Properties

Label 450.3.g.d
Level $450$
Weight $3$
Character orbit 450.g
Analytic conductor $12.262$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,3,Mod(307,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.307");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i + 1) q^{2} + 2 i q^{4} + ( - 8 i - 8) q^{7} + (2 i - 2) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (i + 1) q^{2} + 2 i q^{4} + ( - 8 i - 8) q^{7} + (2 i - 2) q^{8} + 4 q^{11} + ( - 3 i + 3) q^{13} - 16 i q^{14} - 4 q^{16} + ( - 19 i - 19) q^{17} - 8 i q^{19} + (4 i + 4) q^{22} + ( - 20 i + 20) q^{23} + 6 q^{26} + ( - 16 i + 16) q^{28} - 38 i q^{29} - 44 q^{31} + ( - 4 i - 4) q^{32} - 38 i q^{34} + (3 i + 3) q^{37} + ( - 8 i + 8) q^{38} + 70 q^{41} + (36 i - 36) q^{43} + 8 i q^{44} + 40 q^{46} + 79 i q^{49} + (6 i + 6) q^{52} + (17 i - 17) q^{53} + 32 q^{56} + ( - 38 i + 38) q^{58} - 92 i q^{59} + 72 q^{61} + ( - 44 i - 44) q^{62} - 8 i q^{64} + ( - 44 i - 44) q^{67} + ( - 38 i + 38) q^{68} - 88 q^{71} + (55 i - 55) q^{73} + 6 i q^{74} + 16 q^{76} + ( - 32 i - 32) q^{77} + 12 i q^{79} + (70 i + 70) q^{82} + ( - 24 i + 24) q^{83} - 72 q^{86} + (8 i - 8) q^{88} + 26 i q^{89} - 48 q^{91} + (40 i + 40) q^{92} + (57 i + 57) q^{97} + (79 i - 79) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 16 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 16 q^{7} - 4 q^{8} + 8 q^{11} + 6 q^{13} - 8 q^{16} - 38 q^{17} + 8 q^{22} + 40 q^{23} + 12 q^{26} + 32 q^{28} - 88 q^{31} - 8 q^{32} + 6 q^{37} + 16 q^{38} + 140 q^{41} - 72 q^{43} + 80 q^{46} + 12 q^{52} - 34 q^{53} + 64 q^{56} + 76 q^{58} + 144 q^{61} - 88 q^{62} - 88 q^{67} + 76 q^{68} - 176 q^{71} - 110 q^{73} + 32 q^{76} - 64 q^{77} + 140 q^{82} + 48 q^{83} - 144 q^{86} - 16 q^{88} - 96 q^{91} + 80 q^{92} + 114 q^{97} - 158 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
1.00000i
1.00000i
1.00000 + 1.00000i 0 2.00000i 0 0 −8.00000 8.00000i −2.00000 + 2.00000i 0 0
343.1 1.00000 1.00000i 0 2.00000i 0 0 −8.00000 + 8.00000i −2.00000 2.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.3.g.d 2
3.b odd 2 1 450.3.g.a 2
5.b even 2 1 90.3.g.a 2
5.c odd 4 1 90.3.g.a 2
5.c odd 4 1 inner 450.3.g.d 2
15.d odd 2 1 90.3.g.c yes 2
15.e even 4 1 90.3.g.c yes 2
15.e even 4 1 450.3.g.a 2
20.d odd 2 1 720.3.bh.b 2
20.e even 4 1 720.3.bh.b 2
60.h even 2 1 720.3.bh.d 2
60.l odd 4 1 720.3.bh.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.3.g.a 2 5.b even 2 1
90.3.g.a 2 5.c odd 4 1
90.3.g.c yes 2 15.d odd 2 1
90.3.g.c yes 2 15.e even 4 1
450.3.g.a 2 3.b odd 2 1
450.3.g.a 2 15.e even 4 1
450.3.g.d 2 1.a even 1 1 trivial
450.3.g.d 2 5.c odd 4 1 inner
720.3.bh.b 2 20.d odd 2 1
720.3.bh.b 2 20.e even 4 1
720.3.bh.d 2 60.h even 2 1
720.3.bh.d 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{2} + 16T_{7} + 128 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 38T_{17} + 722 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16T + 128 \) Copy content Toggle raw display
$11$ \( (T - 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$17$ \( T^{2} + 38T + 722 \) Copy content Toggle raw display
$19$ \( T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{2} - 40T + 800 \) Copy content Toggle raw display
$29$ \( T^{2} + 1444 \) Copy content Toggle raw display
$31$ \( (T + 44)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$41$ \( (T - 70)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 72T + 2592 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 34T + 578 \) Copy content Toggle raw display
$59$ \( T^{2} + 8464 \) Copy content Toggle raw display
$61$ \( (T - 72)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 88T + 3872 \) Copy content Toggle raw display
$71$ \( (T + 88)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 110T + 6050 \) Copy content Toggle raw display
$79$ \( T^{2} + 144 \) Copy content Toggle raw display
$83$ \( T^{2} - 48T + 1152 \) Copy content Toggle raw display
$89$ \( T^{2} + 676 \) Copy content Toggle raw display
$97$ \( T^{2} - 114T + 6498 \) Copy content Toggle raw display
show more
show less