Newspace parameters
Level: | \( N \) | \(=\) | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 450.i (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(12.2616118962\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 18) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(1 - \beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
−1.22474 | − | 0.707107i | 2.44949 | + | 1.73205i | 1.00000 | + | 1.73205i | 0 | −1.77526 | − | 3.85337i | −4.17423 | + | 7.22999i | − | 2.82843i | 3.00000 | + | 8.48528i | 0 | |||||||||||||||||
101.2 | 1.22474 | + | 0.707107i | −2.44949 | + | 1.73205i | 1.00000 | + | 1.73205i | 0 | −4.22474 | + | 0.389270i | 3.17423 | − | 5.49794i | 2.82843i | 3.00000 | − | 8.48528i | 0 | |||||||||||||||||||
401.1 | −1.22474 | + | 0.707107i | 2.44949 | − | 1.73205i | 1.00000 | − | 1.73205i | 0 | −1.77526 | + | 3.85337i | −4.17423 | − | 7.22999i | 2.82843i | 3.00000 | − | 8.48528i | 0 | |||||||||||||||||||
401.2 | 1.22474 | − | 0.707107i | −2.44949 | − | 1.73205i | 1.00000 | − | 1.73205i | 0 | −4.22474 | − | 0.389270i | 3.17423 | + | 5.49794i | − | 2.82843i | 3.00000 | + | 8.48528i | 0 | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 450.3.i.b | 4 | |
3.b | odd | 2 | 1 | 1350.3.i.b | 4 | ||
5.b | even | 2 | 1 | 18.3.d.a | ✓ | 4 | |
5.c | odd | 4 | 2 | 450.3.k.a | 8 | ||
9.c | even | 3 | 1 | 1350.3.i.b | 4 | ||
9.d | odd | 6 | 1 | inner | 450.3.i.b | 4 | |
15.d | odd | 2 | 1 | 54.3.d.a | 4 | ||
15.e | even | 4 | 2 | 1350.3.k.a | 8 | ||
20.d | odd | 2 | 1 | 144.3.q.c | 4 | ||
40.e | odd | 2 | 1 | 576.3.q.e | 4 | ||
40.f | even | 2 | 1 | 576.3.q.f | 4 | ||
45.h | odd | 6 | 1 | 18.3.d.a | ✓ | 4 | |
45.h | odd | 6 | 1 | 162.3.b.a | 4 | ||
45.j | even | 6 | 1 | 54.3.d.a | 4 | ||
45.j | even | 6 | 1 | 162.3.b.a | 4 | ||
45.k | odd | 12 | 2 | 1350.3.k.a | 8 | ||
45.l | even | 12 | 2 | 450.3.k.a | 8 | ||
60.h | even | 2 | 1 | 432.3.q.d | 4 | ||
120.i | odd | 2 | 1 | 1728.3.q.d | 4 | ||
120.m | even | 2 | 1 | 1728.3.q.c | 4 | ||
180.n | even | 6 | 1 | 144.3.q.c | 4 | ||
180.n | even | 6 | 1 | 1296.3.e.g | 4 | ||
180.p | odd | 6 | 1 | 432.3.q.d | 4 | ||
180.p | odd | 6 | 1 | 1296.3.e.g | 4 | ||
360.z | odd | 6 | 1 | 1728.3.q.c | 4 | ||
360.bd | even | 6 | 1 | 576.3.q.e | 4 | ||
360.bh | odd | 6 | 1 | 576.3.q.f | 4 | ||
360.bk | even | 6 | 1 | 1728.3.q.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.3.d.a | ✓ | 4 | 5.b | even | 2 | 1 | |
18.3.d.a | ✓ | 4 | 45.h | odd | 6 | 1 | |
54.3.d.a | 4 | 15.d | odd | 2 | 1 | ||
54.3.d.a | 4 | 45.j | even | 6 | 1 | ||
144.3.q.c | 4 | 20.d | odd | 2 | 1 | ||
144.3.q.c | 4 | 180.n | even | 6 | 1 | ||
162.3.b.a | 4 | 45.h | odd | 6 | 1 | ||
162.3.b.a | 4 | 45.j | even | 6 | 1 | ||
432.3.q.d | 4 | 60.h | even | 2 | 1 | ||
432.3.q.d | 4 | 180.p | odd | 6 | 1 | ||
450.3.i.b | 4 | 1.a | even | 1 | 1 | trivial | |
450.3.i.b | 4 | 9.d | odd | 6 | 1 | inner | |
450.3.k.a | 8 | 5.c | odd | 4 | 2 | ||
450.3.k.a | 8 | 45.l | even | 12 | 2 | ||
576.3.q.e | 4 | 40.e | odd | 2 | 1 | ||
576.3.q.e | 4 | 360.bd | even | 6 | 1 | ||
576.3.q.f | 4 | 40.f | even | 2 | 1 | ||
576.3.q.f | 4 | 360.bh | odd | 6 | 1 | ||
1296.3.e.g | 4 | 180.n | even | 6 | 1 | ||
1296.3.e.g | 4 | 180.p | odd | 6 | 1 | ||
1350.3.i.b | 4 | 3.b | odd | 2 | 1 | ||
1350.3.i.b | 4 | 9.c | even | 3 | 1 | ||
1350.3.k.a | 8 | 15.e | even | 4 | 2 | ||
1350.3.k.a | 8 | 45.k | odd | 12 | 2 | ||
1728.3.q.c | 4 | 120.m | even | 2 | 1 | ||
1728.3.q.c | 4 | 360.z | odd | 6 | 1 | ||
1728.3.q.d | 4 | 120.i | odd | 2 | 1 | ||
1728.3.q.d | 4 | 360.bk | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} + 2T_{7}^{3} + 57T_{7}^{2} - 106T_{7} + 2809 \)
acting on \(S_{3}^{\mathrm{new}}(450, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 2T^{2} + 4 \)
$3$
\( T^{4} - 6T^{2} + 81 \)
$5$
\( T^{4} \)
$7$
\( T^{4} + 2 T^{3} + 57 T^{2} + \cdots + 2809 \)
$11$
\( T^{4} - 18 T^{3} + 117 T^{2} + \cdots + 81 \)
$13$
\( T^{4} - 10 T^{3} + 291 T^{2} + \cdots + 36481 \)
$17$
\( T^{4} + 360T^{2} + 1296 \)
$19$
\( (T^{2} + 20 T - 116)^{2} \)
$23$
\( T^{4} + 18 T^{3} + 117 T^{2} + \cdots + 81 \)
$29$
\( T^{4} - 18 T^{3} + 63 T^{2} + \cdots + 2025 \)
$31$
\( T^{4} - 38 T^{3} + 1569 T^{2} + \cdots + 15625 \)
$37$
\( (T^{2} + 64 T + 808)^{2} \)
$41$
\( T^{4} + 126 T^{3} + 5967 T^{2} + \cdots + 455625 \)
$43$
\( T^{4} - 46 T^{3} + 2073 T^{2} + \cdots + 1849 \)
$47$
\( T^{4} + 54 T^{3} + 333 T^{2} + \cdots + 408321 \)
$53$
\( T^{4} + 9000 T^{2} + 810000 \)
$59$
\( T^{4} - 126 T^{3} + 3573 T^{2} + \cdots + 2954961 \)
$61$
\( T^{4} - 62 T^{3} + 4827 T^{2} + \cdots + 966289 \)
$67$
\( T^{4} - 106 T^{3} + 8913 T^{2} + \cdots + 5396329 \)
$71$
\( T^{4} + 7704 T^{2} + \cdots + 2396304 \)
$73$
\( (T^{2} - 104 T + 760)^{2} \)
$79$
\( T^{4} - 14 T^{3} + 1497 T^{2} + \cdots + 1692601 \)
$83$
\( T^{4} - 378 T^{3} + \cdots + 131262849 \)
$89$
\( T^{4} + 22824 T^{2} + \cdots + 36144144 \)
$97$
\( T^{4} + 14 T^{3} + \cdots + 110986225 \)
show more
show less