Properties

Label 450.3.d.f.251.2
Level $450$
Weight $3$
Character 450.251
Analytic conductor $12.262$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 221828269 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,3,Mod(251,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,0,8,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.2
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 450.251
Dual form 450.3.d.f.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +4.00000 q^{7} -2.82843i q^{8} -16.9706i q^{11} -8.00000 q^{13} +5.65685i q^{14} +4.00000 q^{16} -12.7279i q^{17} -16.0000 q^{19} +24.0000 q^{22} -16.9706i q^{23} -11.3137i q^{26} -8.00000 q^{28} -4.24264i q^{29} +44.0000 q^{31} +5.65685i q^{32} +18.0000 q^{34} +34.0000 q^{37} -22.6274i q^{38} -46.6690i q^{41} +40.0000 q^{43} +33.9411i q^{44} +24.0000 q^{46} -84.8528i q^{47} -33.0000 q^{49} +16.0000 q^{52} +38.1838i q^{53} -11.3137i q^{56} +6.00000 q^{58} -33.9411i q^{59} +50.0000 q^{61} +62.2254i q^{62} -8.00000 q^{64} -8.00000 q^{67} +25.4558i q^{68} +50.9117i q^{71} +16.0000 q^{73} +48.0833i q^{74} +32.0000 q^{76} -67.8823i q^{77} -76.0000 q^{79} +66.0000 q^{82} +118.794i q^{83} +56.5685i q^{86} -48.0000 q^{88} -12.7279i q^{89} -32.0000 q^{91} +33.9411i q^{92} +120.000 q^{94} -176.000 q^{97} -46.6690i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 8 q^{7} - 16 q^{13} + 8 q^{16} - 32 q^{19} + 48 q^{22} - 16 q^{28} + 88 q^{31} + 36 q^{34} + 68 q^{37} + 80 q^{43} + 48 q^{46} - 66 q^{49} + 32 q^{52} + 12 q^{58} + 100 q^{61} - 16 q^{64}+ \cdots - 352 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000 0.571429 0.285714 0.958315i \(-0.407769\pi\)
0.285714 + 0.958315i \(0.407769\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) − 16.9706i − 1.54278i −0.636364 0.771389i \(-0.719562\pi\)
0.636364 0.771389i \(-0.280438\pi\)
\(12\) 0 0
\(13\) −8.00000 −0.615385 −0.307692 0.951486i \(-0.599557\pi\)
−0.307692 + 0.951486i \(0.599557\pi\)
\(14\) 5.65685i 0.404061i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 12.7279i − 0.748701i −0.927287 0.374351i \(-0.877866\pi\)
0.927287 0.374351i \(-0.122134\pi\)
\(18\) 0 0
\(19\) −16.0000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 24.0000 1.09091
\(23\) − 16.9706i − 0.737851i −0.929459 0.368925i \(-0.879726\pi\)
0.929459 0.368925i \(-0.120274\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 11.3137i − 0.435143i
\(27\) 0 0
\(28\) −8.00000 −0.285714
\(29\) − 4.24264i − 0.146298i −0.997321 0.0731490i \(-0.976695\pi\)
0.997321 0.0731490i \(-0.0233049\pi\)
\(30\) 0 0
\(31\) 44.0000 1.41935 0.709677 0.704527i \(-0.248841\pi\)
0.709677 + 0.704527i \(0.248841\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 18.0000 0.529412
\(35\) 0 0
\(36\) 0 0
\(37\) 34.0000 0.918919 0.459459 0.888199i \(-0.348043\pi\)
0.459459 + 0.888199i \(0.348043\pi\)
\(38\) − 22.6274i − 0.595458i
\(39\) 0 0
\(40\) 0 0
\(41\) − 46.6690i − 1.13827i −0.822244 0.569135i \(-0.807278\pi\)
0.822244 0.569135i \(-0.192722\pi\)
\(42\) 0 0
\(43\) 40.0000 0.930233 0.465116 0.885250i \(-0.346013\pi\)
0.465116 + 0.885250i \(0.346013\pi\)
\(44\) 33.9411i 0.771389i
\(45\) 0 0
\(46\) 24.0000 0.521739
\(47\) − 84.8528i − 1.80538i −0.430293 0.902690i \(-0.641590\pi\)
0.430293 0.902690i \(-0.358410\pi\)
\(48\) 0 0
\(49\) −33.0000 −0.673469
\(50\) 0 0
\(51\) 0 0
\(52\) 16.0000 0.307692
\(53\) 38.1838i 0.720448i 0.932866 + 0.360224i \(0.117300\pi\)
−0.932866 + 0.360224i \(0.882700\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 11.3137i − 0.202031i
\(57\) 0 0
\(58\) 6.00000 0.103448
\(59\) − 33.9411i − 0.575273i −0.957740 0.287637i \(-0.907130\pi\)
0.957740 0.287637i \(-0.0928695\pi\)
\(60\) 0 0
\(61\) 50.0000 0.819672 0.409836 0.912159i \(-0.365586\pi\)
0.409836 + 0.912159i \(0.365586\pi\)
\(62\) 62.2254i 1.00364i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.119403 −0.0597015 0.998216i \(-0.519015\pi\)
−0.0597015 + 0.998216i \(0.519015\pi\)
\(68\) 25.4558i 0.374351i
\(69\) 0 0
\(70\) 0 0
\(71\) 50.9117i 0.717066i 0.933517 + 0.358533i \(0.116723\pi\)
−0.933517 + 0.358533i \(0.883277\pi\)
\(72\) 0 0
\(73\) 16.0000 0.219178 0.109589 0.993977i \(-0.465047\pi\)
0.109589 + 0.993977i \(0.465047\pi\)
\(74\) 48.0833i 0.649774i
\(75\) 0 0
\(76\) 32.0000 0.421053
\(77\) − 67.8823i − 0.881588i
\(78\) 0 0
\(79\) −76.0000 −0.962025 −0.481013 0.876714i \(-0.659731\pi\)
−0.481013 + 0.876714i \(0.659731\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 66.0000 0.804878
\(83\) 118.794i 1.43125i 0.698484 + 0.715626i \(0.253859\pi\)
−0.698484 + 0.715626i \(0.746141\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 56.5685i 0.657774i
\(87\) 0 0
\(88\) −48.0000 −0.545455
\(89\) − 12.7279i − 0.143010i −0.997440 0.0715052i \(-0.977220\pi\)
0.997440 0.0715052i \(-0.0227802\pi\)
\(90\) 0 0
\(91\) −32.0000 −0.351648
\(92\) 33.9411i 0.368925i
\(93\) 0 0
\(94\) 120.000 1.27660
\(95\) 0 0
\(96\) 0 0
\(97\) −176.000 −1.81443 −0.907216 0.420664i \(-0.861797\pi\)
−0.907216 + 0.420664i \(0.861797\pi\)
\(98\) − 46.6690i − 0.476215i
\(99\) 0 0
\(100\) 0 0
\(101\) − 29.6985i − 0.294044i −0.989133 0.147022i \(-0.953031\pi\)
0.989133 0.147022i \(-0.0469689\pi\)
\(102\) 0 0
\(103\) 28.0000 0.271845 0.135922 0.990719i \(-0.456600\pi\)
0.135922 + 0.990719i \(0.456600\pi\)
\(104\) 22.6274i 0.217571i
\(105\) 0 0
\(106\) −54.0000 −0.509434
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 56.0000 0.513761 0.256881 0.966443i \(-0.417305\pi\)
0.256881 + 0.966443i \(0.417305\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 16.0000 0.142857
\(113\) − 156.978i − 1.38918i −0.719404 0.694592i \(-0.755585\pi\)
0.719404 0.694592i \(-0.244415\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.48528i 0.0731490i
\(117\) 0 0
\(118\) 48.0000 0.406780
\(119\) − 50.9117i − 0.427829i
\(120\) 0 0
\(121\) −167.000 −1.38017
\(122\) 70.7107i 0.579596i
\(123\) 0 0
\(124\) −88.0000 −0.709677
\(125\) 0 0
\(126\) 0 0
\(127\) −92.0000 −0.724409 −0.362205 0.932099i \(-0.617976\pi\)
−0.362205 + 0.932099i \(0.617976\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 169.706i 1.29546i 0.761869 + 0.647731i \(0.224282\pi\)
−0.761869 + 0.647731i \(0.775718\pi\)
\(132\) 0 0
\(133\) −64.0000 −0.481203
\(134\) − 11.3137i − 0.0844307i
\(135\) 0 0
\(136\) −36.0000 −0.264706
\(137\) 156.978i 1.14582i 0.819617 + 0.572911i \(0.194186\pi\)
−0.819617 + 0.572911i \(0.805814\pi\)
\(138\) 0 0
\(139\) 152.000 1.09353 0.546763 0.837288i \(-0.315860\pi\)
0.546763 + 0.837288i \(0.315860\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −72.0000 −0.507042
\(143\) 135.765i 0.949402i
\(144\) 0 0
\(145\) 0 0
\(146\) 22.6274i 0.154982i
\(147\) 0 0
\(148\) −68.0000 −0.459459
\(149\) − 275.772i − 1.85082i −0.378972 0.925408i \(-0.623722\pi\)
0.378972 0.925408i \(-0.376278\pi\)
\(150\) 0 0
\(151\) −148.000 −0.980132 −0.490066 0.871685i \(-0.663027\pi\)
−0.490066 + 0.871685i \(0.663027\pi\)
\(152\) 45.2548i 0.297729i
\(153\) 0 0
\(154\) 96.0000 0.623377
\(155\) 0 0
\(156\) 0 0
\(157\) 82.0000 0.522293 0.261146 0.965299i \(-0.415899\pi\)
0.261146 + 0.965299i \(0.415899\pi\)
\(158\) − 107.480i − 0.680255i
\(159\) 0 0
\(160\) 0 0
\(161\) − 67.8823i − 0.421629i
\(162\) 0 0
\(163\) −56.0000 −0.343558 −0.171779 0.985135i \(-0.554952\pi\)
−0.171779 + 0.985135i \(0.554952\pi\)
\(164\) 93.3381i 0.569135i
\(165\) 0 0
\(166\) −168.000 −1.01205
\(167\) 33.9411i 0.203240i 0.994823 + 0.101620i \(0.0324026\pi\)
−0.994823 + 0.101620i \(0.967597\pi\)
\(168\) 0 0
\(169\) −105.000 −0.621302
\(170\) 0 0
\(171\) 0 0
\(172\) −80.0000 −0.465116
\(173\) − 173.948i − 1.00548i −0.864437 0.502741i \(-0.832325\pi\)
0.864437 0.502741i \(-0.167675\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 67.8823i − 0.385695i
\(177\) 0 0
\(178\) 18.0000 0.101124
\(179\) 203.647i 1.13769i 0.822444 + 0.568846i \(0.192610\pi\)
−0.822444 + 0.568846i \(0.807390\pi\)
\(180\) 0 0
\(181\) −232.000 −1.28177 −0.640884 0.767638i \(-0.721432\pi\)
−0.640884 + 0.767638i \(0.721432\pi\)
\(182\) − 45.2548i − 0.248653i
\(183\) 0 0
\(184\) −48.0000 −0.260870
\(185\) 0 0
\(186\) 0 0
\(187\) −216.000 −1.15508
\(188\) 169.706i 0.902690i
\(189\) 0 0
\(190\) 0 0
\(191\) 33.9411i 0.177702i 0.996045 + 0.0888511i \(0.0283195\pi\)
−0.996045 + 0.0888511i \(0.971680\pi\)
\(192\) 0 0
\(193\) −206.000 −1.06736 −0.533679 0.845687i \(-0.679191\pi\)
−0.533679 + 0.845687i \(0.679191\pi\)
\(194\) − 248.902i − 1.28300i
\(195\) 0 0
\(196\) 66.0000 0.336735
\(197\) 165.463i 0.839914i 0.907544 + 0.419957i \(0.137955\pi\)
−0.907544 + 0.419957i \(0.862045\pi\)
\(198\) 0 0
\(199\) 20.0000 0.100503 0.0502513 0.998737i \(-0.483998\pi\)
0.0502513 + 0.998737i \(0.483998\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 42.0000 0.207921
\(203\) − 16.9706i − 0.0835988i
\(204\) 0 0
\(205\) 0 0
\(206\) 39.5980i 0.192223i
\(207\) 0 0
\(208\) −32.0000 −0.153846
\(209\) 271.529i 1.29918i
\(210\) 0 0
\(211\) 296.000 1.40284 0.701422 0.712746i \(-0.252549\pi\)
0.701422 + 0.712746i \(0.252549\pi\)
\(212\) − 76.3675i − 0.360224i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 176.000 0.811060
\(218\) 79.1960i 0.363284i
\(219\) 0 0
\(220\) 0 0
\(221\) 101.823i 0.460739i
\(222\) 0 0
\(223\) 436.000 1.95516 0.977578 0.210571i \(-0.0675325\pi\)
0.977578 + 0.210571i \(0.0675325\pi\)
\(224\) 22.6274i 0.101015i
\(225\) 0 0
\(226\) 222.000 0.982301
\(227\) 16.9706i 0.0747602i 0.999301 + 0.0373801i \(0.0119012\pi\)
−0.999301 + 0.0373801i \(0.988099\pi\)
\(228\) 0 0
\(229\) 8.00000 0.0349345 0.0174672 0.999847i \(-0.494440\pi\)
0.0174672 + 0.999847i \(0.494440\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −12.0000 −0.0517241
\(233\) − 12.7279i − 0.0546263i −0.999627 0.0273131i \(-0.991305\pi\)
0.999627 0.0273131i \(-0.00869512\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 67.8823i 0.287637i
\(237\) 0 0
\(238\) 72.0000 0.302521
\(239\) − 135.765i − 0.568052i −0.958817 0.284026i \(-0.908330\pi\)
0.958817 0.284026i \(-0.0916703\pi\)
\(240\) 0 0
\(241\) 32.0000 0.132780 0.0663900 0.997794i \(-0.478852\pi\)
0.0663900 + 0.997794i \(0.478852\pi\)
\(242\) − 236.174i − 0.975924i
\(243\) 0 0
\(244\) −100.000 −0.409836
\(245\) 0 0
\(246\) 0 0
\(247\) 128.000 0.518219
\(248\) − 124.451i − 0.501818i
\(249\) 0 0
\(250\) 0 0
\(251\) − 50.9117i − 0.202835i −0.994844 0.101418i \(-0.967662\pi\)
0.994844 0.101418i \(-0.0323379\pi\)
\(252\) 0 0
\(253\) −288.000 −1.13834
\(254\) − 130.108i − 0.512235i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 182.434i − 0.709858i −0.934893 0.354929i \(-0.884505\pi\)
0.934893 0.354929i \(-0.115495\pi\)
\(258\) 0 0
\(259\) 136.000 0.525097
\(260\) 0 0
\(261\) 0 0
\(262\) −240.000 −0.916031
\(263\) 373.352i 1.41959i 0.704408 + 0.709795i \(0.251213\pi\)
−0.704408 + 0.709795i \(0.748787\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 90.5097i − 0.340262i
\(267\) 0 0
\(268\) 16.0000 0.0597015
\(269\) 343.654i 1.27752i 0.769404 + 0.638762i \(0.220553\pi\)
−0.769404 + 0.638762i \(0.779447\pi\)
\(270\) 0 0
\(271\) 380.000 1.40221 0.701107 0.713056i \(-0.252690\pi\)
0.701107 + 0.713056i \(0.252690\pi\)
\(272\) − 50.9117i − 0.187175i
\(273\) 0 0
\(274\) −222.000 −0.810219
\(275\) 0 0
\(276\) 0 0
\(277\) 328.000 1.18412 0.592058 0.805896i \(-0.298316\pi\)
0.592058 + 0.805896i \(0.298316\pi\)
\(278\) 214.960i 0.773239i
\(279\) 0 0
\(280\) 0 0
\(281\) − 284.257i − 1.01159i −0.862654 0.505795i \(-0.831199\pi\)
0.862654 0.505795i \(-0.168801\pi\)
\(282\) 0 0
\(283\) 208.000 0.734982 0.367491 0.930027i \(-0.380217\pi\)
0.367491 + 0.930027i \(0.380217\pi\)
\(284\) − 101.823i − 0.358533i
\(285\) 0 0
\(286\) −192.000 −0.671329
\(287\) − 186.676i − 0.650440i
\(288\) 0 0
\(289\) 127.000 0.439446
\(290\) 0 0
\(291\) 0 0
\(292\) −32.0000 −0.109589
\(293\) − 436.992i − 1.49144i −0.666259 0.745720i \(-0.732106\pi\)
0.666259 0.745720i \(-0.267894\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 96.1665i − 0.324887i
\(297\) 0 0
\(298\) 390.000 1.30872
\(299\) 135.765i 0.454062i
\(300\) 0 0
\(301\) 160.000 0.531561
\(302\) − 209.304i − 0.693058i
\(303\) 0 0
\(304\) −64.0000 −0.210526
\(305\) 0 0
\(306\) 0 0
\(307\) 520.000 1.69381 0.846906 0.531743i \(-0.178463\pi\)
0.846906 + 0.531743i \(0.178463\pi\)
\(308\) 135.765i 0.440794i
\(309\) 0 0
\(310\) 0 0
\(311\) 373.352i 1.20049i 0.799816 + 0.600245i \(0.204930\pi\)
−0.799816 + 0.600245i \(0.795070\pi\)
\(312\) 0 0
\(313\) 94.0000 0.300319 0.150160 0.988662i \(-0.452021\pi\)
0.150160 + 0.988662i \(0.452021\pi\)
\(314\) 115.966i 0.369317i
\(315\) 0 0
\(316\) 152.000 0.481013
\(317\) 335.169i 1.05731i 0.848835 + 0.528657i \(0.177304\pi\)
−0.848835 + 0.528657i \(0.822696\pi\)
\(318\) 0 0
\(319\) −72.0000 −0.225705
\(320\) 0 0
\(321\) 0 0
\(322\) 96.0000 0.298137
\(323\) 203.647i 0.630485i
\(324\) 0 0
\(325\) 0 0
\(326\) − 79.1960i − 0.242932i
\(327\) 0 0
\(328\) −132.000 −0.402439
\(329\) − 339.411i − 1.03165i
\(330\) 0 0
\(331\) 536.000 1.61934 0.809668 0.586889i \(-0.199647\pi\)
0.809668 + 0.586889i \(0.199647\pi\)
\(332\) − 237.588i − 0.715626i
\(333\) 0 0
\(334\) −48.0000 −0.143713
\(335\) 0 0
\(336\) 0 0
\(337\) 208.000 0.617211 0.308605 0.951190i \(-0.400138\pi\)
0.308605 + 0.951190i \(0.400138\pi\)
\(338\) − 148.492i − 0.439327i
\(339\) 0 0
\(340\) 0 0
\(341\) − 746.705i − 2.18975i
\(342\) 0 0
\(343\) −328.000 −0.956268
\(344\) − 113.137i − 0.328887i
\(345\) 0 0
\(346\) 246.000 0.710983
\(347\) 288.500i 0.831411i 0.909499 + 0.415705i \(0.136465\pi\)
−0.909499 + 0.415705i \(0.863535\pi\)
\(348\) 0 0
\(349\) −238.000 −0.681948 −0.340974 0.940073i \(-0.610757\pi\)
−0.340974 + 0.940073i \(0.610757\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 96.0000 0.272727
\(353\) − 224.860i − 0.636997i −0.947923 0.318499i \(-0.896821\pi\)
0.947923 0.318499i \(-0.103179\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 25.4558i 0.0715052i
\(357\) 0 0
\(358\) −288.000 −0.804469
\(359\) 560.029i 1.55997i 0.625799 + 0.779984i \(0.284773\pi\)
−0.625799 + 0.779984i \(0.715227\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) − 328.098i − 0.906347i
\(363\) 0 0
\(364\) 64.0000 0.175824
\(365\) 0 0
\(366\) 0 0
\(367\) −284.000 −0.773842 −0.386921 0.922113i \(-0.626461\pi\)
−0.386921 + 0.922113i \(0.626461\pi\)
\(368\) − 67.8823i − 0.184463i
\(369\) 0 0
\(370\) 0 0
\(371\) 152.735i 0.411685i
\(372\) 0 0
\(373\) 190.000 0.509383 0.254692 0.967022i \(-0.418026\pi\)
0.254692 + 0.967022i \(0.418026\pi\)
\(374\) − 305.470i − 0.816765i
\(375\) 0 0
\(376\) −240.000 −0.638298
\(377\) 33.9411i 0.0900295i
\(378\) 0 0
\(379\) −160.000 −0.422164 −0.211082 0.977468i \(-0.567699\pi\)
−0.211082 + 0.977468i \(0.567699\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −48.0000 −0.125654
\(383\) − 271.529i − 0.708953i −0.935065 0.354477i \(-0.884659\pi\)
0.935065 0.354477i \(-0.115341\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 291.328i − 0.754736i
\(387\) 0 0
\(388\) 352.000 0.907216
\(389\) 403.051i 1.03612i 0.855344 + 0.518060i \(0.173346\pi\)
−0.855344 + 0.518060i \(0.826654\pi\)
\(390\) 0 0
\(391\) −216.000 −0.552430
\(392\) 93.3381i 0.238107i
\(393\) 0 0
\(394\) −234.000 −0.593909
\(395\) 0 0
\(396\) 0 0
\(397\) −146.000 −0.367758 −0.183879 0.982949i \(-0.558865\pi\)
−0.183879 + 0.982949i \(0.558865\pi\)
\(398\) 28.2843i 0.0710660i
\(399\) 0 0
\(400\) 0 0
\(401\) − 326.683i − 0.814672i −0.913278 0.407336i \(-0.866458\pi\)
0.913278 0.407336i \(-0.133542\pi\)
\(402\) 0 0
\(403\) −352.000 −0.873449
\(404\) 59.3970i 0.147022i
\(405\) 0 0
\(406\) 24.0000 0.0591133
\(407\) − 576.999i − 1.41769i
\(408\) 0 0
\(409\) 368.000 0.899756 0.449878 0.893090i \(-0.351468\pi\)
0.449878 + 0.893090i \(0.351468\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −56.0000 −0.135922
\(413\) − 135.765i − 0.328728i
\(414\) 0 0
\(415\) 0 0
\(416\) − 45.2548i − 0.108786i
\(417\) 0 0
\(418\) −384.000 −0.918660
\(419\) − 390.323i − 0.931558i −0.884901 0.465779i \(-0.845774\pi\)
0.884901 0.465779i \(-0.154226\pi\)
\(420\) 0 0
\(421\) −40.0000 −0.0950119 −0.0475059 0.998871i \(-0.515127\pi\)
−0.0475059 + 0.998871i \(0.515127\pi\)
\(422\) 418.607i 0.991960i
\(423\) 0 0
\(424\) 108.000 0.254717
\(425\) 0 0
\(426\) 0 0
\(427\) 200.000 0.468384
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 152.735i 0.354374i 0.984177 + 0.177187i \(0.0566997\pi\)
−0.984177 + 0.177187i \(0.943300\pi\)
\(432\) 0 0
\(433\) −542.000 −1.25173 −0.625866 0.779931i \(-0.715254\pi\)
−0.625866 + 0.779931i \(0.715254\pi\)
\(434\) 248.902i 0.573506i
\(435\) 0 0
\(436\) −112.000 −0.256881
\(437\) 271.529i 0.621348i
\(438\) 0 0
\(439\) −4.00000 −0.00911162 −0.00455581 0.999990i \(-0.501450\pi\)
−0.00455581 + 0.999990i \(0.501450\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −144.000 −0.325792
\(443\) 322.441i 0.727857i 0.931427 + 0.363929i \(0.118565\pi\)
−0.931427 + 0.363929i \(0.881435\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 616.597i 1.38250i
\(447\) 0 0
\(448\) −32.0000 −0.0714286
\(449\) − 216.375i − 0.481904i −0.970537 0.240952i \(-0.922540\pi\)
0.970537 0.240952i \(-0.0774596\pi\)
\(450\) 0 0
\(451\) −792.000 −1.75610
\(452\) 313.955i 0.694592i
\(453\) 0 0
\(454\) −24.0000 −0.0528634
\(455\) 0 0
\(456\) 0 0
\(457\) 400.000 0.875274 0.437637 0.899152i \(-0.355816\pi\)
0.437637 + 0.899152i \(0.355816\pi\)
\(458\) 11.3137i 0.0247024i
\(459\) 0 0
\(460\) 0 0
\(461\) 301.227i 0.653422i 0.945124 + 0.326711i \(0.105940\pi\)
−0.945124 + 0.326711i \(0.894060\pi\)
\(462\) 0 0
\(463\) 604.000 1.30454 0.652268 0.757989i \(-0.273818\pi\)
0.652268 + 0.757989i \(0.273818\pi\)
\(464\) − 16.9706i − 0.0365745i
\(465\) 0 0
\(466\) 18.0000 0.0386266
\(467\) 356.382i 0.763130i 0.924342 + 0.381565i \(0.124615\pi\)
−0.924342 + 0.381565i \(0.875385\pi\)
\(468\) 0 0
\(469\) −32.0000 −0.0682303
\(470\) 0 0
\(471\) 0 0
\(472\) −96.0000 −0.203390
\(473\) − 678.823i − 1.43514i
\(474\) 0 0
\(475\) 0 0
\(476\) 101.823i 0.213915i
\(477\) 0 0
\(478\) 192.000 0.401674
\(479\) − 526.087i − 1.09830i −0.835723 0.549152i \(-0.814951\pi\)
0.835723 0.549152i \(-0.185049\pi\)
\(480\) 0 0
\(481\) −272.000 −0.565489
\(482\) 45.2548i 0.0938897i
\(483\) 0 0
\(484\) 334.000 0.690083
\(485\) 0 0
\(486\) 0 0
\(487\) −596.000 −1.22382 −0.611910 0.790928i \(-0.709598\pi\)
−0.611910 + 0.790928i \(0.709598\pi\)
\(488\) − 141.421i − 0.289798i
\(489\) 0 0
\(490\) 0 0
\(491\) 271.529i 0.553012i 0.961012 + 0.276506i \(0.0891766\pi\)
−0.961012 + 0.276506i \(0.910823\pi\)
\(492\) 0 0
\(493\) −54.0000 −0.109533
\(494\) 181.019i 0.366436i
\(495\) 0 0
\(496\) 176.000 0.354839
\(497\) 203.647i 0.409752i
\(498\) 0 0
\(499\) 224.000 0.448898 0.224449 0.974486i \(-0.427942\pi\)
0.224449 + 0.974486i \(0.427942\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 72.0000 0.143426
\(503\) 865.499i 1.72067i 0.509726 + 0.860337i \(0.329747\pi\)
−0.509726 + 0.860337i \(0.670253\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 407.294i − 0.804928i
\(507\) 0 0
\(508\) 184.000 0.362205
\(509\) − 479.418i − 0.941883i −0.882164 0.470941i \(-0.843914\pi\)
0.882164 0.470941i \(-0.156086\pi\)
\(510\) 0 0
\(511\) 64.0000 0.125245
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 258.000 0.501946
\(515\) 0 0
\(516\) 0 0
\(517\) −1440.00 −2.78530
\(518\) 192.333i 0.371299i
\(519\) 0 0
\(520\) 0 0
\(521\) 521.845i 1.00162i 0.865557 + 0.500811i \(0.166965\pi\)
−0.865557 + 0.500811i \(0.833035\pi\)
\(522\) 0 0
\(523\) 736.000 1.40727 0.703633 0.710564i \(-0.251560\pi\)
0.703633 + 0.710564i \(0.251560\pi\)
\(524\) − 339.411i − 0.647731i
\(525\) 0 0
\(526\) −528.000 −1.00380
\(527\) − 560.029i − 1.06267i
\(528\) 0 0
\(529\) 241.000 0.455577
\(530\) 0 0
\(531\) 0 0
\(532\) 128.000 0.240602
\(533\) 373.352i 0.700474i
\(534\) 0 0
\(535\) 0 0
\(536\) 22.6274i 0.0422153i
\(537\) 0 0
\(538\) −486.000 −0.903346
\(539\) 560.029i 1.03901i
\(540\) 0 0
\(541\) −808.000 −1.49353 −0.746765 0.665088i \(-0.768394\pi\)
−0.746765 + 0.665088i \(0.768394\pi\)
\(542\) 537.401i 0.991515i
\(543\) 0 0
\(544\) 72.0000 0.132353
\(545\) 0 0
\(546\) 0 0
\(547\) −536.000 −0.979890 −0.489945 0.871753i \(-0.662983\pi\)
−0.489945 + 0.871753i \(0.662983\pi\)
\(548\) − 313.955i − 0.572911i
\(549\) 0 0
\(550\) 0 0
\(551\) 67.8823i 0.123198i
\(552\) 0 0
\(553\) −304.000 −0.549729
\(554\) 463.862i 0.837296i
\(555\) 0 0
\(556\) −304.000 −0.546763
\(557\) − 165.463i − 0.297061i −0.988908 0.148531i \(-0.952546\pi\)
0.988908 0.148531i \(-0.0474543\pi\)
\(558\) 0 0
\(559\) −320.000 −0.572451
\(560\) 0 0
\(561\) 0 0
\(562\) 402.000 0.715302
\(563\) − 322.441i − 0.572719i −0.958122 0.286359i \(-0.907555\pi\)
0.958122 0.286359i \(-0.0924451\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 294.156i 0.519711i
\(567\) 0 0
\(568\) 144.000 0.253521
\(569\) − 156.978i − 0.275883i −0.990440 0.137942i \(-0.955951\pi\)
0.990440 0.137942i \(-0.0440487\pi\)
\(570\) 0 0
\(571\) 368.000 0.644483 0.322242 0.946657i \(-0.395564\pi\)
0.322242 + 0.946657i \(0.395564\pi\)
\(572\) − 271.529i − 0.474701i
\(573\) 0 0
\(574\) 264.000 0.459930
\(575\) 0 0
\(576\) 0 0
\(577\) 142.000 0.246101 0.123050 0.992400i \(-0.460732\pi\)
0.123050 + 0.992400i \(0.460732\pi\)
\(578\) 179.605i 0.310736i
\(579\) 0 0
\(580\) 0 0
\(581\) 475.176i 0.817858i
\(582\) 0 0
\(583\) 648.000 1.11149
\(584\) − 45.2548i − 0.0774912i
\(585\) 0 0
\(586\) 618.000 1.05461
\(587\) 373.352i 0.636035i 0.948085 + 0.318017i \(0.103017\pi\)
−0.948085 + 0.318017i \(0.896983\pi\)
\(588\) 0 0
\(589\) −704.000 −1.19525
\(590\) 0 0
\(591\) 0 0
\(592\) 136.000 0.229730
\(593\) 1107.33i 1.86733i 0.358142 + 0.933667i \(0.383410\pi\)
−0.358142 + 0.933667i \(0.616590\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 551.543i 0.925408i
\(597\) 0 0
\(598\) −192.000 −0.321070
\(599\) − 797.616i − 1.33158i −0.746139 0.665790i \(-0.768095\pi\)
0.746139 0.665790i \(-0.231905\pi\)
\(600\) 0 0
\(601\) 158.000 0.262895 0.131448 0.991323i \(-0.458037\pi\)
0.131448 + 0.991323i \(0.458037\pi\)
\(602\) 226.274i 0.375871i
\(603\) 0 0
\(604\) 296.000 0.490066
\(605\) 0 0
\(606\) 0 0
\(607\) −332.000 −0.546952 −0.273476 0.961879i \(-0.588173\pi\)
−0.273476 + 0.961879i \(0.588173\pi\)
\(608\) − 90.5097i − 0.148865i
\(609\) 0 0
\(610\) 0 0
\(611\) 678.823i 1.11100i
\(612\) 0 0
\(613\) −578.000 −0.942904 −0.471452 0.881892i \(-0.656270\pi\)
−0.471452 + 0.881892i \(0.656270\pi\)
\(614\) 735.391i 1.19771i
\(615\) 0 0
\(616\) −192.000 −0.311688
\(617\) − 55.1543i − 0.0893911i −0.999001 0.0446956i \(-0.985768\pi\)
0.999001 0.0446956i \(-0.0142318\pi\)
\(618\) 0 0
\(619\) 896.000 1.44750 0.723748 0.690064i \(-0.242418\pi\)
0.723748 + 0.690064i \(0.242418\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −528.000 −0.848875
\(623\) − 50.9117i − 0.0817202i
\(624\) 0 0
\(625\) 0 0
\(626\) 132.936i 0.212358i
\(627\) 0 0
\(628\) −164.000 −0.261146
\(629\) − 432.749i − 0.687996i
\(630\) 0 0
\(631\) 20.0000 0.0316957 0.0158479 0.999874i \(-0.494955\pi\)
0.0158479 + 0.999874i \(0.494955\pi\)
\(632\) 214.960i 0.340127i
\(633\) 0 0
\(634\) −474.000 −0.747634
\(635\) 0 0
\(636\) 0 0
\(637\) 264.000 0.414443
\(638\) − 101.823i − 0.159598i
\(639\) 0 0
\(640\) 0 0
\(641\) − 258.801i − 0.403746i −0.979412 0.201873i \(-0.935297\pi\)
0.979412 0.201873i \(-0.0647028\pi\)
\(642\) 0 0
\(643\) −728.000 −1.13219 −0.566096 0.824339i \(-0.691547\pi\)
−0.566096 + 0.824339i \(0.691547\pi\)
\(644\) 135.765i 0.210814i
\(645\) 0 0
\(646\) −288.000 −0.445820
\(647\) − 458.205i − 0.708200i −0.935208 0.354100i \(-0.884787\pi\)
0.935208 0.354100i \(-0.115213\pi\)
\(648\) 0 0
\(649\) −576.000 −0.887519
\(650\) 0 0
\(651\) 0 0
\(652\) 112.000 0.171779
\(653\) 301.227i 0.461298i 0.973037 + 0.230649i \(0.0740849\pi\)
−0.973037 + 0.230649i \(0.925915\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 186.676i − 0.284567i
\(657\) 0 0
\(658\) 480.000 0.729483
\(659\) 1052.17i 1.59662i 0.602244 + 0.798312i \(0.294273\pi\)
−0.602244 + 0.798312i \(0.705727\pi\)
\(660\) 0 0
\(661\) 62.0000 0.0937973 0.0468986 0.998900i \(-0.485066\pi\)
0.0468986 + 0.998900i \(0.485066\pi\)
\(662\) 758.018i 1.14504i
\(663\) 0 0
\(664\) 336.000 0.506024
\(665\) 0 0
\(666\) 0 0
\(667\) −72.0000 −0.107946
\(668\) − 67.8823i − 0.101620i
\(669\) 0 0
\(670\) 0 0
\(671\) − 848.528i − 1.26457i
\(672\) 0 0
\(673\) 670.000 0.995542 0.497771 0.867308i \(-0.334152\pi\)
0.497771 + 0.867308i \(0.334152\pi\)
\(674\) 294.156i 0.436434i
\(675\) 0 0
\(676\) 210.000 0.310651
\(677\) − 1294.01i − 1.91138i −0.294372 0.955691i \(-0.595111\pi\)
0.294372 0.955691i \(-0.404889\pi\)
\(678\) 0 0
\(679\) −704.000 −1.03682
\(680\) 0 0
\(681\) 0 0
\(682\) 1056.00 1.54839
\(683\) − 560.029i − 0.819954i −0.912096 0.409977i \(-0.865537\pi\)
0.912096 0.409977i \(-0.134463\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 463.862i − 0.676184i
\(687\) 0 0
\(688\) 160.000 0.232558
\(689\) − 305.470i − 0.443353i
\(690\) 0 0
\(691\) −40.0000 −0.0578871 −0.0289436 0.999581i \(-0.509214\pi\)
−0.0289436 + 0.999581i \(0.509214\pi\)
\(692\) 347.897i 0.502741i
\(693\) 0 0
\(694\) −408.000 −0.587896
\(695\) 0 0
\(696\) 0 0
\(697\) −594.000 −0.852224
\(698\) − 336.583i − 0.482210i
\(699\) 0 0
\(700\) 0 0
\(701\) − 954.594i − 1.36176i −0.732395 0.680880i \(-0.761597\pi\)
0.732395 0.680880i \(-0.238403\pi\)
\(702\) 0 0
\(703\) −544.000 −0.773826
\(704\) 135.765i 0.192847i
\(705\) 0 0
\(706\) 318.000 0.450425
\(707\) − 118.794i − 0.168025i
\(708\) 0 0
\(709\) 968.000 1.36530 0.682652 0.730744i \(-0.260827\pi\)
0.682652 + 0.730744i \(0.260827\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −36.0000 −0.0505618
\(713\) − 746.705i − 1.04727i
\(714\) 0 0
\(715\) 0 0
\(716\) − 407.294i − 0.568846i
\(717\) 0 0
\(718\) −792.000 −1.10306
\(719\) − 1170.97i − 1.62861i −0.580439 0.814304i \(-0.697119\pi\)
0.580439 0.814304i \(-0.302881\pi\)
\(720\) 0 0
\(721\) 112.000 0.155340
\(722\) − 148.492i − 0.205668i
\(723\) 0 0
\(724\) 464.000 0.640884
\(725\) 0 0
\(726\) 0 0
\(727\) 508.000 0.698762 0.349381 0.936981i \(-0.386392\pi\)
0.349381 + 0.936981i \(0.386392\pi\)
\(728\) 90.5097i 0.124326i
\(729\) 0 0
\(730\) 0 0
\(731\) − 509.117i − 0.696466i
\(732\) 0 0
\(733\) 1144.00 1.56071 0.780355 0.625337i \(-0.215039\pi\)
0.780355 + 0.625337i \(0.215039\pi\)
\(734\) − 401.637i − 0.547189i
\(735\) 0 0
\(736\) 96.0000 0.130435
\(737\) 135.765i 0.184212i
\(738\) 0 0
\(739\) −304.000 −0.411367 −0.205683 0.978619i \(-0.565942\pi\)
−0.205683 + 0.978619i \(0.565942\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −216.000 −0.291105
\(743\) 848.528i 1.14203i 0.820940 + 0.571015i \(0.193450\pi\)
−0.820940 + 0.571015i \(0.806550\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 268.701i 0.360188i
\(747\) 0 0
\(748\) 432.000 0.577540
\(749\) 0 0
\(750\) 0 0
\(751\) 188.000 0.250333 0.125166 0.992136i \(-0.460054\pi\)
0.125166 + 0.992136i \(0.460054\pi\)
\(752\) − 339.411i − 0.451345i
\(753\) 0 0
\(754\) −48.0000 −0.0636605
\(755\) 0 0
\(756\) 0 0
\(757\) 1240.00 1.63804 0.819022 0.573761i \(-0.194516\pi\)
0.819022 + 0.573761i \(0.194516\pi\)
\(758\) − 226.274i − 0.298515i
\(759\) 0 0
\(760\) 0 0
\(761\) 156.978i 0.206278i 0.994667 + 0.103139i \(0.0328887\pi\)
−0.994667 + 0.103139i \(0.967111\pi\)
\(762\) 0 0
\(763\) 224.000 0.293578
\(764\) − 67.8823i − 0.0888511i
\(765\) 0 0
\(766\) 384.000 0.501305
\(767\) 271.529i 0.354014i
\(768\) 0 0
\(769\) −910.000 −1.18336 −0.591678 0.806175i \(-0.701534\pi\)
−0.591678 + 0.806175i \(0.701534\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 412.000 0.533679
\(773\) − 1387.34i − 1.79475i −0.441266 0.897376i \(-0.645471\pi\)
0.441266 0.897376i \(-0.354529\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 497.803i 0.641499i
\(777\) 0 0
\(778\) −570.000 −0.732648
\(779\) 746.705i 0.958543i
\(780\) 0 0
\(781\) 864.000 1.10627
\(782\) − 305.470i − 0.390627i
\(783\) 0 0
\(784\) −132.000 −0.168367
\(785\) 0 0
\(786\) 0 0
\(787\) 1360.00 1.72808 0.864041 0.503422i \(-0.167926\pi\)
0.864041 + 0.503422i \(0.167926\pi\)
\(788\) − 330.926i − 0.419957i
\(789\) 0 0
\(790\) 0 0
\(791\) − 627.911i − 0.793819i
\(792\) 0 0
\(793\) −400.000 −0.504414
\(794\) − 206.475i − 0.260044i
\(795\) 0 0
\(796\) −40.0000 −0.0502513
\(797\) − 106.066i − 0.133082i −0.997784 0.0665408i \(-0.978804\pi\)
0.997784 0.0665408i \(-0.0211963\pi\)
\(798\) 0 0
\(799\) −1080.00 −1.35169
\(800\) 0 0
\(801\) 0 0
\(802\) 462.000 0.576060
\(803\) − 271.529i − 0.338143i
\(804\) 0 0
\(805\) 0 0
\(806\) − 497.803i − 0.617622i
\(807\) 0 0
\(808\) −84.0000 −0.103960
\(809\) 1107.33i 1.36876i 0.729124 + 0.684381i \(0.239928\pi\)
−0.729124 + 0.684381i \(0.760072\pi\)
\(810\) 0 0
\(811\) −160.000 −0.197287 −0.0986436 0.995123i \(-0.531450\pi\)
−0.0986436 + 0.995123i \(0.531450\pi\)
\(812\) 33.9411i 0.0417994i
\(813\) 0 0
\(814\) 816.000 1.00246
\(815\) 0 0
\(816\) 0 0
\(817\) −640.000 −0.783354
\(818\) 520.431i 0.636223i
\(819\) 0 0
\(820\) 0 0
\(821\) − 436.992i − 0.532268i −0.963936 0.266134i \(-0.914254\pi\)
0.963936 0.266134i \(-0.0857464\pi\)
\(822\) 0 0
\(823\) −332.000 −0.403402 −0.201701 0.979447i \(-0.564647\pi\)
−0.201701 + 0.979447i \(0.564647\pi\)
\(824\) − 79.1960i − 0.0961116i
\(825\) 0 0
\(826\) 192.000 0.232446
\(827\) 101.823i 0.123124i 0.998103 + 0.0615619i \(0.0196082\pi\)
−0.998103 + 0.0615619i \(0.980392\pi\)
\(828\) 0 0
\(829\) 632.000 0.762364 0.381182 0.924500i \(-0.375517\pi\)
0.381182 + 0.924500i \(0.375517\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 64.0000 0.0769231
\(833\) 420.021i 0.504227i
\(834\) 0 0
\(835\) 0 0
\(836\) − 543.058i − 0.649591i
\(837\) 0 0
\(838\) 552.000 0.658711
\(839\) − 729.734i − 0.869767i −0.900487 0.434883i \(-0.856790\pi\)
0.900487 0.434883i \(-0.143210\pi\)
\(840\) 0 0
\(841\) 823.000 0.978597
\(842\) − 56.5685i − 0.0671835i
\(843\) 0 0
\(844\) −592.000 −0.701422
\(845\) 0 0
\(846\) 0 0
\(847\) −668.000 −0.788666
\(848\) 152.735i 0.180112i
\(849\) 0 0
\(850\) 0 0
\(851\) − 576.999i − 0.678025i
\(852\) 0 0
\(853\) −446.000 −0.522860 −0.261430 0.965222i \(-0.584194\pi\)
−0.261430 + 0.965222i \(0.584194\pi\)
\(854\) 282.843i 0.331198i
\(855\) 0 0
\(856\) 0 0
\(857\) − 428.507i − 0.500008i −0.968245 0.250004i \(-0.919568\pi\)
0.968245 0.250004i \(-0.0804319\pi\)
\(858\) 0 0
\(859\) 728.000 0.847497 0.423749 0.905780i \(-0.360714\pi\)
0.423749 + 0.905780i \(0.360714\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −216.000 −0.250580
\(863\) − 916.410i − 1.06189i −0.847407 0.530945i \(-0.821837\pi\)
0.847407 0.530945i \(-0.178163\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 766.504i − 0.885108i
\(867\) 0 0
\(868\) −352.000 −0.405530
\(869\) 1289.76i 1.48419i
\(870\) 0 0
\(871\) 64.0000 0.0734788
\(872\) − 158.392i − 0.181642i
\(873\) 0 0
\(874\) −384.000 −0.439359
\(875\) 0 0
\(876\) 0 0
\(877\) 910.000 1.03763 0.518814 0.854887i \(-0.326374\pi\)
0.518814 + 0.854887i \(0.326374\pi\)
\(878\) − 5.65685i − 0.00644289i
\(879\) 0 0
\(880\) 0 0
\(881\) 929.138i 1.05464i 0.849667 + 0.527320i \(0.176803\pi\)
−0.849667 + 0.527320i \(0.823197\pi\)
\(882\) 0 0
\(883\) −1064.00 −1.20498 −0.602492 0.798125i \(-0.705825\pi\)
−0.602492 + 0.798125i \(0.705825\pi\)
\(884\) − 203.647i − 0.230370i
\(885\) 0 0
\(886\) −456.000 −0.514673
\(887\) − 1391.59i − 1.56887i −0.620212 0.784434i \(-0.712953\pi\)
0.620212 0.784434i \(-0.287047\pi\)
\(888\) 0 0
\(889\) −368.000 −0.413948
\(890\) 0 0
\(891\) 0 0
\(892\) −872.000 −0.977578
\(893\) 1357.65i 1.52032i
\(894\) 0 0
\(895\) 0 0
\(896\) − 45.2548i − 0.0505076i
\(897\) 0 0
\(898\) 306.000 0.340757
\(899\) − 186.676i − 0.207649i
\(900\) 0 0
\(901\) 486.000 0.539401
\(902\) − 1120.06i − 1.24175i
\(903\) 0 0
\(904\) −444.000 −0.491150
\(905\) 0 0
\(906\) 0 0
\(907\) 1768.00 1.94928 0.974642 0.223771i \(-0.0718369\pi\)
0.974642 + 0.223771i \(0.0718369\pi\)
\(908\) − 33.9411i − 0.0373801i
\(909\) 0 0
\(910\) 0 0
\(911\) 237.588i 0.260799i 0.991462 + 0.130399i \(0.0416260\pi\)
−0.991462 + 0.130399i \(0.958374\pi\)
\(912\) 0 0
\(913\) 2016.00 2.20811
\(914\) 565.685i 0.618912i
\(915\) 0 0
\(916\) −16.0000 −0.0174672
\(917\) 678.823i 0.740264i
\(918\) 0 0
\(919\) 380.000 0.413493 0.206746 0.978395i \(-0.433712\pi\)
0.206746 + 0.978395i \(0.433712\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −426.000 −0.462039
\(923\) − 407.294i − 0.441271i
\(924\) 0 0
\(925\) 0 0
\(926\) 854.185i 0.922446i
\(927\) 0 0
\(928\) 24.0000 0.0258621
\(929\) − 666.095i − 0.717002i −0.933529 0.358501i \(-0.883288\pi\)
0.933529 0.358501i \(-0.116712\pi\)
\(930\) 0 0
\(931\) 528.000 0.567132
\(932\) 25.4558i 0.0273131i
\(933\) 0 0
\(934\) −504.000 −0.539615
\(935\) 0 0
\(936\) 0 0
\(937\) 178.000 0.189968 0.0949840 0.995479i \(-0.469720\pi\)
0.0949840 + 0.995479i \(0.469720\pi\)
\(938\) − 45.2548i − 0.0482461i
\(939\) 0 0
\(940\) 0 0
\(941\) 436.992i 0.464391i 0.972669 + 0.232196i \(0.0745909\pi\)
−0.972669 + 0.232196i \(0.925409\pi\)
\(942\) 0 0
\(943\) −792.000 −0.839873
\(944\) − 135.765i − 0.143818i
\(945\) 0 0
\(946\) 960.000 1.01480
\(947\) 1798.88i 1.89956i 0.312924 + 0.949778i \(0.398691\pi\)
−0.312924 + 0.949778i \(0.601309\pi\)
\(948\) 0 0
\(949\) −128.000 −0.134879
\(950\) 0 0
\(951\) 0 0
\(952\) −144.000 −0.151261
\(953\) 1310.98i 1.37563i 0.725886 + 0.687815i \(0.241430\pi\)
−0.725886 + 0.687815i \(0.758570\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 271.529i 0.284026i
\(957\) 0 0
\(958\) 744.000 0.776618
\(959\) 627.911i 0.654756i
\(960\) 0 0
\(961\) 975.000 1.01457
\(962\) − 384.666i − 0.399861i
\(963\) 0 0
\(964\) −64.0000 −0.0663900
\(965\) 0 0
\(966\) 0 0
\(967\) −1700.00 −1.75801 −0.879007 0.476808i \(-0.841794\pi\)
−0.879007 + 0.476808i \(0.841794\pi\)
\(968\) 472.347i 0.487962i
\(969\) 0 0
\(970\) 0 0
\(971\) − 458.205i − 0.471890i −0.971766 0.235945i \(-0.924181\pi\)
0.971766 0.235945i \(-0.0758185\pi\)
\(972\) 0 0
\(973\) 608.000 0.624872
\(974\) − 842.871i − 0.865371i
\(975\) 0 0
\(976\) 200.000 0.204918
\(977\) 759.433i 0.777311i 0.921383 + 0.388655i \(0.127060\pi\)
−0.921383 + 0.388655i \(0.872940\pi\)
\(978\) 0 0
\(979\) −216.000 −0.220633
\(980\) 0 0
\(981\) 0 0
\(982\) −384.000 −0.391039
\(983\) − 1052.17i − 1.07037i −0.844734 0.535186i \(-0.820242\pi\)
0.844734 0.535186i \(-0.179758\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 76.3675i − 0.0774519i
\(987\) 0 0
\(988\) −256.000 −0.259109
\(989\) − 678.823i − 0.686373i
\(990\) 0 0
\(991\) −772.000 −0.779011 −0.389506 0.921024i \(-0.627354\pi\)
−0.389506 + 0.921024i \(0.627354\pi\)
\(992\) 248.902i 0.250909i
\(993\) 0 0
\(994\) −288.000 −0.289738
\(995\) 0 0
\(996\) 0 0
\(997\) −194.000 −0.194584 −0.0972919 0.995256i \(-0.531018\pi\)
−0.0972919 + 0.995256i \(0.531018\pi\)
\(998\) 316.784i 0.317419i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.3.d.f.251.2 2
3.2 odd 2 inner 450.3.d.f.251.1 2
4.3 odd 2 3600.3.l.d.1601.2 2
5.2 odd 4 450.3.b.b.449.2 4
5.3 odd 4 450.3.b.b.449.3 4
5.4 even 2 18.3.b.a.17.1 2
12.11 even 2 3600.3.l.d.1601.1 2
15.2 even 4 450.3.b.b.449.4 4
15.8 even 4 450.3.b.b.449.1 4
15.14 odd 2 18.3.b.a.17.2 yes 2
20.3 even 4 3600.3.c.b.449.4 4
20.7 even 4 3600.3.c.b.449.2 4
20.19 odd 2 144.3.e.b.17.2 2
35.4 even 6 882.3.s.b.863.2 4
35.9 even 6 882.3.s.b.557.1 4
35.19 odd 6 882.3.s.d.557.1 4
35.24 odd 6 882.3.s.d.863.2 4
35.34 odd 2 882.3.b.a.197.1 2
40.19 odd 2 576.3.e.f.449.1 2
40.29 even 2 576.3.e.c.449.1 2
45.4 even 6 162.3.d.b.107.2 4
45.14 odd 6 162.3.d.b.107.1 4
45.29 odd 6 162.3.d.b.53.2 4
45.34 even 6 162.3.d.b.53.1 4
55.54 odd 2 2178.3.c.d.485.2 2
60.23 odd 4 3600.3.c.b.449.3 4
60.47 odd 4 3600.3.c.b.449.1 4
60.59 even 2 144.3.e.b.17.1 2
65.34 odd 4 3042.3.d.a.3041.4 4
65.44 odd 4 3042.3.d.a.3041.1 4
65.64 even 2 3042.3.c.e.1691.2 2
80.19 odd 4 2304.3.h.c.2177.4 4
80.29 even 4 2304.3.h.f.2177.4 4
80.59 odd 4 2304.3.h.c.2177.1 4
80.69 even 4 2304.3.h.f.2177.1 4
105.44 odd 6 882.3.s.b.557.2 4
105.59 even 6 882.3.s.d.863.1 4
105.74 odd 6 882.3.s.b.863.1 4
105.89 even 6 882.3.s.d.557.2 4
105.104 even 2 882.3.b.a.197.2 2
120.29 odd 2 576.3.e.c.449.2 2
120.59 even 2 576.3.e.f.449.2 2
165.164 even 2 2178.3.c.d.485.1 2
180.59 even 6 1296.3.q.f.593.1 4
180.79 odd 6 1296.3.q.f.1025.1 4
180.119 even 6 1296.3.q.f.1025.2 4
180.139 odd 6 1296.3.q.f.593.2 4
195.44 even 4 3042.3.d.a.3041.3 4
195.164 even 4 3042.3.d.a.3041.2 4
195.194 odd 2 3042.3.c.e.1691.1 2
240.29 odd 4 2304.3.h.f.2177.2 4
240.59 even 4 2304.3.h.c.2177.3 4
240.149 odd 4 2304.3.h.f.2177.3 4
240.179 even 4 2304.3.h.c.2177.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.b.a.17.1 2 5.4 even 2
18.3.b.a.17.2 yes 2 15.14 odd 2
144.3.e.b.17.1 2 60.59 even 2
144.3.e.b.17.2 2 20.19 odd 2
162.3.d.b.53.1 4 45.34 even 6
162.3.d.b.53.2 4 45.29 odd 6
162.3.d.b.107.1 4 45.14 odd 6
162.3.d.b.107.2 4 45.4 even 6
450.3.b.b.449.1 4 15.8 even 4
450.3.b.b.449.2 4 5.2 odd 4
450.3.b.b.449.3 4 5.3 odd 4
450.3.b.b.449.4 4 15.2 even 4
450.3.d.f.251.1 2 3.2 odd 2 inner
450.3.d.f.251.2 2 1.1 even 1 trivial
576.3.e.c.449.1 2 40.29 even 2
576.3.e.c.449.2 2 120.29 odd 2
576.3.e.f.449.1 2 40.19 odd 2
576.3.e.f.449.2 2 120.59 even 2
882.3.b.a.197.1 2 35.34 odd 2
882.3.b.a.197.2 2 105.104 even 2
882.3.s.b.557.1 4 35.9 even 6
882.3.s.b.557.2 4 105.44 odd 6
882.3.s.b.863.1 4 105.74 odd 6
882.3.s.b.863.2 4 35.4 even 6
882.3.s.d.557.1 4 35.19 odd 6
882.3.s.d.557.2 4 105.89 even 6
882.3.s.d.863.1 4 105.59 even 6
882.3.s.d.863.2 4 35.24 odd 6
1296.3.q.f.593.1 4 180.59 even 6
1296.3.q.f.593.2 4 180.139 odd 6
1296.3.q.f.1025.1 4 180.79 odd 6
1296.3.q.f.1025.2 4 180.119 even 6
2178.3.c.d.485.1 2 165.164 even 2
2178.3.c.d.485.2 2 55.54 odd 2
2304.3.h.c.2177.1 4 80.59 odd 4
2304.3.h.c.2177.2 4 240.179 even 4
2304.3.h.c.2177.3 4 240.59 even 4
2304.3.h.c.2177.4 4 80.19 odd 4
2304.3.h.f.2177.1 4 80.69 even 4
2304.3.h.f.2177.2 4 240.29 odd 4
2304.3.h.f.2177.3 4 240.149 odd 4
2304.3.h.f.2177.4 4 80.29 even 4
3042.3.c.e.1691.1 2 195.194 odd 2
3042.3.c.e.1691.2 2 65.64 even 2
3042.3.d.a.3041.1 4 65.44 odd 4
3042.3.d.a.3041.2 4 195.164 even 4
3042.3.d.a.3041.3 4 195.44 even 4
3042.3.d.a.3041.4 4 65.34 odd 4
3600.3.c.b.449.1 4 60.47 odd 4
3600.3.c.b.449.2 4 20.7 even 4
3600.3.c.b.449.3 4 60.23 odd 4
3600.3.c.b.449.4 4 20.3 even 4
3600.3.l.d.1601.1 2 12.11 even 2
3600.3.l.d.1601.2 2 4.3 odd 2