \(-0.431748\pi\)
0.212780 + 0.977100i \(0.431748\pi\)
\(150\) 0 0
\(151\) 293.000 0.157907 0.0789536 0.996878i \(-0.474842\pi\)
0.0789536 + 0.996878i \(0.474842\pi\)
\(152\) 1192.00 0.636079
\(153\) 0 0
\(154\) −1380.00 −0.722101
\(155\) 0 0
\(156\) 0 0
\(157\) 1729.00 0.878912 0.439456 0.898264i \(-0.355171\pi\)
0.439456 + 0.898264i \(0.355171\pi\)
\(158\) 1984.00 0.998978
\(159\) 0 0
\(160\) 0 0
\(161\) −3450.00 −1.68881
\(162\) 0 0
\(163\) 1123.00 0.539633 0.269816 0.962912i \(-0.413037\pi\)
0.269816 + 0.962912i \(0.413037\pi\)
\(164\) 624.000 0.297111
\(165\) 0 0
\(166\) −1692.00 −0.791112
\(167\) 1200.00 0.556041 0.278020 0.960575i \(-0.410322\pi\)
0.278020 + 0.960575i \(0.410322\pi\)
\(168\) 0 0
\(169\) −1356.00 −0.617205
\(170\) 0 0
\(171\) 0 0
\(172\) 1732.00 0.767813
\(173\) −1734.00 −0.762044 −0.381022 0.924566i \(-0.624428\pi\)
−0.381022 + 0.924566i \(0.624428\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 480.000 0.205576
\(177\) 0 0
\(178\) 2976.00 1.25315
\(179\) −2586.00 −1.07981 −0.539907 0.841725i \(-0.681541\pi\)
−0.539907 + 0.841725i \(0.681541\pi\)
\(180\) 0 0
\(181\) −3931.00 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(182\) 1334.00 0.543311
\(183\) 0 0
\(184\) 1200.00 0.480789
\(185\) 0 0
\(186\) 0 0
\(187\) 2340.00 0.915068
\(188\) 120.000 0.0465527
\(189\) 0 0
\(190\) 0 0
\(191\) −1566.00 −0.593255 −0.296628 0.954993i \(-0.595862\pi\)
−0.296628 + 0.954993i \(0.595862\pi\)
\(192\) 0 0
\(193\) −2291.00 −0.854455 −0.427227 0.904144i \(-0.640510\pi\)
−0.427227 + 0.904144i \(0.640510\pi\)
\(194\) 638.000 0.236112
\(195\) 0 0
\(196\) 744.000 0.271137
\(197\) 2142.00 0.774676 0.387338 0.921938i \(-0.373395\pi\)
0.387338 + 0.921938i \(0.373395\pi\)
\(198\) 0 0
\(199\) −4903.00 −1.74656 −0.873278 0.487223i \(-0.838010\pi\)
−0.873278 + 0.487223i \(0.838010\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1584.00 0.551732
\(203\) −5382.00 −1.86080
\(204\) 0 0
\(205\) 0 0
\(206\) −1624.00 −0.549269
\(207\) 0 0
\(208\) −464.000 −0.154676
\(209\) 4470.00 1.47941
\(210\) 0 0
\(211\) 605.000 0.197393 0.0986965 0.995118i \(-0.468533\pi\)
0.0986965 + 0.995118i \(0.468533\pi\)
\(212\) −2208.00 −0.715312
\(213\) 0 0
\(214\) −2832.00 −0.904633
\(215\) 0 0
\(216\) 0 0
\(217\) 4991.00 1.56134
\(218\) −110.000 −0.0341750
\(219\) 0 0
\(220\) 0 0
\(221\) −2262.00 −0.688500
\(222\) 0 0
\(223\) 145.000 0.0435422 0.0217711 0.999763i \(-0.493069\pi\)
0.0217711 + 0.999763i \(0.493069\pi\)
\(224\) −736.000 −0.219536
\(225\) 0 0
\(226\) 2808.00 0.826484
\(227\) 2964.00 0.866641 0.433321 0.901240i \(-0.357342\pi\)
0.433321 + 0.901240i \(0.357342\pi\)
\(228\) 0 0
\(229\) −5635.00 −1.62608 −0.813038 0.582211i \(-0.802188\pi\)
−0.813038 + 0.582211i \(0.802188\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1872.00 0.529754
\(233\) 4164.00 1.17078 0.585392 0.810750i \(-0.300941\pi\)
0.585392 + 0.810750i \(0.300941\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1080.00 0.297890
\(237\) 0 0
\(238\) −3588.00 −0.977208
\(239\) 1944.00 0.526138 0.263069 0.964777i \(-0.415265\pi\)
0.263069 + 0.964777i \(0.415265\pi\)
\(240\) 0 0
\(241\) 857.000 0.229063 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(242\) −862.000 −0.228973
\(243\) 0 0
\(244\) 1100.00 0.288608
\(245\) 0 0
\(246\) 0 0
\(247\) −4321.00 −1.11311
\(248\) −1736.00 −0.444500
\(249\) 0 0
\(250\) 0 0
\(251\) 3924.00 0.986776 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(252\) 0 0
\(253\) 4500.00 1.11823
\(254\) −2560.00 −0.632396
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2844.00 −0.690287 −0.345144 0.938550i \(-0.612170\pi\)
−0.345144 + 0.938550i \(0.612170\pi\)
\(258\) 0 0
\(259\) 3358.00 0.805621
\(260\) 0 0
\(261\) 0 0
\(262\) −960.000 −0.226370
\(263\) −6060.00 −1.42082 −0.710410 0.703788i \(-0.751490\pi\)
−0.710410 + 0.703788i \(0.751490\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6854.00 −1.57987
\(267\) 0 0
\(268\) −3212.00 −0.732105
\(269\) −3906.00 −0.885327 −0.442664 0.896688i \(-0.645966\pi\)
−0.442664 + 0.896688i \(0.645966\pi\)
\(270\) 0 0
\(271\) 2144.00 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(272\) 1248.00 0.278203
\(273\) 0 0
\(274\) −564.000 −0.124352
\(275\) 0 0
\(276\) 0 0
\(277\) −2321.00 −0.503449 −0.251725 0.967799i \(-0.580998\pi\)
−0.251725 + 0.967799i \(0.580998\pi\)
\(278\) 3208.00 0.692097
\(279\) 0 0
\(280\) 0 0
\(281\) 6822.00 1.44828 0.724140 0.689654i \(-0.242237\pi\)
0.724140 + 0.689654i \(0.242237\pi\)
\(282\) 0 0
\(283\) −4049.00 −0.850488 −0.425244 0.905079i \(-0.639812\pi\)
−0.425244 + 0.905079i \(0.639812\pi\)
\(284\) −2640.00 −0.551603
\(285\) 0 0
\(286\) −1740.00 −0.359749
\(287\) −3588.00 −0.737955
\(288\) 0 0
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) 0 0
\(292\) 2584.00 0.517867
\(293\) 2238.00 0.446230 0.223115 0.974792i \(-0.428377\pi\)
0.223115 + 0.974792i \(0.428377\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1168.00 −0.229353
\(297\) 0 0
\(298\) 1548.00 0.300917
\(299\) −4350.00 −0.841361
\(300\) 0 0
\(301\) −9959.00 −1.90707
\(302\) 586.000 0.111657
\(303\) 0 0
\(304\) 2384.00 0.449776
\(305\) 0 0
\(306\) 0 0
\(307\) −1385.00 −0.257479 −0.128740 0.991678i \(-0.541093\pi\)
−0.128740 + 0.991678i \(0.541093\pi\)
\(308\) −2760.00 −0.510603
\(309\) 0 0
\(310\) 0 0
\(311\) 5670.00 1.03381 0.516907 0.856042i \(-0.327083\pi\)
0.516907 + 0.856042i \(0.327083\pi\)
\(312\) 0 0
\(313\) 421.000 0.0760266 0.0380133 0.999277i \(-0.487897\pi\)
0.0380133 + 0.999277i \(0.487897\pi\)
\(314\) 3458.00 0.621485
\(315\) 0 0
\(316\) 3968.00 0.706384
\(317\) 9984.00 1.76895 0.884475 0.466587i \(-0.154517\pi\)
0.884475 + 0.466587i \(0.154517\pi\)
\(318\) 0 0
\(319\) 7020.00 1.23211
\(320\) 0 0
\(321\) 0 0
\(322\) −6900.00 −1.19417
\(323\) 11622.0 2.00206
\(324\) 0 0
\(325\) 0 0
\(326\) 2246.00 0.381578
\(327\) 0 0
\(328\) 1248.00 0.210089
\(329\) −690.000 −0.115626
\(330\) 0 0
\(331\) −4228.00 −0.702090 −0.351045 0.936359i \(-0.614174\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(332\) −3384.00 −0.559401
\(333\) 0 0
\(334\) 2400.00 0.393180
\(335\) 0 0
\(336\) 0 0
\(337\) −5393.00 −0.871737 −0.435869 0.900010i \(-0.643559\pi\)
−0.435869 + 0.900010i \(0.643559\pi\)
\(338\) −2712.00 −0.436430
\(339\) 0 0
\(340\) 0 0
\(341\) −6510.00 −1.03383
\(342\) 0 0
\(343\) 3611.00 0.568442
\(344\) 3464.00 0.542925
\(345\) 0 0
\(346\) −3468.00 −0.538846
\(347\) −7914.00 −1.22434 −0.612170 0.790726i \(-0.709703\pi\)
−0.612170 + 0.790726i \(0.709703\pi\)
\(348\) 0 0
\(349\) 1010.00 0.154911 0.0774557 0.996996i \(-0.475320\pi\)
0.0774557 + 0.996996i \(0.475320\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 960.000 0.145364
\(353\) 4722.00 0.711974 0.355987 0.934491i \(-0.384145\pi\)
0.355987 + 0.934491i \(0.384145\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5952.00 0.886111
\(357\) 0 0
\(358\) −5172.00 −0.763544
\(359\) −6204.00 −0.912074 −0.456037 0.889961i \(-0.650732\pi\)
−0.456037 + 0.889961i \(0.650732\pi\)
\(360\) 0 0
\(361\) 15342.0 2.23677
\(362\) −7862.00 −1.14148
\(363\) 0 0
\(364\) 2668.00 0.384179
\(365\) 0 0
\(366\) 0 0
\(367\) −1361.00 −0.193579 −0.0967897 0.995305i \(-0.530857\pi\)
−0.0967897 + 0.995305i \(0.530857\pi\)
\(368\) 2400.00 0.339969
\(369\) 0 0
\(370\) 0 0
\(371\) 12696.0 1.77667
\(372\) 0 0
\(373\) 913.000 0.126738 0.0633691 0.997990i \(-0.479815\pi\)
0.0633691 + 0.997990i \(0.479815\pi\)
\(374\) 4680.00 0.647051
\(375\) 0 0
\(376\) 240.000 0.0329177
\(377\) −6786.00 −0.927047
\(378\) 0 0
\(379\) −8881.00 −1.20366 −0.601829 0.798625i \(-0.705561\pi\)
−0.601829 + 0.798625i \(0.705561\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3132.00 −0.419495
\(383\) 5460.00 0.728441 0.364221 0.931313i \(-0.381335\pi\)
0.364221 + 0.931313i \(0.381335\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4582.00 −0.604191
\(387\) 0 0
\(388\) 1276.00 0.166956
\(389\) 13884.0 1.80963 0.904816 0.425803i \(-0.140008\pi\)
0.904816 + 0.425803i \(0.140008\pi\)
\(390\) 0 0
\(391\) 11700.0 1.51328
\(392\) 1488.00 0.191723
\(393\) 0 0
\(394\) 4284.00 0.547779
\(395\) 0 0
\(396\) 0 0
\(397\) 3781.00 0.477992 0.238996 0.971021i \(-0.423182\pi\)
0.238996 + 0.971021i \(0.423182\pi\)
\(398\) −9806.00 −1.23500
\(399\) 0 0
\(400\) 0 0
\(401\) −9024.00 −1.12378 −0.561892 0.827211i \(-0.689926\pi\)
−0.561892 + 0.827211i \(0.689926\pi\)
\(402\) 0 0
\(403\) 6293.00 0.777858
\(404\) 3168.00 0.390133
\(405\) 0 0
\(406\) −10764.0 −1.31578
\(407\) −4380.00 −0.533436
\(408\) 0 0
\(409\) 14789.0 1.78794 0.893972 0.448123i \(-0.147907\pi\)
0.893972 + 0.448123i \(0.147907\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3248.00 −0.388392
\(413\) −6210.00 −0.739889
\(414\) 0 0
\(415\) 0 0
\(416\) −928.000 −0.109372
\(417\) 0 0
\(418\) 8940.00 1.04610
\(419\) −9840.00 −1.14729 −0.573646 0.819103i \(-0.694472\pi\)
−0.573646 + 0.819103i \(0.694472\pi\)
\(420\) 0 0
\(421\) 5510.00 0.637865 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(422\) 1210.00 0.139578
\(423\) 0 0
\(424\) −4416.00 −0.505802
\(425\) 0 0
\(426\) 0 0
\(427\) −6325.00 −0.716834
\(428\) −5664.00 −0.639672
\(429\) 0 0
\(430\) 0 0
\(431\) −11070.0 −1.23718 −0.618588 0.785715i \(-0.712295\pi\)
−0.618588 + 0.785715i \(0.712295\pi\)
\(432\) 0 0
\(433\) 12133.0 1.34659 0.673297 0.739373i \(-0.264878\pi\)
0.673297 + 0.739373i \(0.264878\pi\)
\(434\) 9982.00 1.10404
\(435\) 0 0
\(436\) −220.000 −0.0241653
\(437\) 22350.0 2.44656
\(438\) 0 0
\(439\) −1873.00 −0.203630 −0.101815 0.994803i \(-0.532465\pi\)
−0.101815 + 0.994803i \(0.532465\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4524.00 −0.486843
\(443\) −576.000 −0.0617756 −0.0308878 0.999523i \(-0.509833\pi\)
−0.0308878 + 0.999523i \(0.509833\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 290.000 0.0307890
\(447\) 0 0
\(448\) −1472.00 −0.155235
\(449\) 4884.00 0.513341 0.256671 0.966499i \(-0.417374\pi\)
0.256671 + 0.966499i \(0.417374\pi\)
\(450\) 0 0
\(451\) 4680.00 0.488631
\(452\) 5616.00 0.584412
\(453\) 0 0
\(454\) 5928.00 0.612808
\(455\) 0 0
\(456\) 0 0
\(457\) 15802.0 1.61748 0.808738 0.588169i \(-0.200151\pi\)
0.808738 + 0.588169i \(0.200151\pi\)
\(458\) −11270.0 −1.14981
\(459\) 0 0
\(460\) 0 0
\(461\) 15360.0 1.55181 0.775907 0.630847i \(-0.217292\pi\)
0.775907 + 0.630847i \(0.217292\pi\)
\(462\) 0 0
\(463\) −1712.00 −0.171843 −0.0859216 0.996302i \(-0.527383\pi\)
−0.0859216 + 0.996302i \(0.527383\pi\)
\(464\) 3744.00 0.374592
\(465\) 0 0
\(466\) 8328.00 0.827869
\(467\) −16278.0 −1.61297 −0.806484 0.591256i \(-0.798632\pi\)
−0.806484 + 0.591256i \(0.798632\pi\)
\(468\) 0 0
\(469\) 18469.0 1.81838
\(470\) 0 0
\(471\) 0 0
\(472\) 2160.00 0.210640
\(473\) 12990.0 1.26275
\(474\) 0 0
\(475\) 0 0
\(476\) −7176.00 −0.690990
\(477\) 0 0
\(478\) 3888.00 0.372036
\(479\) 14766.0 1.40851 0.704254 0.709948i \(-0.251281\pi\)
0.704254 + 0.709948i \(0.251281\pi\)
\(480\) 0 0
\(481\) 4234.00 0.401359
\(482\) 1714.00 0.161972
\(483\) 0 0
\(484\) −1724.00 −0.161908
\(485\) 0 0
\(486\) 0 0
\(487\) 3319.00 0.308826 0.154413 0.988006i \(-0.450651\pi\)
0.154413 + 0.988006i \(0.450651\pi\)
\(488\) 2200.00 0.204076
\(489\) 0 0
\(490\) 0 0
\(491\) −11064.0 −1.01693 −0.508464 0.861083i \(-0.669786\pi\)
−0.508464 + 0.861083i \(0.669786\pi\)
\(492\) 0 0
\(493\) 18252.0 1.66740
\(494\) −8642.00 −0.787089
\(495\) 0 0
\(496\) −3472.00 −0.314309
\(497\) 15180.0 1.37005
\(498\) 0 0
\(499\) −14131.0 −1.26772 −0.633858 0.773449i \(-0.718530\pi\)
−0.633858 + 0.773449i \(0.718530\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7848.00 0.697756
\(503\) 11988.0 1.06266 0.531331 0.847165i \(-0.321692\pi\)
0.531331 + 0.847165i \(0.321692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9000.00 0.790709
\(507\) 0 0
\(508\) −5120.00 −0.447172
\(509\) −10806.0 −0.940997 −0.470499 0.882401i \(-0.655926\pi\)
−0.470499 + 0.882401i \(0.655926\pi\)
\(510\) 0 0
\(511\) −14858.0 −1.28626
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −5688.00 −0.488107
\(515\) 0 0
\(516\) 0 0
\(517\) 900.000 0.0765608
\(518\) 6716.00 0.569660
\(519\) 0 0
\(520\) 0 0
\(521\) −22578.0 −1.89858 −0.949290 0.314402i \(-0.898196\pi\)
−0.949290 + 0.314402i \(0.898196\pi\)
\(522\) 0 0
\(523\) −12065.0 −1.00873 −0.504365 0.863491i \(-0.668273\pi\)
−0.504365 + 0.863491i \(0.668273\pi\)
\(524\) −1920.00 −0.160068
\(525\) 0 0
\(526\) −12120.0 −1.00467
\(527\) −16926.0 −1.39907
\(528\) 0 0
\(529\) 10333.0 0.849264
\(530\) 0 0
\(531\) 0 0
\(532\) −13708.0 −1.11714
\(533\) −4524.00 −0.367648
\(534\) 0 0
\(535\) 0 0
\(536\) −6424.00 −0.517676
\(537\) 0 0
\(538\) −7812.00 −0.626021
\(539\) 5580.00 0.445914
\(540\) 0 0
\(541\) −12055.0 −0.958013 −0.479006 0.877811i \(-0.659003\pi\)
−0.479006 + 0.877811i \(0.659003\pi\)
\(542\) 4288.00 0.339825
\(543\) 0 0
\(544\) 2496.00 0.196719
\(545\) 0 0
\(546\) 0 0
\(547\) −6176.00 −0.482754 −0.241377 0.970431i \(-0.577599\pi\)
−0.241377 + 0.970431i \(0.577599\pi\)
\(548\) −1128.00 −0.0879302
\(549\) 0 0
\(550\) 0 0
\(551\) 34866.0 2.69572
\(552\) 0 0
\(553\) −22816.0 −1.75449
\(554\) −4642.00 −0.355992
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) 8274.00 0.629409 0.314704 0.949190i \(-0.398095\pi\)
0.314704 + 0.949190i \(0.398095\pi\)
\(558\) 0 0
\(559\) −12557.0 −0.950098
\(560\) 0 0
\(561\) 0 0
\(562\) 13644.0 1.02409
\(563\) 966.000 0.0723127 0.0361563 0.999346i \(-0.488489\pi\)
0.0361563 + 0.999346i \(0.488489\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −8098.00 −0.601386
\(567\) 0 0
\(568\) −5280.00 −0.390042
\(569\) −19002.0 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(570\) 0 0
\(571\) 8645.00 0.633594 0.316797 0.948493i \(-0.397393\pi\)
0.316797 + 0.948493i \(0.397393\pi\)
\(572\) −3480.00 −0.254381
\(573\) 0 0
\(574\) −7176.00 −0.521813
\(575\) 0 0
\(576\) 0 0
\(577\) −10931.0 −0.788672 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(578\) 2342.00 0.168537
\(579\) 0 0
\(580\) 0 0
\(581\) 19458.0 1.38942
\(582\) 0 0
\(583\) −16560.0 −1.17641
\(584\) 5168.00 0.366187
\(585\) 0 0
\(586\) 4476.00 0.315532
\(587\) 8904.00 0.626077 0.313039 0.949740i \(-0.398653\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(588\) 0 0
\(589\) −32333.0 −2.26190
\(590\) 0 0
\(591\) 0 0
\(592\) −2336.00 −0.162177
\(593\) 8820.00 0.610782 0.305391 0.952227i \(-0.401213\pi\)
0.305391 + 0.952227i \(0.401213\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3096.00 0.212780
\(597\) 0 0
\(598\) −8700.00 −0.594932
\(599\) −9804.00 −0.668749 −0.334374 0.942440i \(-0.608525\pi\)
−0.334374 + 0.942440i \(0.608525\pi\)
\(600\) 0 0
\(601\) −23437.0 −1.59071 −0.795354 0.606146i \(-0.792715\pi\)
−0.795354 + 0.606146i \(0.792715\pi\)
\(602\) −19918.0 −1.34850
\(603\) 0 0
\(604\) 1172.00 0.0789536
\(605\) 0 0
\(606\) 0 0
\(607\) −2648.00 −0.177066 −0.0885330 0.996073i \(-0.528218\pi\)
−0.0885330 + 0.996073i \(0.528218\pi\)
\(608\) 4768.00 0.318039
\(609\) 0 0
\(610\) 0 0
\(611\) −870.000 −0.0576046
\(612\) 0 0
\(613\) −794.000 −0.0523154 −0.0261577 0.999658i \(-0.508327\pi\)
−0.0261577 + 0.999658i \(0.508327\pi\)
\(614\) −2770.00 −0.182065
\(615\) 0 0
\(616\) −5520.00 −0.361051
\(617\) 18720.0 1.22146 0.610728 0.791840i \(-0.290877\pi\)
0.610728 + 0.791840i \(0.290877\pi\)
\(618\) 0 0
\(619\) −8959.00 −0.581733 −0.290866 0.956764i \(-0.593944\pi\)
−0.290866 + 0.956764i \(0.593944\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 11340.0 0.731017
\(623\) −34224.0 −2.20089
\(624\) 0 0
\(625\) 0 0
\(626\) 842.000 0.0537589
\(627\) 0 0
\(628\) 6916.00 0.439456
\(629\) −11388.0 −0.721891
\(630\) 0 0
\(631\) −12373.0 −0.780604 −0.390302 0.920687i \(-0.627629\pi\)
−0.390302 + 0.920687i \(0.627629\pi\)
\(632\) 7936.00 0.499489
\(633\) 0 0
\(634\) 19968.0 1.25084
\(635\) 0 0
\(636\) 0 0
\(637\) −5394.00 −0.335507
\(638\) 14040.0 0.871237
\(639\) 0 0
\(640\) 0 0
\(641\) −24900.0 −1.53431 −0.767154 0.641463i \(-0.778328\pi\)
−0.767154 + 0.641463i \(0.778328\pi\)
\(642\) 0 0
\(643\) 14668.0 0.899610 0.449805 0.893127i \(-0.351493\pi\)
0.449805 + 0.893127i \(0.351493\pi\)
\(644\) −13800.0 −0.844404
\(645\) 0 0
\(646\) 23244.0 1.41567
\(647\) −10788.0 −0.655518 −0.327759 0.944761i \(-0.606293\pi\)
−0.327759 + 0.944761i \(0.606293\pi\)
\(648\) 0 0
\(649\) 8100.00 0.489912
\(650\) 0 0
\(651\) 0 0
\(652\) 4492.00 0.269816
\(653\) −14214.0 −0.851817 −0.425909 0.904766i \(-0.640046\pi\)
−0.425909 + 0.904766i \(0.640046\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2496.00 0.148556
\(657\) 0 0
\(658\) −1380.00 −0.0817599
\(659\) 588.000 0.0347576 0.0173788 0.999849i \(-0.494468\pi\)
0.0173788 + 0.999849i \(0.494468\pi\)
\(660\) 0 0
\(661\) −3166.00 −0.186298 −0.0931491 0.995652i \(-0.529693\pi\)
−0.0931491 + 0.995652i \(0.529693\pi\)
\(662\) −8456.00 −0.496453
\(663\) 0 0
\(664\) −6768.00 −0.395556
\(665\) 0 0
\(666\) 0 0
\(667\) 35100.0 2.03760
\(668\) 4800.00 0.278020
\(669\) 0 0
\(670\) 0 0
\(671\) 8250.00 0.474646
\(672\) 0 0
\(673\) −9182.00 −0.525914 −0.262957 0.964808i \(-0.584698\pi\)
−0.262957 + 0.964808i \(0.584698\pi\)
\(674\) −10786.0 −0.616411
\(675\) 0 0
\(676\) −5424.00 −0.308603
\(677\) 11742.0 0.666590 0.333295 0.942823i \(-0.391839\pi\)
0.333295 + 0.942823i \(0.391839\pi\)
\(678\) 0 0
\(679\) −7337.00 −0.414681
\(680\) 0 0
\(681\) 0 0
\(682\) −13020.0 −0.731029
\(683\) −6024.00 −0.337485 −0.168742 0.985660i \(-0.553971\pi\)
−0.168742 + 0.985660i \(0.553971\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7222.00 0.401949
\(687\) 0 0
\(688\) 6928.00 0.383906
\(689\) 16008.0 0.885132
\(690\) 0 0
\(691\) 9344.00 0.514418 0.257209 0.966356i \(-0.417197\pi\)
0.257209 + 0.966356i \(0.417197\pi\)
\(692\) −6936.00 −0.381022
\(693\) 0 0
\(694\) −15828.0 −0.865739
\(695\) 0 0
\(696\) 0 0
\(697\) 12168.0 0.661257
\(698\) 2020.00 0.109539
\(699\) 0 0
\(700\) 0 0
\(701\) −21234.0 −1.14408 −0.572038 0.820227i \(-0.693847\pi\)
−0.572038 + 0.820227i \(0.693847\pi\)
\(702\) 0 0
\(703\) −21754.0 −1.16709
\(704\) 1920.00 0.102788
\(705\) 0 0
\(706\) 9444.00 0.503441
\(707\) −18216.0 −0.969000
\(708\) 0 0
\(709\) −1723.00 −0.0912675 −0.0456337 0.998958i \(-0.514531\pi\)
−0.0456337 + 0.998958i \(0.514531\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11904.0 0.626575
\(713\) −32550.0 −1.70969
\(714\) 0 0
\(715\) 0 0
\(716\) −10344.0 −0.539907
\(717\) 0 0
\(718\) −12408.0 −0.644934
\(719\) −18510.0 −0.960093 −0.480046 0.877243i \(-0.659380\pi\)
−0.480046 + 0.877243i \(0.659380\pi\)
\(720\) 0 0
\(721\) 18676.0 0.964675
\(722\) 30684.0 1.58163
\(723\) 0 0
\(724\) −15724.0 −0.807152
\(725\) 0 0
\(726\) 0 0
\(727\) 1009.00 0.0514742 0.0257371 0.999669i \(-0.491807\pi\)
0.0257371 + 0.999669i \(0.491807\pi\)
\(728\) 5336.00 0.271656
\(729\) 0 0
\(730\) 0 0
\(731\) 33774.0 1.70886
\(732\) 0 0
\(733\) 21994.0 1.10828 0.554138 0.832425i \(-0.313048\pi\)
0.554138 + 0.832425i \(0.313048\pi\)
\(734\) −2722.00 −0.136881
\(735\) 0 0
\(736\) 4800.00 0.240394
\(737\) −24090.0 −1.20403
\(738\) 0 0
\(739\) −13948.0 −0.694297 −0.347148 0.937810i \(-0.612850\pi\)
−0.347148 + 0.937810i \(0.612850\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 25392.0 1.25629
\(743\) −26508.0 −1.30886 −0.654431 0.756122i \(-0.727092\pi\)
−0.654431 + 0.756122i \(0.727092\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1826.00 0.0896174
\(747\) 0 0
\(748\) 9360.00 0.457534
\(749\) 32568.0 1.58880
\(750\) 0 0
\(751\) −1600.00 −0.0777428 −0.0388714 0.999244i \(-0.512376\pi\)
−0.0388714 + 0.999244i \(0.512376\pi\)
\(752\) 480.000 0.0232763
\(753\) 0 0
\(754\) −13572.0 −0.655521
\(755\) 0 0
\(756\) 0 0
\(757\) −30101.0 −1.44523 −0.722615 0.691250i \(-0.757060\pi\)
−0.722615 + 0.691250i \(0.757060\pi\)
\(758\) −17762.0 −0.851115
\(759\) 0 0
\(760\) 0 0
\(761\) −35628.0 −1.69713 −0.848564 0.529093i \(-0.822532\pi\)
−0.848564 + 0.529093i \(0.822532\pi\)
\(762\) 0 0
\(763\) 1265.00 0.0600211
\(764\) −6264.00 −0.296628
\(765\) 0 0
\(766\) 10920.0 0.515086
\(767\) −7830.00 −0.368611
\(768\) 0 0
\(769\) −12517.0 −0.586963 −0.293482 0.955965i \(-0.594814\pi\)
−0.293482 + 0.955965i \(0.594814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9164.00 −0.427227
\(773\) 14124.0 0.657186 0.328593 0.944472i \(-0.393426\pi\)
0.328593 + 0.944472i \(0.393426\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2552.00 0.118056
\(777\) 0 0
\(778\) 27768.0 1.27960
\(779\) 23244.0 1.06907
\(780\) 0 0
\(781\) −19800.0 −0.907170
\(782\) 23400.0 1.07005
\(783\) 0 0
\(784\) 2976.00 0.135569
\(785\) 0 0
\(786\) 0 0
\(787\) −40433.0 −1.83136 −0.915680 0.401907i \(-0.868347\pi\)
−0.915680 + 0.401907i \(0.868347\pi\)
\(788\) 8568.00 0.387338
\(789\) 0 0
\(790\) 0 0
\(791\) −32292.0 −1.45154
\(792\) 0 0
\(793\) −7975.00 −0.357126
\(794\) 7562.00 0.337992
\(795\) 0 0
\(796\) −19612.0 −0.873278
\(797\) −27300.0 −1.21332 −0.606660 0.794962i \(-0.707491\pi\)
−0.606660 + 0.794962i \(0.707491\pi\)
\(798\) 0 0
\(799\) 2340.00 0.103609
\(800\) 0 0
\(801\) 0 0
\(802\) −18048.0 −0.794635
\(803\) 19380.0 0.851688
\(804\) 0 0
\(805\) 0 0
\(806\) 12586.0 0.550028
\(807\) 0 0
\(808\) 6336.00 0.275866
\(809\) 2856.00 0.124118 0.0620591 0.998072i \(-0.480233\pi\)
0.0620591 + 0.998072i \(0.480233\pi\)
\(810\) 0 0
\(811\) −12619.0 −0.546379 −0.273189 0.961960i \(-0.588079\pi\)
−0.273189 + 0.961960i \(0.588079\pi\)
\(812\) −21528.0 −0.930400
\(813\) 0 0
\(814\) −8760.00 −0.377196
\(815\) 0 0
\(816\) 0 0
\(817\) 64517.0 2.76275
\(818\) 29578.0 1.26427
\(819\) 0 0
\(820\) 0 0
\(821\) 29082.0 1.23626 0.618130 0.786076i \(-0.287891\pi\)
0.618130 + 0.786076i \(0.287891\pi\)
\(822\) 0 0
\(823\) −10235.0 −0.433499 −0.216749 0.976227i \(-0.569545\pi\)
−0.216749 + 0.976227i \(0.569545\pi\)
\(824\) −6496.00 −0.274635
\(825\) 0 0
\(826\) −12420.0 −0.523180
\(827\) 26976.0 1.13428 0.567139 0.823622i \(-0.308050\pi\)
0.567139 + 0.823622i \(0.308050\pi\)
\(828\) 0 0
\(829\) 37802.0 1.58374 0.791868 0.610692i \(-0.209109\pi\)
0.791868 + 0.610692i \(0.209109\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1856.00 −0.0773380
\(833\) 14508.0 0.603448
\(834\) 0 0
\(835\) 0 0
\(836\) 17880.0 0.739704
\(837\) 0 0
\(838\) −19680.0 −0.811258
\(839\) 16974.0 0.698460 0.349230 0.937037i \(-0.386443\pi\)
0.349230 + 0.937037i \(0.386443\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 11020.0 0.451038
\(843\) 0 0
\(844\) 2420.00 0.0986965
\(845\) 0 0
\(846\) 0 0
\(847\) 9913.00 0.402143
\(848\) −8832.00 −0.357656
\(849\) 0 0
\(850\) 0 0
\(851\) −21900.0 −0.882165
\(852\) 0 0
\(853\) 24937.0 1.00097 0.500485 0.865745i \(-0.333155\pi\)
0.500485 + 0.865745i \(0.333155\pi\)
\(854\) −12650.0 −0.506878
\(855\) 0 0
\(856\) −11328.0 −0.452317
\(857\) 15756.0 0.628022 0.314011 0.949419i \(-0.398327\pi\)
0.314011 + 0.949419i \(0.398327\pi\)
\(858\) 0 0
\(859\) 38144.0 1.51508 0.757542 0.652787i \(-0.226400\pi\)
0.757542 + 0.652787i \(0.226400\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −22140.0 −0.874816
\(863\) 5448.00 0.214892 0.107446 0.994211i \(-0.465733\pi\)
0.107446 + 0.994211i \(0.465733\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24266.0 0.952185
\(867\) 0 0
\(868\) 19964.0 0.780671
\(869\) 29760.0 1.16172
\(870\) 0 0
\(871\) 23287.0 0.905913
\(872\) −440.000 −0.0170875
\(873\) 0 0
\(874\) 44700.0 1.72998
\(875\) 0 0
\(876\) 0 0
\(877\) −21191.0 −0.815928 −0.407964 0.912998i \(-0.633761\pi\)
−0.407964 + 0.912998i \(0.633761\pi\)
\(878\) −3746.00 −0.143988
\(879\) 0 0
\(880\) 0 0
\(881\) −18216.0 −0.696609 −0.348305 0.937381i \(-0.613242\pi\)
−0.348305 + 0.937381i \(0.613242\pi\)
\(882\) 0 0
\(883\) −12767.0 −0.486573 −0.243286 0.969955i \(-0.578225\pi\)
−0.243286 + 0.969955i \(0.578225\pi\)
\(884\) −9048.00 −0.344250
\(885\) 0 0
\(886\) −1152.00 −0.0436819
\(887\) 11010.0 0.416775 0.208388 0.978046i \(-0.433178\pi\)
0.208388 + 0.978046i \(0.433178\pi\)
\(888\) 0 0
\(889\) 29440.0 1.11067
\(890\) 0 0
\(891\) 0 0
\(892\) 580.000 0.0217711
\(893\) 4470.00 0.167506
\(894\) 0 0
\(895\) 0 0
\(896\) −2944.00 −0.109768
\(897\) 0 0
\(898\) 9768.00 0.362987
\(899\) −50778.0 −1.88381
\(900\) 0 0
\(901\) −43056.0 −1.59201
\(902\) 9360.00 0.345514
\(903\) 0 0
\(904\) 11232.0 0.413242
\(905\) 0 0
\(906\) 0 0
\(907\) −22772.0 −0.833662 −0.416831 0.908984i \(-0.636859\pi\)
−0.416831 + 0.908984i \(0.636859\pi\)
\(908\) 11856.0 0.433321
\(909\) 0 0
\(910\) 0 0
\(911\) −29802.0 −1.08385 −0.541923 0.840428i \(-0.682304\pi\)
−0.541923 + 0.840428i \(0.682304\pi\)
\(912\) 0 0
\(913\) −25380.0 −0.919995
\(914\) 31604.0 1.14373
\(915\) 0 0
\(916\) −22540.0 −0.813038
\(917\) 11040.0 0.397571
\(918\) 0 0
\(919\) 48941.0 1.75671 0.878354 0.478011i \(-0.158642\pi\)
0.878354 + 0.478011i \(0.158642\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30720.0 1.09730
\(923\) 19140.0 0.682558
\(924\) 0 0
\(925\) 0 0
\(926\) −3424.00 −0.121511
\(927\) 0 0
\(928\) 7488.00 0.264877
\(929\) −31026.0 −1.09573 −0.547863 0.836568i \(-0.684559\pi\)
−0.547863 + 0.836568i \(0.684559\pi\)
\(930\) 0 0
\(931\) 27714.0 0.975607
\(932\) 16656.0 0.585392
\(933\) 0 0
\(934\) −32556.0 −1.14054
\(935\) 0 0
\(936\) 0 0
\(937\) −11183.0 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(938\) 36938.0 1.28579
\(939\) 0 0
\(940\) 0 0
\(941\) 2562.00 0.0887554 0.0443777 0.999015i \(-0.485870\pi\)
0.0443777 + 0.999015i \(0.485870\pi\)
\(942\) 0 0
\(943\) 23400.0 0.808069
\(944\) 4320.00 0.148945
\(945\) 0 0
\(946\) 25980.0 0.892899
\(947\) 7638.00 0.262093 0.131046 0.991376i \(-0.458166\pi\)
0.131046 + 0.991376i \(0.458166\pi\)
\(948\) 0 0
\(949\) −18734.0 −0.640813
\(950\) 0 0
\(951\) 0 0
\(952\) −14352.0 −0.488604
\(953\) 51432.0 1.74821 0.874106 0.485735i \(-0.161448\pi\)
0.874106 + 0.485735i \(0.161448\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7776.00 0.263069
\(957\) 0 0
\(958\) 29532.0 0.995966
\(959\) 6486.00 0.218398
\(960\) 0 0
\(961\) 17298.0 0.580645
\(962\) 8468.00 0.283804
\(963\) 0 0
\(964\) 3428.00 0.114532
\(965\) 0 0
\(966\) 0 0
\(967\) −39728.0 −1.32116 −0.660582 0.750754i \(-0.729691\pi\)
−0.660582 + 0.750754i \(0.729691\pi\)
\(968\) −3448.00 −0.114486
\(969\) 0 0
\(970\) 0 0
\(971\) 47946.0 1.58461 0.792307 0.610123i \(-0.208880\pi\)
0.792307 + 0.610123i \(0.208880\pi\)
\(972\) 0 0
\(973\) −36892.0 −1.21552
\(974\) 6638.00 0.218373
\(975\) 0 0
\(976\) 4400.00 0.144304
\(977\) −22326.0 −0.731087 −0.365544 0.930794i \(-0.619117\pi\)
−0.365544 + 0.930794i \(0.619117\pi\)
\(978\) 0 0
\(979\) 44640.0 1.45730
\(980\) 0 0
\(981\) 0 0
\(982\) −22128.0 −0.719076
\(983\) −48468.0 −1.57262 −0.786312 0.617830i \(-0.788012\pi\)
−0.786312 + 0.617830i \(0.788012\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 36504.0 1.17903
\(987\) 0 0
\(988\) −17284.0 −0.556556
\(989\) 64950.0 2.08826
\(990\) 0 0
\(991\) −25141.0 −0.805883 −0.402942 0.915226i \(-0.632012\pi\)
−0.402942 + 0.915226i \(0.632012\pi\)
\(992\) −6944.00 −0.222250
\(993\) 0 0
\(994\) 30360.0 0.968773
\(995\) 0 0
\(996\) 0 0
\(997\) 35422.0 1.12520 0.562601 0.826729i \(-0.309801\pi\)
0.562601 + 0.826729i \(0.309801\pi\)
\(998\) −28262.0 −0.896411
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.a.l.1.1 1
3.2 odd 2 150.4.a.c.1.1 1
5.2 odd 4 450.4.c.h.199.2 2
5.3 odd 4 450.4.c.h.199.1 2
5.4 even 2 450.4.a.i.1.1 1
12.11 even 2 1200.4.a.r.1.1 1
15.2 even 4 150.4.c.b.49.1 2
15.8 even 4 150.4.c.b.49.2 2
15.14 odd 2 150.4.a.g.1.1 yes 1
60.23 odd 4 1200.4.f.q.49.1 2
60.47 odd 4 1200.4.f.q.49.2 2
60.59 even 2 1200.4.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.c.1.1 1 3.2 odd 2
150.4.a.g.1.1 yes 1 15.14 odd 2
150.4.c.b.49.1 2 15.2 even 4
150.4.c.b.49.2 2 15.8 even 4
450.4.a.i.1.1 1 5.4 even 2
450.4.a.l.1.1 1 1.1 even 1 trivial
450.4.c.h.199.1 2 5.3 odd 4
450.4.c.h.199.2 2 5.2 odd 4
1200.4.a.r.1.1 1 12.11 even 2
1200.4.a.v.1.1 1 60.59 even 2
1200.4.f.q.49.1 2 60.23 odd 4
1200.4.f.q.49.2 2 60.47 odd 4