Properties

Label 450.2.p.b
Level $450$
Weight $2$
Character orbit 450.p
Analytic conductor $3.593$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{24}^{7} q^{2} + ( 2 \zeta_{24} - \zeta_{24}^{5} ) q^{3} -\zeta_{24}^{2} q^{4} + ( -1 + 2 \zeta_{24}^{4} ) q^{6} + ( \zeta_{24} - \zeta_{24}^{5} ) q^{8} + ( 3 \zeta_{24}^{2} - 3 \zeta_{24}^{6} ) q^{9} +O(q^{10})\) \( q + \zeta_{24}^{7} q^{2} + ( 2 \zeta_{24} - \zeta_{24}^{5} ) q^{3} -\zeta_{24}^{2} q^{4} + ( -1 + 2 \zeta_{24}^{4} ) q^{6} + ( \zeta_{24} - \zeta_{24}^{5} ) q^{8} + ( 3 \zeta_{24}^{2} - 3 \zeta_{24}^{6} ) q^{9} + ( -2 + \zeta_{24}^{4} ) q^{11} + ( -2 \zeta_{24}^{3} + \zeta_{24}^{7} ) q^{12} + ( 8 \zeta_{24} - 4 \zeta_{24}^{5} ) q^{13} + \zeta_{24}^{4} q^{16} + 3 \zeta_{24}^{3} q^{17} + 3 \zeta_{24}^{5} q^{18} + 4 \zeta_{24}^{6} q^{19} + ( -\zeta_{24}^{3} - \zeta_{24}^{7} ) q^{22} -6 \zeta_{24}^{5} q^{23} + ( \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{24} + ( -4 + 8 \zeta_{24}^{4} ) q^{26} + ( 3 \zeta_{24}^{3} - 6 \zeta_{24}^{7} ) q^{27} + ( 2 \zeta_{24}^{2} + 2 \zeta_{24}^{6} ) q^{29} + ( -4 + 4 \zeta_{24}^{4} ) q^{31} + ( -\zeta_{24}^{3} + \zeta_{24}^{7} ) q^{32} + ( -3 \zeta_{24} + 3 \zeta_{24}^{5} ) q^{33} + ( -3 \zeta_{24}^{2} + 3 \zeta_{24}^{6} ) q^{34} -3 q^{36} + ( 4 \zeta_{24}^{3} - 8 \zeta_{24}^{7} ) q^{37} -4 \zeta_{24} q^{38} + ( 12 \zeta_{24}^{2} - 12 \zeta_{24}^{6} ) q^{39} + ( -4 - 4 \zeta_{24}^{4} ) q^{41} + ( 5 \zeta_{24} - 10 \zeta_{24}^{5} ) q^{43} + ( 2 \zeta_{24}^{2} - \zeta_{24}^{6} ) q^{44} + 6 q^{46} + 12 \zeta_{24}^{7} q^{47} + ( \zeta_{24} + \zeta_{24}^{5} ) q^{48} -7 \zeta_{24}^{2} q^{49} + ( 3 + 3 \zeta_{24}^{4} ) q^{51} + ( -8 \zeta_{24}^{3} + 4 \zeta_{24}^{7} ) q^{52} + ( -12 \zeta_{24} + 12 \zeta_{24}^{5} ) q^{53} + ( 3 \zeta_{24}^{2} + 3 \zeta_{24}^{6} ) q^{54} + ( 4 \zeta_{24}^{3} + 4 \zeta_{24}^{7} ) q^{57} + ( -4 \zeta_{24} + 2 \zeta_{24}^{5} ) q^{58} + ( -5 \zeta_{24}^{2} + 10 \zeta_{24}^{6} ) q^{59} -8 \zeta_{24}^{4} q^{61} -4 \zeta_{24}^{3} q^{62} -\zeta_{24}^{6} q^{64} -3 \zeta_{24}^{4} q^{66} + ( 2 \zeta_{24}^{3} + 2 \zeta_{24}^{7} ) q^{67} -3 \zeta_{24}^{5} q^{68} + ( -6 \zeta_{24}^{2} - 6 \zeta_{24}^{6} ) q^{69} + ( 2 - 4 \zeta_{24}^{4} ) q^{71} -3 \zeta_{24}^{7} q^{72} + ( 4 \zeta_{24} + 4 \zeta_{24}^{5} ) q^{73} + ( 4 \zeta_{24}^{2} + 4 \zeta_{24}^{6} ) q^{74} + ( 4 - 4 \zeta_{24}^{4} ) q^{76} + 12 \zeta_{24}^{5} q^{78} + ( -4 \zeta_{24}^{2} + 4 \zeta_{24}^{6} ) q^{79} + ( 9 - 9 \zeta_{24}^{4} ) q^{81} + ( 4 \zeta_{24}^{3} - 8 \zeta_{24}^{7} ) q^{82} -9 \zeta_{24} q^{83} + ( 5 + 5 \zeta_{24}^{4} ) q^{86} + 6 \zeta_{24}^{3} q^{87} + ( -\zeta_{24} + 2 \zeta_{24}^{5} ) q^{88} + ( -2 \zeta_{24}^{2} + \zeta_{24}^{6} ) q^{89} + 6 \zeta_{24}^{7} q^{92} + ( -4 \zeta_{24} + 8 \zeta_{24}^{5} ) q^{93} -12 \zeta_{24}^{2} q^{94} + ( -2 + \zeta_{24}^{4} ) q^{96} + ( -18 \zeta_{24}^{3} + 9 \zeta_{24}^{7} ) q^{97} + ( 7 \zeta_{24} - 7 \zeta_{24}^{5} ) q^{98} + ( -3 \zeta_{24}^{2} + 6 \zeta_{24}^{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q - 12q^{11} + 4q^{16} - 16q^{31} - 24q^{36} - 48q^{41} + 48q^{46} + 36q^{51} - 32q^{61} - 12q^{66} + 16q^{76} + 36q^{81} + 60q^{86} - 12q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1 - \zeta_{24}^{4}\) \(-\zeta_{24}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
257.1
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 0.258819i −0.448288 1.67303i 0.866025 + 0.500000i 0 1.73205i 0 −0.707107 0.707107i −2.59808 + 1.50000i 0
257.2 0.965926 + 0.258819i 0.448288 + 1.67303i 0.866025 + 0.500000i 0 1.73205i 0 0.707107 + 0.707107i −2.59808 + 1.50000i 0
293.1 −0.258819 + 0.965926i 1.67303 0.448288i −0.866025 0.500000i 0 1.73205i 0 0.707107 0.707107i 2.59808 1.50000i 0
293.2 0.258819 0.965926i −1.67303 + 0.448288i −0.866025 0.500000i 0 1.73205i 0 −0.707107 + 0.707107i 2.59808 1.50000i 0
407.1 −0.258819 0.965926i 1.67303 + 0.448288i −0.866025 + 0.500000i 0 1.73205i 0 0.707107 + 0.707107i 2.59808 + 1.50000i 0
407.2 0.258819 + 0.965926i −1.67303 0.448288i −0.866025 + 0.500000i 0 1.73205i 0 −0.707107 0.707107i 2.59808 + 1.50000i 0
443.1 −0.965926 + 0.258819i −0.448288 + 1.67303i 0.866025 0.500000i 0 1.73205i 0 −0.707107 + 0.707107i −2.59808 1.50000i 0
443.2 0.965926 0.258819i 0.448288 1.67303i 0.866025 0.500000i 0 1.73205i 0 0.707107 0.707107i −2.59808 1.50000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 443.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
9.d odd 6 1 inner
45.h odd 6 1 inner
45.l even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.p.b 8
3.b odd 2 1 1350.2.q.e 8
5.b even 2 1 inner 450.2.p.b 8
5.c odd 4 2 inner 450.2.p.b 8
9.c even 3 1 1350.2.q.e 8
9.d odd 6 1 inner 450.2.p.b 8
15.d odd 2 1 1350.2.q.e 8
15.e even 4 2 1350.2.q.e 8
45.h odd 6 1 inner 450.2.p.b 8
45.j even 6 1 1350.2.q.e 8
45.k odd 12 2 1350.2.q.e 8
45.l even 12 2 inner 450.2.p.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.2.p.b 8 1.a even 1 1 trivial
450.2.p.b 8 5.b even 2 1 inner
450.2.p.b 8 5.c odd 4 2 inner
450.2.p.b 8 9.d odd 6 1 inner
450.2.p.b 8 45.h odd 6 1 inner
450.2.p.b 8 45.l even 12 2 inner
1350.2.q.e 8 3.b odd 2 1
1350.2.q.e 8 9.c even 3 1
1350.2.q.e 8 15.d odd 2 1
1350.2.q.e 8 15.e even 4 2
1350.2.q.e 8 45.j even 6 1
1350.2.q.e 8 45.k odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(450, [\chi])\):

\( T_{7} \)
\( T_{11}^{2} + 3 T_{11} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{4} + T^{8} \)
$3$ \( 81 - 9 T^{4} + T^{8} \)
$5$ \( T^{8} \)
$7$ \( T^{8} \)
$11$ \( ( 3 + 3 T + T^{2} )^{4} \)
$13$ \( 5308416 - 2304 T^{4} + T^{8} \)
$17$ \( ( 81 + T^{4} )^{2} \)
$19$ \( ( 16 + T^{2} )^{4} \)
$23$ \( 1679616 - 1296 T^{4} + T^{8} \)
$29$ \( ( 144 + 12 T^{2} + T^{4} )^{2} \)
$31$ \( ( 16 + 4 T + T^{2} )^{4} \)
$37$ \( ( 2304 + T^{4} )^{2} \)
$41$ \( ( 48 + 12 T + T^{2} )^{4} \)
$43$ \( 31640625 - 5625 T^{4} + T^{8} \)
$47$ \( 429981696 - 20736 T^{4} + T^{8} \)
$53$ \( ( 20736 + T^{4} )^{2} \)
$59$ \( ( 5625 + 75 T^{2} + T^{4} )^{2} \)
$61$ \( ( 64 + 8 T + T^{2} )^{4} \)
$67$ \( 20736 - 144 T^{4} + T^{8} \)
$71$ \( ( 12 + T^{2} )^{4} \)
$73$ \( ( 2304 + T^{4} )^{2} \)
$79$ \( ( 256 - 16 T^{2} + T^{4} )^{2} \)
$83$ \( 43046721 - 6561 T^{4} + T^{8} \)
$89$ \( ( -3 + T^{2} )^{4} \)
$97$ \( 3486784401 - 59049 T^{4} + T^{8} \)
show more
show less