Properties

Label 450.4.a.c
Level $450$
Weight $4$
Character orbit 450.a
Self dual yes
Analytic conductor $26.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,4,Mod(1,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4,0,0,-14,-8,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} - 14 q^{7} - 8 q^{8} - 6 q^{11} - 68 q^{13} + 28 q^{14} + 16 q^{16} + 78 q^{17} + 44 q^{19} + 12 q^{22} + 120 q^{23} + 136 q^{26} - 56 q^{28} - 126 q^{29} - 244 q^{31} - 32 q^{32}+ \cdots + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 0 0 −14.0000 −8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.a.c 1
3.b odd 2 1 450.4.a.m 1
5.b even 2 1 90.4.a.e yes 1
5.c odd 4 2 450.4.c.f 2
15.d odd 2 1 90.4.a.b 1
15.e even 4 2 450.4.c.g 2
20.d odd 2 1 720.4.a.t 1
45.h odd 6 2 810.4.e.u 2
45.j even 6 2 810.4.e.a 2
60.h even 2 1 720.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.4.a.b 1 15.d odd 2 1
90.4.a.e yes 1 5.b even 2 1
450.4.a.c 1 1.a even 1 1 trivial
450.4.a.m 1 3.b odd 2 1
450.4.c.f 2 5.c odd 4 2
450.4.c.g 2 15.e even 4 2
720.4.a.e 1 60.h even 2 1
720.4.a.t 1 20.d odd 2 1
810.4.e.a 2 45.j even 6 2
810.4.e.u 2 45.h odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(450))\):

\( T_{7} + 14 \) Copy content Toggle raw display
\( T_{11} + 6 \) Copy content Toggle raw display
\( T_{17} - 78 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 14 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T + 68 \) Copy content Toggle raw display
$17$ \( T - 78 \) Copy content Toggle raw display
$19$ \( T - 44 \) Copy content Toggle raw display
$23$ \( T - 120 \) Copy content Toggle raw display
$29$ \( T + 126 \) Copy content Toggle raw display
$31$ \( T + 244 \) Copy content Toggle raw display
$37$ \( T - 304 \) Copy content Toggle raw display
$41$ \( T - 480 \) Copy content Toggle raw display
$43$ \( T + 104 \) Copy content Toggle raw display
$47$ \( T - 600 \) Copy content Toggle raw display
$53$ \( T + 258 \) Copy content Toggle raw display
$59$ \( T + 534 \) Copy content Toggle raw display
$61$ \( T - 362 \) Copy content Toggle raw display
$67$ \( T - 268 \) Copy content Toggle raw display
$71$ \( T - 972 \) Copy content Toggle raw display
$73$ \( T + 470 \) Copy content Toggle raw display
$79$ \( T - 1244 \) Copy content Toggle raw display
$83$ \( T - 396 \) Copy content Toggle raw display
$89$ \( T - 972 \) Copy content Toggle raw display
$97$ \( T - 46 \) Copy content Toggle raw display
show more
show less