Properties

Label 450.4.a.b.1.1
Level $450$
Weight $4$
Character 450.1
Self dual yes
Analytic conductor $26.551$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -32.0000 q^{7} -8.00000 q^{8} +O(q^{10})\) \(q-2.00000 q^{2} +4.00000 q^{4} -32.0000 q^{7} -8.00000 q^{8} +60.0000 q^{11} +34.0000 q^{13} +64.0000 q^{14} +16.0000 q^{16} +42.0000 q^{17} -76.0000 q^{19} -120.000 q^{22} -68.0000 q^{26} -128.000 q^{28} -6.00000 q^{29} -232.000 q^{31} -32.0000 q^{32} -84.0000 q^{34} -134.000 q^{37} +152.000 q^{38} -234.000 q^{41} +412.000 q^{43} +240.000 q^{44} -360.000 q^{47} +681.000 q^{49} +136.000 q^{52} +222.000 q^{53} +256.000 q^{56} +12.0000 q^{58} -660.000 q^{59} -490.000 q^{61} +464.000 q^{62} +64.0000 q^{64} -812.000 q^{67} +168.000 q^{68} -120.000 q^{71} -746.000 q^{73} +268.000 q^{74} -304.000 q^{76} -1920.00 q^{77} +152.000 q^{79} +468.000 q^{82} -804.000 q^{83} -824.000 q^{86} -480.000 q^{88} +678.000 q^{89} -1088.00 q^{91} +720.000 q^{94} -194.000 q^{97} -1362.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 60.0000 1.64461 0.822304 0.569049i \(-0.192689\pi\)
0.822304 + 0.569049i \(0.192689\pi\)
\(12\) 0 0
\(13\) 34.0000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) 64.0000 1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 42.0000 0.599206 0.299603 0.954064i \(-0.403146\pi\)
0.299603 + 0.954064i \(0.403146\pi\)
\(18\) 0 0
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −120.000 −1.16291
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −68.0000 −0.512919
\(27\) 0 0
\(28\) −128.000 −0.863919
\(29\) −6.00000 −0.0384197 −0.0192099 0.999815i \(-0.506115\pi\)
−0.0192099 + 0.999815i \(0.506115\pi\)
\(30\) 0 0
\(31\) −232.000 −1.34414 −0.672071 0.740486i \(-0.734595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −84.0000 −0.423702
\(35\) 0 0
\(36\) 0 0
\(37\) −134.000 −0.595391 −0.297695 0.954661i \(-0.596218\pi\)
−0.297695 + 0.954661i \(0.596218\pi\)
\(38\) 152.000 0.648886
\(39\) 0 0
\(40\) 0 0
\(41\) −234.000 −0.891333 −0.445667 0.895199i \(-0.647033\pi\)
−0.445667 + 0.895199i \(0.647033\pi\)
\(42\) 0 0
\(43\) 412.000 1.46115 0.730575 0.682833i \(-0.239252\pi\)
0.730575 + 0.682833i \(0.239252\pi\)
\(44\) 240.000 0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) −360.000 −1.11726 −0.558632 0.829416i \(-0.688674\pi\)
−0.558632 + 0.829416i \(0.688674\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) 0 0
\(52\) 136.000 0.362689
\(53\) 222.000 0.575359 0.287680 0.957727i \(-0.407116\pi\)
0.287680 + 0.957727i \(0.407116\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 256.000 0.610883
\(57\) 0 0
\(58\) 12.0000 0.0271668
\(59\) −660.000 −1.45635 −0.728175 0.685391i \(-0.759631\pi\)
−0.728175 + 0.685391i \(0.759631\pi\)
\(60\) 0 0
\(61\) −490.000 −1.02849 −0.514246 0.857642i \(-0.671928\pi\)
−0.514246 + 0.857642i \(0.671928\pi\)
\(62\) 464.000 0.950453
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −812.000 −1.48062 −0.740310 0.672265i \(-0.765321\pi\)
−0.740310 + 0.672265i \(0.765321\pi\)
\(68\) 168.000 0.299603
\(69\) 0 0
\(70\) 0 0
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) −746.000 −1.19606 −0.598032 0.801472i \(-0.704051\pi\)
−0.598032 + 0.801472i \(0.704051\pi\)
\(74\) 268.000 0.421005
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) −1920.00 −2.84161
\(78\) 0 0
\(79\) 152.000 0.216473 0.108236 0.994125i \(-0.465480\pi\)
0.108236 + 0.994125i \(0.465480\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 468.000 0.630268
\(83\) −804.000 −1.06326 −0.531629 0.846977i \(-0.678420\pi\)
−0.531629 + 0.846977i \(0.678420\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −824.000 −1.03319
\(87\) 0 0
\(88\) −480.000 −0.581456
\(89\) 678.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 0 0
\(94\) 720.000 0.790025
\(95\) 0 0
\(96\) 0 0
\(97\) −194.000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −1362.00 −1.40391
\(99\) 0 0
\(100\) 0 0
\(101\) −798.000 −0.786178 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(102\) 0 0
\(103\) −1088.00 −1.04081 −0.520407 0.853918i \(-0.674220\pi\)
−0.520407 + 0.853918i \(0.674220\pi\)
\(104\) −272.000 −0.256460
\(105\) 0 0
\(106\) −444.000 −0.406840
\(107\) 1716.00 1.55039 0.775196 0.631721i \(-0.217651\pi\)
0.775196 + 0.631721i \(0.217651\pi\)
\(108\) 0 0
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −512.000 −0.431959
\(113\) 426.000 0.354643 0.177322 0.984153i \(-0.443257\pi\)
0.177322 + 0.984153i \(0.443257\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −24.0000 −0.0192099
\(117\) 0 0
\(118\) 1320.00 1.02980
\(119\) −1344.00 −1.03533
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 980.000 0.727254
\(123\) 0 0
\(124\) −928.000 −0.672071
\(125\) 0 0
\(126\) 0 0
\(127\) −200.000 −0.139741 −0.0698706 0.997556i \(-0.522259\pi\)
−0.0698706 + 0.997556i \(0.522259\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −60.0000 −0.0400170 −0.0200085 0.999800i \(-0.506369\pi\)
−0.0200085 + 0.999800i \(0.506369\pi\)
\(132\) 0 0
\(133\) 2432.00 1.58557
\(134\) 1624.00 1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 642.000 0.400363 0.200182 0.979759i \(-0.435847\pi\)
0.200182 + 0.979759i \(0.435847\pi\)
\(138\) 0 0
\(139\) −2836.00 −1.73055 −0.865275 0.501298i \(-0.832856\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 240.000 0.141833
\(143\) 2040.00 1.19296
\(144\) 0 0
\(145\) 0 0
\(146\) 1492.00 0.845745
\(147\) 0 0
\(148\) −536.000 −0.297695
\(149\) 1554.00 0.854420 0.427210 0.904152i \(-0.359496\pi\)
0.427210 + 0.904152i \(0.359496\pi\)
\(150\) 0 0
\(151\) −2272.00 −1.22446 −0.612228 0.790682i \(-0.709726\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(152\) 608.000 0.324443
\(153\) 0 0
\(154\) 3840.00 2.00932
\(155\) 0 0
\(156\) 0 0
\(157\) −1694.00 −0.861120 −0.430560 0.902562i \(-0.641684\pi\)
−0.430560 + 0.902562i \(0.641684\pi\)
\(158\) −304.000 −0.153069
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 52.0000 0.0249874 0.0124937 0.999922i \(-0.496023\pi\)
0.0124937 + 0.999922i \(0.496023\pi\)
\(164\) −936.000 −0.445667
\(165\) 0 0
\(166\) 1608.00 0.751837
\(167\) −1200.00 −0.556041 −0.278020 0.960575i \(-0.589678\pi\)
−0.278020 + 0.960575i \(0.589678\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) 0 0
\(172\) 1648.00 0.730575
\(173\) 54.0000 0.0237315 0.0118657 0.999930i \(-0.496223\pi\)
0.0118657 + 0.999930i \(0.496223\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 960.000 0.411152
\(177\) 0 0
\(178\) −1356.00 −0.570992
\(179\) −876.000 −0.365784 −0.182892 0.983133i \(-0.558546\pi\)
−0.182892 + 0.983133i \(0.558546\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) 2176.00 0.886241
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2520.00 0.985458
\(188\) −1440.00 −0.558632
\(189\) 0 0
\(190\) 0 0
\(191\) 2784.00 1.05468 0.527338 0.849656i \(-0.323190\pi\)
0.527338 + 0.849656i \(0.323190\pi\)
\(192\) 0 0
\(193\) −914.000 −0.340887 −0.170443 0.985367i \(-0.554520\pi\)
−0.170443 + 0.985367i \(0.554520\pi\)
\(194\) 388.000 0.143592
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) −5202.00 −1.88136 −0.940678 0.339300i \(-0.889810\pi\)
−0.940678 + 0.339300i \(0.889810\pi\)
\(198\) 0 0
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1596.00 0.555912
\(203\) 192.000 0.0663830
\(204\) 0 0
\(205\) 0 0
\(206\) 2176.00 0.735967
\(207\) 0 0
\(208\) 544.000 0.181344
\(209\) −4560.00 −1.50920
\(210\) 0 0
\(211\) 740.000 0.241439 0.120720 0.992687i \(-0.461480\pi\)
0.120720 + 0.992687i \(0.461480\pi\)
\(212\) 888.000 0.287680
\(213\) 0 0
\(214\) −3432.00 −1.09629
\(215\) 0 0
\(216\) 0 0
\(217\) 7424.00 2.32246
\(218\) 1940.00 0.602722
\(219\) 0 0
\(220\) 0 0
\(221\) 1428.00 0.434650
\(222\) 0 0
\(223\) 520.000 0.156151 0.0780757 0.996947i \(-0.475122\pi\)
0.0780757 + 0.996947i \(0.475122\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) 396.000 0.115786 0.0578930 0.998323i \(-0.481562\pi\)
0.0578930 + 0.998323i \(0.481562\pi\)
\(228\) 0 0
\(229\) −1330.00 −0.383794 −0.191897 0.981415i \(-0.561464\pi\)
−0.191897 + 0.981415i \(0.561464\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 48.0000 0.0135834
\(233\) 4866.00 1.36816 0.684082 0.729405i \(-0.260203\pi\)
0.684082 + 0.729405i \(0.260203\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2640.00 −0.728175
\(237\) 0 0
\(238\) 2688.00 0.732089
\(239\) 1824.00 0.493660 0.246830 0.969059i \(-0.420611\pi\)
0.246830 + 0.969059i \(0.420611\pi\)
\(240\) 0 0
\(241\) 6482.00 1.73254 0.866270 0.499575i \(-0.166511\pi\)
0.866270 + 0.499575i \(0.166511\pi\)
\(242\) −4538.00 −1.20543
\(243\) 0 0
\(244\) −1960.00 −0.514246
\(245\) 0 0
\(246\) 0 0
\(247\) −2584.00 −0.665652
\(248\) 1856.00 0.475226
\(249\) 0 0
\(250\) 0 0
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 400.000 0.0988119
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4314.00 1.04708 0.523541 0.852001i \(-0.324611\pi\)
0.523541 + 0.852001i \(0.324611\pi\)
\(258\) 0 0
\(259\) 4288.00 1.02874
\(260\) 0 0
\(261\) 0 0
\(262\) 120.000 0.0282963
\(263\) −5280.00 −1.23794 −0.618971 0.785414i \(-0.712450\pi\)
−0.618971 + 0.785414i \(0.712450\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4864.00 −1.12117
\(267\) 0 0
\(268\) −3248.00 −0.740310
\(269\) −5526.00 −1.25251 −0.626257 0.779617i \(-0.715414\pi\)
−0.626257 + 0.779617i \(0.715414\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) 672.000 0.149801
\(273\) 0 0
\(274\) −1284.00 −0.283100
\(275\) 0 0
\(276\) 0 0
\(277\) −2054.00 −0.445534 −0.222767 0.974872i \(-0.571509\pi\)
−0.222767 + 0.974872i \(0.571509\pi\)
\(278\) 5672.00 1.22368
\(279\) 0 0
\(280\) 0 0
\(281\) 7302.00 1.55018 0.775090 0.631850i \(-0.217704\pi\)
0.775090 + 0.631850i \(0.217704\pi\)
\(282\) 0 0
\(283\) 3724.00 0.782222 0.391111 0.920344i \(-0.372091\pi\)
0.391111 + 0.920344i \(0.372091\pi\)
\(284\) −480.000 −0.100291
\(285\) 0 0
\(286\) −4080.00 −0.843551
\(287\) 7488.00 1.54008
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 0 0
\(291\) 0 0
\(292\) −2984.00 −0.598032
\(293\) −7218.00 −1.43918 −0.719591 0.694399i \(-0.755670\pi\)
−0.719591 + 0.694399i \(0.755670\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1072.00 0.210502
\(297\) 0 0
\(298\) −3108.00 −0.604166
\(299\) 0 0
\(300\) 0 0
\(301\) −13184.0 −2.52463
\(302\) 4544.00 0.865821
\(303\) 0 0
\(304\) −1216.00 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) −2540.00 −0.472200 −0.236100 0.971729i \(-0.575869\pi\)
−0.236100 + 0.971729i \(0.575869\pi\)
\(308\) −7680.00 −1.42081
\(309\) 0 0
\(310\) 0 0
\(311\) −1560.00 −0.284436 −0.142218 0.989835i \(-0.545423\pi\)
−0.142218 + 0.989835i \(0.545423\pi\)
\(312\) 0 0
\(313\) 934.000 0.168667 0.0843335 0.996438i \(-0.473124\pi\)
0.0843335 + 0.996438i \(0.473124\pi\)
\(314\) 3388.00 0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) −1674.00 −0.296597 −0.148298 0.988943i \(-0.547380\pi\)
−0.148298 + 0.988943i \(0.547380\pi\)
\(318\) 0 0
\(319\) −360.000 −0.0631854
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3192.00 −0.549869
\(324\) 0 0
\(325\) 0 0
\(326\) −104.000 −0.0176688
\(327\) 0 0
\(328\) 1872.00 0.315134
\(329\) 11520.0 1.93045
\(330\) 0 0
\(331\) −3988.00 −0.662237 −0.331118 0.943589i \(-0.607426\pi\)
−0.331118 + 0.943589i \(0.607426\pi\)
\(332\) −3216.00 −0.531629
\(333\) 0 0
\(334\) 2400.00 0.393180
\(335\) 0 0
\(336\) 0 0
\(337\) −2.00000 −0.000323285 0 −0.000161642 1.00000i \(-0.500051\pi\)
−0.000161642 1.00000i \(0.500051\pi\)
\(338\) 2082.00 0.335047
\(339\) 0 0
\(340\) 0 0
\(341\) −13920.0 −2.21059
\(342\) 0 0
\(343\) −10816.0 −1.70265
\(344\) −3296.00 −0.516594
\(345\) 0 0
\(346\) −108.000 −0.0167807
\(347\) 1764.00 0.272901 0.136450 0.990647i \(-0.456431\pi\)
0.136450 + 0.990647i \(0.456431\pi\)
\(348\) 0 0
\(349\) 4310.00 0.661057 0.330529 0.943796i \(-0.392773\pi\)
0.330529 + 0.943796i \(0.392773\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1920.00 −0.290728
\(353\) 138.000 0.0208074 0.0104037 0.999946i \(-0.496688\pi\)
0.0104037 + 0.999946i \(0.496688\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2712.00 0.403752
\(357\) 0 0
\(358\) 1752.00 0.258648
\(359\) 11976.0 1.76064 0.880319 0.474382i \(-0.157328\pi\)
0.880319 + 0.474382i \(0.157328\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) −7708.00 −1.11913
\(363\) 0 0
\(364\) −4352.00 −0.626667
\(365\) 0 0
\(366\) 0 0
\(367\) −9704.00 −1.38023 −0.690115 0.723699i \(-0.742440\pi\)
−0.690115 + 0.723699i \(0.742440\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7104.00 −0.994128
\(372\) 0 0
\(373\) 8122.00 1.12746 0.563728 0.825960i \(-0.309367\pi\)
0.563728 + 0.825960i \(0.309367\pi\)
\(374\) −5040.00 −0.696824
\(375\) 0 0
\(376\) 2880.00 0.395012
\(377\) −204.000 −0.0278688
\(378\) 0 0
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5568.00 −0.745769
\(383\) −2520.00 −0.336204 −0.168102 0.985770i \(-0.553764\pi\)
−0.168102 + 0.985770i \(0.553764\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1828.00 0.241043
\(387\) 0 0
\(388\) −776.000 −0.101535
\(389\) −1566.00 −0.204111 −0.102056 0.994779i \(-0.532542\pi\)
−0.102056 + 0.994779i \(0.532542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5448.00 −0.701953
\(393\) 0 0
\(394\) 10404.0 1.33032
\(395\) 0 0
\(396\) 0 0
\(397\) 4354.00 0.550431 0.275215 0.961383i \(-0.411251\pi\)
0.275215 + 0.961383i \(0.411251\pi\)
\(398\) −6304.00 −0.793947
\(399\) 0 0
\(400\) 0 0
\(401\) 8046.00 1.00199 0.500995 0.865450i \(-0.332967\pi\)
0.500995 + 0.865450i \(0.332967\pi\)
\(402\) 0 0
\(403\) −7888.00 −0.975011
\(404\) −3192.00 −0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) −8040.00 −0.979184
\(408\) 0 0
\(409\) −2806.00 −0.339237 −0.169618 0.985510i \(-0.554253\pi\)
−0.169618 + 0.985510i \(0.554253\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4352.00 −0.520407
\(413\) 21120.0 2.51634
\(414\) 0 0
\(415\) 0 0
\(416\) −1088.00 −0.128230
\(417\) 0 0
\(418\) 9120.00 1.06716
\(419\) −11580.0 −1.35017 −0.675084 0.737741i \(-0.735892\pi\)
−0.675084 + 0.737741i \(0.735892\pi\)
\(420\) 0 0
\(421\) −370.000 −0.0428330 −0.0214165 0.999771i \(-0.506818\pi\)
−0.0214165 + 0.999771i \(0.506818\pi\)
\(422\) −1480.00 −0.170723
\(423\) 0 0
\(424\) −1776.00 −0.203420
\(425\) 0 0
\(426\) 0 0
\(427\) 15680.0 1.77707
\(428\) 6864.00 0.775196
\(429\) 0 0
\(430\) 0 0
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) 3742.00 0.415310 0.207655 0.978202i \(-0.433417\pi\)
0.207655 + 0.978202i \(0.433417\pi\)
\(434\) −14848.0 −1.64223
\(435\) 0 0
\(436\) −3880.00 −0.426189
\(437\) 0 0
\(438\) 0 0
\(439\) −6208.00 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2856.00 −0.307344
\(443\) −15564.0 −1.66923 −0.834614 0.550835i \(-0.814309\pi\)
−0.834614 + 0.550835i \(0.814309\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1040.00 −0.110416
\(447\) 0 0
\(448\) −2048.00 −0.215980
\(449\) 15774.0 1.65795 0.828977 0.559283i \(-0.188924\pi\)
0.828977 + 0.559283i \(0.188924\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) 1704.00 0.177322
\(453\) 0 0
\(454\) −792.000 −0.0818731
\(455\) 0 0
\(456\) 0 0
\(457\) −9722.00 −0.995133 −0.497567 0.867426i \(-0.665773\pi\)
−0.497567 + 0.867426i \(0.665773\pi\)
\(458\) 2660.00 0.271383
\(459\) 0 0
\(460\) 0 0
\(461\) 10890.0 1.10021 0.550106 0.835095i \(-0.314587\pi\)
0.550106 + 0.835095i \(0.314587\pi\)
\(462\) 0 0
\(463\) −15128.0 −1.51848 −0.759242 0.650809i \(-0.774430\pi\)
−0.759242 + 0.650809i \(0.774430\pi\)
\(464\) −96.0000 −0.00960493
\(465\) 0 0
\(466\) −9732.00 −0.967438
\(467\) 10668.0 1.05708 0.528540 0.848909i \(-0.322740\pi\)
0.528540 + 0.848909i \(0.322740\pi\)
\(468\) 0 0
\(469\) 25984.0 2.55827
\(470\) 0 0
\(471\) 0 0
\(472\) 5280.00 0.514898
\(473\) 24720.0 2.40302
\(474\) 0 0
\(475\) 0 0
\(476\) −5376.00 −0.517665
\(477\) 0 0
\(478\) −3648.00 −0.349070
\(479\) −15264.0 −1.45601 −0.728006 0.685571i \(-0.759553\pi\)
−0.728006 + 0.685571i \(0.759553\pi\)
\(480\) 0 0
\(481\) −4556.00 −0.431883
\(482\) −12964.0 −1.22509
\(483\) 0 0
\(484\) 9076.00 0.852367
\(485\) 0 0
\(486\) 0 0
\(487\) 5776.00 0.537445 0.268722 0.963218i \(-0.413399\pi\)
0.268722 + 0.963218i \(0.413399\pi\)
\(488\) 3920.00 0.363627
\(489\) 0 0
\(490\) 0 0
\(491\) −14244.0 −1.30921 −0.654606 0.755971i \(-0.727165\pi\)
−0.654606 + 0.755971i \(0.727165\pi\)
\(492\) 0 0
\(493\) −252.000 −0.0230213
\(494\) 5168.00 0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) 3840.00 0.346575
\(498\) 0 0
\(499\) −17116.0 −1.53551 −0.767753 0.640746i \(-0.778625\pi\)
−0.767753 + 0.640746i \(0.778625\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2952.00 0.262459
\(503\) −16848.0 −1.49347 −0.746735 0.665122i \(-0.768380\pi\)
−0.746735 + 0.665122i \(0.768380\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −800.000 −0.0698706
\(509\) 3834.00 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(510\) 0 0
\(511\) 23872.0 2.06660
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −8628.00 −0.740398
\(515\) 0 0
\(516\) 0 0
\(517\) −21600.0 −1.83746
\(518\) −8576.00 −0.727428
\(519\) 0 0
\(520\) 0 0
\(521\) 18822.0 1.58274 0.791369 0.611338i \(-0.209369\pi\)
0.791369 + 0.611338i \(0.209369\pi\)
\(522\) 0 0
\(523\) 15340.0 1.28255 0.641273 0.767313i \(-0.278407\pi\)
0.641273 + 0.767313i \(0.278407\pi\)
\(524\) −240.000 −0.0200085
\(525\) 0 0
\(526\) 10560.0 0.875357
\(527\) −9744.00 −0.805418
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 9728.00 0.792786
\(533\) −7956.00 −0.646553
\(534\) 0 0
\(535\) 0 0
\(536\) 6496.00 0.523478
\(537\) 0 0
\(538\) 11052.0 0.885661
\(539\) 40860.0 3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) −4048.00 −0.320805
\(543\) 0 0
\(544\) −1344.00 −0.105926
\(545\) 0 0
\(546\) 0 0
\(547\) 10036.0 0.784476 0.392238 0.919864i \(-0.371701\pi\)
0.392238 + 0.919864i \(0.371701\pi\)
\(548\) 2568.00 0.200182
\(549\) 0 0
\(550\) 0 0
\(551\) 456.000 0.0352564
\(552\) 0 0
\(553\) −4864.00 −0.374030
\(554\) 4108.00 0.315040
\(555\) 0 0
\(556\) −11344.0 −0.865275
\(557\) 10326.0 0.785506 0.392753 0.919644i \(-0.371523\pi\)
0.392753 + 0.919644i \(0.371523\pi\)
\(558\) 0 0
\(559\) 14008.0 1.05988
\(560\) 0 0
\(561\) 0 0
\(562\) −14604.0 −1.09614
\(563\) 4524.00 0.338657 0.169328 0.985560i \(-0.445840\pi\)
0.169328 + 0.985560i \(0.445840\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7448.00 −0.553114
\(567\) 0 0
\(568\) 960.000 0.0709167
\(569\) −16362.0 −1.20550 −0.602751 0.797929i \(-0.705929\pi\)
−0.602751 + 0.797929i \(0.705929\pi\)
\(570\) 0 0
\(571\) 6620.00 0.485181 0.242591 0.970129i \(-0.422003\pi\)
0.242591 + 0.970129i \(0.422003\pi\)
\(572\) 8160.00 0.596480
\(573\) 0 0
\(574\) −14976.0 −1.08900
\(575\) 0 0
\(576\) 0 0
\(577\) −8834.00 −0.637373 −0.318687 0.947860i \(-0.603242\pi\)
−0.318687 + 0.947860i \(0.603242\pi\)
\(578\) 6298.00 0.453222
\(579\) 0 0
\(580\) 0 0
\(581\) 25728.0 1.83714
\(582\) 0 0
\(583\) 13320.0 0.946240
\(584\) 5968.00 0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) 3636.00 0.255662 0.127831 0.991796i \(-0.459198\pi\)
0.127831 + 0.991796i \(0.459198\pi\)
\(588\) 0 0
\(589\) 17632.0 1.23347
\(590\) 0 0
\(591\) 0 0
\(592\) −2144.00 −0.148848
\(593\) 6570.00 0.454971 0.227485 0.973782i \(-0.426950\pi\)
0.227485 + 0.973782i \(0.426950\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6216.00 0.427210
\(597\) 0 0
\(598\) 0 0
\(599\) −16584.0 −1.13123 −0.565613 0.824671i \(-0.691360\pi\)
−0.565613 + 0.824671i \(0.691360\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) 26368.0 1.78518
\(603\) 0 0
\(604\) −9088.00 −0.612228
\(605\) 0 0
\(606\) 0 0
\(607\) 18568.0 1.24160 0.620801 0.783969i \(-0.286808\pi\)
0.620801 + 0.783969i \(0.286808\pi\)
\(608\) 2432.00 0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) 13114.0 0.864061 0.432031 0.901859i \(-0.357797\pi\)
0.432031 + 0.901859i \(0.357797\pi\)
\(614\) 5080.00 0.333896
\(615\) 0 0
\(616\) 15360.0 1.00466
\(617\) 5250.00 0.342556 0.171278 0.985223i \(-0.445210\pi\)
0.171278 + 0.985223i \(0.445210\pi\)
\(618\) 0 0
\(619\) −10804.0 −0.701534 −0.350767 0.936463i \(-0.614079\pi\)
−0.350767 + 0.936463i \(0.614079\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3120.00 0.201126
\(623\) −21696.0 −1.39524
\(624\) 0 0
\(625\) 0 0
\(626\) −1868.00 −0.119266
\(627\) 0 0
\(628\) −6776.00 −0.430560
\(629\) −5628.00 −0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) −1216.00 −0.0765346
\(633\) 0 0
\(634\) 3348.00 0.209726
\(635\) 0 0
\(636\) 0 0
\(637\) 23154.0 1.44018
\(638\) 720.000 0.0446788
\(639\) 0 0
\(640\) 0 0
\(641\) −18930.0 −1.16644 −0.583222 0.812313i \(-0.698208\pi\)
−0.583222 + 0.812313i \(0.698208\pi\)
\(642\) 0 0
\(643\) −20108.0 −1.23325 −0.616627 0.787256i \(-0.711501\pi\)
−0.616627 + 0.787256i \(0.711501\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6384.00 0.388816
\(647\) −7152.00 −0.434581 −0.217291 0.976107i \(-0.569722\pi\)
−0.217291 + 0.976107i \(0.569722\pi\)
\(648\) 0 0
\(649\) −39600.0 −2.39512
\(650\) 0 0
\(651\) 0 0
\(652\) 208.000 0.0124937
\(653\) −31626.0 −1.89528 −0.947642 0.319333i \(-0.896541\pi\)
−0.947642 + 0.319333i \(0.896541\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3744.00 −0.222833
\(657\) 0 0
\(658\) −23040.0 −1.36503
\(659\) −28092.0 −1.66056 −0.830280 0.557347i \(-0.811819\pi\)
−0.830280 + 0.557347i \(0.811819\pi\)
\(660\) 0 0
\(661\) −13186.0 −0.775909 −0.387955 0.921678i \(-0.626818\pi\)
−0.387955 + 0.921678i \(0.626818\pi\)
\(662\) 7976.00 0.468272
\(663\) 0 0
\(664\) 6432.00 0.375919
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −4800.00 −0.278020
\(669\) 0 0
\(670\) 0 0
\(671\) −29400.0 −1.69147
\(672\) 0 0
\(673\) −5138.00 −0.294287 −0.147144 0.989115i \(-0.547008\pi\)
−0.147144 + 0.989115i \(0.547008\pi\)
\(674\) 4.00000 0.000228597 0
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) 6078.00 0.345047 0.172523 0.985005i \(-0.444808\pi\)
0.172523 + 0.985005i \(0.444808\pi\)
\(678\) 0 0
\(679\) 6208.00 0.350871
\(680\) 0 0
\(681\) 0 0
\(682\) 27840.0 1.56312
\(683\) 32244.0 1.80642 0.903208 0.429203i \(-0.141205\pi\)
0.903208 + 0.429203i \(0.141205\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 21632.0 1.20396
\(687\) 0 0
\(688\) 6592.00 0.365287
\(689\) 7548.00 0.417353
\(690\) 0 0
\(691\) 4484.00 0.246859 0.123429 0.992353i \(-0.460611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(692\) 216.000 0.0118657
\(693\) 0 0
\(694\) −3528.00 −0.192970
\(695\) 0 0
\(696\) 0 0
\(697\) −9828.00 −0.534092
\(698\) −8620.00 −0.467438
\(699\) 0 0
\(700\) 0 0
\(701\) 30426.0 1.63934 0.819668 0.572839i \(-0.194158\pi\)
0.819668 + 0.572839i \(0.194158\pi\)
\(702\) 0 0
\(703\) 10184.0 0.546368
\(704\) 3840.00 0.205576
\(705\) 0 0
\(706\) −276.000 −0.0147130
\(707\) 25536.0 1.35839
\(708\) 0 0
\(709\) 13262.0 0.702489 0.351245 0.936284i \(-0.385759\pi\)
0.351245 + 0.936284i \(0.385759\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −5424.00 −0.285496
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −3504.00 −0.182892
\(717\) 0 0
\(718\) −23952.0 −1.24496
\(719\) −13920.0 −0.722014 −0.361007 0.932563i \(-0.617567\pi\)
−0.361007 + 0.932563i \(0.617567\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) 2166.00 0.111648
\(723\) 0 0
\(724\) 15416.0 0.791341
\(725\) 0 0
\(726\) 0 0
\(727\) 9376.00 0.478317 0.239159 0.970981i \(-0.423128\pi\)
0.239159 + 0.970981i \(0.423128\pi\)
\(728\) 8704.00 0.443120
\(729\) 0 0
\(730\) 0 0
\(731\) 17304.0 0.875529
\(732\) 0 0
\(733\) −6014.00 −0.303045 −0.151523 0.988454i \(-0.548418\pi\)
−0.151523 + 0.988454i \(0.548418\pi\)
\(734\) 19408.0 0.975971
\(735\) 0 0
\(736\) 0 0
\(737\) −48720.0 −2.43504
\(738\) 0 0
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 14208.0 0.702954
\(743\) 31248.0 1.54290 0.771452 0.636287i \(-0.219531\pi\)
0.771452 + 0.636287i \(0.219531\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −16244.0 −0.797232
\(747\) 0 0
\(748\) 10080.0 0.492729
\(749\) −54912.0 −2.67883
\(750\) 0 0
\(751\) 32840.0 1.59567 0.797835 0.602875i \(-0.205978\pi\)
0.797835 + 0.602875i \(0.205978\pi\)
\(752\) −5760.00 −0.279316
\(753\) 0 0
\(754\) 408.000 0.0197062
\(755\) 0 0
\(756\) 0 0
\(757\) 19066.0 0.915410 0.457705 0.889104i \(-0.348672\pi\)
0.457705 + 0.889104i \(0.348672\pi\)
\(758\) −6808.00 −0.326224
\(759\) 0 0
\(760\) 0 0
\(761\) −6858.00 −0.326678 −0.163339 0.986570i \(-0.552227\pi\)
−0.163339 + 0.986570i \(0.552227\pi\)
\(762\) 0 0
\(763\) 31040.0 1.47277
\(764\) 11136.0 0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) −22440.0 −1.05640
\(768\) 0 0
\(769\) 22178.0 1.04000 0.519999 0.854167i \(-0.325932\pi\)
0.519999 + 0.854167i \(0.325932\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3656.00 −0.170443
\(773\) 14286.0 0.664724 0.332362 0.943152i \(-0.392154\pi\)
0.332362 + 0.943152i \(0.392154\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1552.00 0.0717958
\(777\) 0 0
\(778\) 3132.00 0.144329
\(779\) 17784.0 0.817943
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) 0 0
\(784\) 10896.0 0.496356
\(785\) 0 0
\(786\) 0 0
\(787\) 18868.0 0.854602 0.427301 0.904109i \(-0.359465\pi\)
0.427301 + 0.904109i \(0.359465\pi\)
\(788\) −20808.0 −0.940678
\(789\) 0 0
\(790\) 0 0
\(791\) −13632.0 −0.612766
\(792\) 0 0
\(793\) −16660.0 −0.746045
\(794\) −8708.00 −0.389213
\(795\) 0 0
\(796\) 12608.0 0.561405
\(797\) −21690.0 −0.963989 −0.481994 0.876174i \(-0.660087\pi\)
−0.481994 + 0.876174i \(0.660087\pi\)
\(798\) 0 0
\(799\) −15120.0 −0.669471
\(800\) 0 0
\(801\) 0 0
\(802\) −16092.0 −0.708514
\(803\) −44760.0 −1.96706
\(804\) 0 0
\(805\) 0 0
\(806\) 15776.0 0.689437
\(807\) 0 0
\(808\) 6384.00 0.277956
\(809\) 24726.0 1.07456 0.537281 0.843404i \(-0.319452\pi\)
0.537281 + 0.843404i \(0.319452\pi\)
\(810\) 0 0
\(811\) −2644.00 −0.114480 −0.0572401 0.998360i \(-0.518230\pi\)
−0.0572401 + 0.998360i \(0.518230\pi\)
\(812\) 768.000 0.0331915
\(813\) 0 0
\(814\) 16080.0 0.692388
\(815\) 0 0
\(816\) 0 0
\(817\) −31312.0 −1.34084
\(818\) 5612.00 0.239877
\(819\) 0 0
\(820\) 0 0
\(821\) 37842.0 1.60864 0.804321 0.594195i \(-0.202529\pi\)
0.804321 + 0.594195i \(0.202529\pi\)
\(822\) 0 0
\(823\) 880.000 0.0372720 0.0186360 0.999826i \(-0.494068\pi\)
0.0186360 + 0.999826i \(0.494068\pi\)
\(824\) 8704.00 0.367983
\(825\) 0 0
\(826\) −42240.0 −1.77932
\(827\) −12876.0 −0.541406 −0.270703 0.962663i \(-0.587256\pi\)
−0.270703 + 0.962663i \(0.587256\pi\)
\(828\) 0 0
\(829\) −25498.0 −1.06825 −0.534127 0.845404i \(-0.679359\pi\)
−0.534127 + 0.845404i \(0.679359\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2176.00 0.0906721
\(833\) 28602.0 1.18968
\(834\) 0 0
\(835\) 0 0
\(836\) −18240.0 −0.754598
\(837\) 0 0
\(838\) 23160.0 0.954712
\(839\) 40584.0 1.66998 0.834991 0.550263i \(-0.185473\pi\)
0.834991 + 0.550263i \(0.185473\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 740.000 0.0302875
\(843\) 0 0
\(844\) 2960.00 0.120720
\(845\) 0 0
\(846\) 0 0
\(847\) −72608.0 −2.94550
\(848\) 3552.00 0.143840
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 25738.0 1.03312 0.516561 0.856251i \(-0.327212\pi\)
0.516561 + 0.856251i \(0.327212\pi\)
\(854\) −31360.0 −1.25658
\(855\) 0 0
\(856\) −13728.0 −0.548146
\(857\) 13314.0 0.530686 0.265343 0.964154i \(-0.414515\pi\)
0.265343 + 0.964154i \(0.414515\pi\)
\(858\) 0 0
\(859\) 24524.0 0.974096 0.487048 0.873375i \(-0.338074\pi\)
0.487048 + 0.873375i \(0.338074\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10080.0 0.398290
\(863\) 5592.00 0.220572 0.110286 0.993900i \(-0.464823\pi\)
0.110286 + 0.993900i \(0.464823\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −7484.00 −0.293668
\(867\) 0 0
\(868\) 29696.0 1.16123
\(869\) 9120.00 0.356012
\(870\) 0 0
\(871\) −27608.0 −1.07401
\(872\) 7760.00 0.301361
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14386.0 0.553912 0.276956 0.960883i \(-0.410674\pi\)
0.276956 + 0.960883i \(0.410674\pi\)
\(878\) 12416.0 0.477243
\(879\) 0 0
\(880\) 0 0
\(881\) −47106.0 −1.80141 −0.900705 0.434432i \(-0.856949\pi\)
−0.900705 + 0.434432i \(0.856949\pi\)
\(882\) 0 0
\(883\) −51548.0 −1.96458 −0.982292 0.187354i \(-0.940009\pi\)
−0.982292 + 0.187354i \(0.940009\pi\)
\(884\) 5712.00 0.217325
\(885\) 0 0
\(886\) 31128.0 1.18032
\(887\) 34080.0 1.29007 0.645036 0.764152i \(-0.276842\pi\)
0.645036 + 0.764152i \(0.276842\pi\)
\(888\) 0 0
\(889\) 6400.00 0.241450
\(890\) 0 0
\(891\) 0 0
\(892\) 2080.00 0.0780757
\(893\) 27360.0 1.02527
\(894\) 0 0
\(895\) 0 0
\(896\) 4096.00 0.152721
\(897\) 0 0
\(898\) −31548.0 −1.17235
\(899\) 1392.00 0.0516416
\(900\) 0 0
\(901\) 9324.00 0.344759
\(902\) 28080.0 1.03654
\(903\) 0 0
\(904\) −3408.00 −0.125385
\(905\) 0 0
\(906\) 0 0
\(907\) −25748.0 −0.942611 −0.471306 0.881970i \(-0.656217\pi\)
−0.471306 + 0.881970i \(0.656217\pi\)
\(908\) 1584.00 0.0578930
\(909\) 0 0
\(910\) 0 0
\(911\) 24768.0 0.900769 0.450384 0.892835i \(-0.351287\pi\)
0.450384 + 0.892835i \(0.351287\pi\)
\(912\) 0 0
\(913\) −48240.0 −1.74864
\(914\) 19444.0 0.703666
\(915\) 0 0
\(916\) −5320.00 −0.191897
\(917\) 1920.00 0.0691428
\(918\) 0 0
\(919\) −31264.0 −1.12220 −0.561101 0.827747i \(-0.689622\pi\)
−0.561101 + 0.827747i \(0.689622\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −21780.0 −0.777968
\(923\) −4080.00 −0.145498
\(924\) 0 0
\(925\) 0 0
\(926\) 30256.0 1.07373
\(927\) 0 0
\(928\) 192.000 0.00679171
\(929\) 6174.00 0.218043 0.109022 0.994039i \(-0.465228\pi\)
0.109022 + 0.994039i \(0.465228\pi\)
\(930\) 0 0
\(931\) −51756.0 −1.82195
\(932\) 19464.0 0.684082
\(933\) 0 0
\(934\) −21336.0 −0.747468
\(935\) 0 0
\(936\) 0 0
\(937\) −28922.0 −1.00837 −0.504184 0.863596i \(-0.668207\pi\)
−0.504184 + 0.863596i \(0.668207\pi\)
\(938\) −51968.0 −1.80897
\(939\) 0 0
\(940\) 0 0
\(941\) −29238.0 −1.01289 −0.506446 0.862272i \(-0.669041\pi\)
−0.506446 + 0.862272i \(0.669041\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −10560.0 −0.364088
\(945\) 0 0
\(946\) −49440.0 −1.69919
\(947\) −2868.00 −0.0984134 −0.0492067 0.998789i \(-0.515669\pi\)
−0.0492067 + 0.998789i \(0.515669\pi\)
\(948\) 0 0
\(949\) −25364.0 −0.867598
\(950\) 0 0
\(951\) 0 0
\(952\) 10752.0 0.366044
\(953\) 24018.0 0.816390 0.408195 0.912895i \(-0.366158\pi\)
0.408195 + 0.912895i \(0.366158\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7296.00 0.246830
\(957\) 0 0
\(958\) 30528.0 1.02956
\(959\) −20544.0 −0.691763
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) 9112.00 0.305387
\(963\) 0 0
\(964\) 25928.0 0.866270
\(965\) 0 0
\(966\) 0 0
\(967\) −25712.0 −0.855059 −0.427530 0.904001i \(-0.640616\pi\)
−0.427530 + 0.904001i \(0.640616\pi\)
\(968\) −18152.0 −0.602714
\(969\) 0 0
\(970\) 0 0
\(971\) 12396.0 0.409688 0.204844 0.978795i \(-0.434331\pi\)
0.204844 + 0.978795i \(0.434331\pi\)
\(972\) 0 0
\(973\) 90752.0 2.99011
\(974\) −11552.0 −0.380031
\(975\) 0 0
\(976\) −7840.00 −0.257123
\(977\) −46614.0 −1.52642 −0.763211 0.646150i \(-0.776378\pi\)
−0.763211 + 0.646150i \(0.776378\pi\)
\(978\) 0 0
\(979\) 40680.0 1.32803
\(980\) 0 0
\(981\) 0 0
\(982\) 28488.0 0.925752
\(983\) −672.000 −0.0218041 −0.0109021 0.999941i \(-0.503470\pi\)
−0.0109021 + 0.999941i \(0.503470\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 504.000 0.0162785
\(987\) 0 0
\(988\) −10336.0 −0.332826
\(989\) 0 0
\(990\) 0 0
\(991\) −38776.0 −1.24295 −0.621473 0.783435i \(-0.713466\pi\)
−0.621473 + 0.783435i \(0.713466\pi\)
\(992\) 7424.00 0.237613
\(993\) 0 0
\(994\) −7680.00 −0.245065
\(995\) 0 0
\(996\) 0 0
\(997\) −30422.0 −0.966374 −0.483187 0.875517i \(-0.660521\pi\)
−0.483187 + 0.875517i \(0.660521\pi\)
\(998\) 34232.0 1.08577
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.a.b.1.1 1
3.2 odd 2 150.4.a.e.1.1 1
5.2 odd 4 450.4.c.k.199.1 2
5.3 odd 4 450.4.c.k.199.2 2
5.4 even 2 90.4.a.d.1.1 1
12.11 even 2 1200.4.a.bk.1.1 1
15.2 even 4 150.4.c.a.49.2 2
15.8 even 4 150.4.c.a.49.1 2
15.14 odd 2 30.4.a.a.1.1 1
20.19 odd 2 720.4.a.b.1.1 1
45.4 even 6 810.4.e.e.541.1 2
45.14 odd 6 810.4.e.m.541.1 2
45.29 odd 6 810.4.e.m.271.1 2
45.34 even 6 810.4.e.e.271.1 2
60.23 odd 4 1200.4.f.u.49.2 2
60.47 odd 4 1200.4.f.u.49.1 2
60.59 even 2 240.4.a.c.1.1 1
105.104 even 2 1470.4.a.a.1.1 1
120.29 odd 2 960.4.a.j.1.1 1
120.59 even 2 960.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.a.1.1 1 15.14 odd 2
90.4.a.d.1.1 1 5.4 even 2
150.4.a.e.1.1 1 3.2 odd 2
150.4.c.a.49.1 2 15.8 even 4
150.4.c.a.49.2 2 15.2 even 4
240.4.a.c.1.1 1 60.59 even 2
450.4.a.b.1.1 1 1.1 even 1 trivial
450.4.c.k.199.1 2 5.2 odd 4
450.4.c.k.199.2 2 5.3 odd 4
720.4.a.b.1.1 1 20.19 odd 2
810.4.e.e.271.1 2 45.34 even 6
810.4.e.e.541.1 2 45.4 even 6
810.4.e.m.271.1 2 45.29 odd 6
810.4.e.m.541.1 2 45.14 odd 6
960.4.a.j.1.1 1 120.29 odd 2
960.4.a.s.1.1 1 120.59 even 2
1200.4.a.bk.1.1 1 12.11 even 2
1200.4.f.u.49.1 2 60.47 odd 4
1200.4.f.u.49.2 2 60.23 odd 4
1470.4.a.a.1.1 1 105.104 even 2