Properties

Label 450.4.a.j
Level $450$
Weight $4$
Character orbit 450.a
Self dual yes
Analytic conductor $26.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 26 q^{7} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 4 q^{4} + 26 q^{7} - 8 q^{8} + 28 q^{11} + 12 q^{13} - 52 q^{14} + 16 q^{16} + 64 q^{17} - 60 q^{19} - 56 q^{22} + 58 q^{23} - 24 q^{26} + 104 q^{28} - 90 q^{29} - 128 q^{31} - 32 q^{32} - 128 q^{34} + 236 q^{37} + 120 q^{38} - 242 q^{41} + 362 q^{43} + 112 q^{44} - 116 q^{46} - 226 q^{47} + 333 q^{49} + 48 q^{52} + 108 q^{53} - 208 q^{56} + 180 q^{58} + 20 q^{59} + 542 q^{61} + 256 q^{62} + 64 q^{64} - 434 q^{67} + 256 q^{68} + 1128 q^{71} + 632 q^{73} - 472 q^{74} - 240 q^{76} + 728 q^{77} - 720 q^{79} + 484 q^{82} + 478 q^{83} - 724 q^{86} - 224 q^{88} + 490 q^{89} + 312 q^{91} + 232 q^{92} + 452 q^{94} + 1456 q^{97} - 666 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 0 0 26.0000 −8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.a.j 1
3.b odd 2 1 50.4.a.d 1
5.b even 2 1 450.4.a.k 1
5.c odd 4 2 90.4.c.b 2
12.b even 2 1 400.4.a.h 1
15.d odd 2 1 50.4.a.b 1
15.e even 4 2 10.4.b.a 2
20.e even 4 2 720.4.f.f 2
21.c even 2 1 2450.4.a.bb 1
24.f even 2 1 1600.4.a.bg 1
24.h odd 2 1 1600.4.a.u 1
60.h even 2 1 400.4.a.n 1
60.l odd 4 2 80.4.c.a 2
105.g even 2 1 2450.4.a.o 1
105.k odd 4 2 490.4.c.b 2
120.i odd 2 1 1600.4.a.bh 1
120.m even 2 1 1600.4.a.t 1
120.q odd 4 2 320.4.c.c 2
120.w even 4 2 320.4.c.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 15.e even 4 2
50.4.a.b 1 15.d odd 2 1
50.4.a.d 1 3.b odd 2 1
80.4.c.a 2 60.l odd 4 2
90.4.c.b 2 5.c odd 4 2
320.4.c.c 2 120.q odd 4 2
320.4.c.d 2 120.w even 4 2
400.4.a.h 1 12.b even 2 1
400.4.a.n 1 60.h even 2 1
450.4.a.j 1 1.a even 1 1 trivial
450.4.a.k 1 5.b even 2 1
490.4.c.b 2 105.k odd 4 2
720.4.f.f 2 20.e even 4 2
1600.4.a.t 1 120.m even 2 1
1600.4.a.u 1 24.h odd 2 1
1600.4.a.bg 1 24.f even 2 1
1600.4.a.bh 1 120.i odd 2 1
2450.4.a.o 1 105.g even 2 1
2450.4.a.bb 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(450))\):

\( T_{7} - 26 \) Copy content Toggle raw display
\( T_{11} - 28 \) Copy content Toggle raw display
\( T_{17} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 26 \) Copy content Toggle raw display
$11$ \( T - 28 \) Copy content Toggle raw display
$13$ \( T - 12 \) Copy content Toggle raw display
$17$ \( T - 64 \) Copy content Toggle raw display
$19$ \( T + 60 \) Copy content Toggle raw display
$23$ \( T - 58 \) Copy content Toggle raw display
$29$ \( T + 90 \) Copy content Toggle raw display
$31$ \( T + 128 \) Copy content Toggle raw display
$37$ \( T - 236 \) Copy content Toggle raw display
$41$ \( T + 242 \) Copy content Toggle raw display
$43$ \( T - 362 \) Copy content Toggle raw display
$47$ \( T + 226 \) Copy content Toggle raw display
$53$ \( T - 108 \) Copy content Toggle raw display
$59$ \( T - 20 \) Copy content Toggle raw display
$61$ \( T - 542 \) Copy content Toggle raw display
$67$ \( T + 434 \) Copy content Toggle raw display
$71$ \( T - 1128 \) Copy content Toggle raw display
$73$ \( T - 632 \) Copy content Toggle raw display
$79$ \( T + 720 \) Copy content Toggle raw display
$83$ \( T - 478 \) Copy content Toggle raw display
$89$ \( T - 490 \) Copy content Toggle raw display
$97$ \( T - 1456 \) Copy content Toggle raw display
show more
show less