# Properties

 Label 450.2.h.b Level $450$ Weight $2$ Character orbit 450.h Analytic conductor $3.593$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$450 = 2 \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 450.h (of order $$5$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.59326809096$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{10})$$ Defining polynomial: $$x^{4} - x^{3} + x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 150) Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{10}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} -\zeta_{10}^{3} q^{4} + ( -2 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{5} + 2 q^{7} + \zeta_{10}^{2} q^{8} +O(q^{10})$$ $$q + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} -\zeta_{10}^{3} q^{4} + ( -2 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{5} + 2 q^{7} + \zeta_{10}^{2} q^{8} + ( 2 - \zeta_{10} + 2 \zeta_{10}^{2} ) q^{10} + ( -2 + 4 \zeta_{10} - 4 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{11} + ( -3 + 3 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{13} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{14} -\zeta_{10} q^{16} + ( 3 \zeta_{10} - 6 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{17} + ( -2 \zeta_{10} - 4 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{19} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{20} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{22} + ( 6 - 6 \zeta_{10} + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{23} + ( -5 + 5 \zeta_{10} - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{25} + ( 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{26} -2 \zeta_{10}^{3} q^{28} + ( 1 - \zeta_{10} - 3 \zeta_{10}^{3} ) q^{29} + ( -6 \zeta_{10} - 6 \zeta_{10}^{3} ) q^{31} + q^{32} + ( -3 + 6 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{34} + ( -4 \zeta_{10} + 2 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{35} + ( 3 + 4 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{37} + ( 2 + 4 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{38} + ( 1 + \zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{40} + ( 5 - 3 \zeta_{10} + 5 \zeta_{10}^{2} ) q^{41} + ( 2 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{43} + ( -2 \zeta_{10} + 4 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{44} + 6 \zeta_{10}^{3} q^{46} + ( -2 + 2 \zeta_{10} + 8 \zeta_{10}^{3} ) q^{47} -3 q^{49} -5 \zeta_{10}^{3} q^{50} + ( -3 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{52} + ( 9 - 9 \zeta_{10} - 6 \zeta_{10}^{3} ) q^{53} + ( 6 - 8 \zeta_{10} + 6 \zeta_{10}^{2} ) q^{55} + 2 \zeta_{10}^{2} q^{56} + ( \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{58} + ( -8 + 4 \zeta_{10} - 8 \zeta_{10}^{2} ) q^{59} + ( 4 - 7 \zeta_{10} + 7 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{61} + ( 6 + 6 \zeta_{10}^{2} ) q^{62} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{64} + ( 3 - 3 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{65} + ( 6 \zeta_{10} - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{67} + ( -3 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{68} + ( 4 - 2 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{70} + ( -10 + 10 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{71} + ( 8 - 5 \zeta_{10} + 5 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{73} + ( -7 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{74} + ( -6 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{76} + ( -4 + 8 \zeta_{10} - 8 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{77} + ( -2 + 2 \zeta_{10} + \zeta_{10}^{3} ) q^{80} + ( -2 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{82} -6 \zeta_{10}^{2} q^{83} + ( 3 - 12 \zeta_{10} + 12 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{85} + ( -2 + 2 \zeta_{10}^{3} ) q^{86} + ( 2 - 4 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{88} + ( 3 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{89} + ( -6 + 6 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{91} -6 \zeta_{10}^{2} q^{92} + ( -2 \zeta_{10} - 6 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{94} + ( -10 + 10 \zeta_{10}^{3} ) q^{95} + ( 3 - 3 \zeta_{10} + 9 \zeta_{10}^{3} ) q^{97} + ( 3 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - q^{2} - q^{4} - 5q^{5} + 8q^{7} - q^{8} + O(q^{10})$$ $$4q - q^{2} - q^{4} - 5q^{5} + 8q^{7} - q^{8} + 5q^{10} + 2q^{11} - 6q^{13} - 2q^{14} - q^{16} + 12q^{17} - 8q^{22} + 6q^{23} - 5q^{25} - 6q^{26} - 2q^{28} - 12q^{31} + 4q^{32} - 3q^{34} - 10q^{35} + 13q^{37} + 10q^{38} + 5q^{40} + 12q^{41} + 4q^{43} - 8q^{44} + 6q^{46} + 2q^{47} - 12q^{49} - 5q^{50} - 6q^{52} + 21q^{53} + 10q^{55} - 2q^{56} - 20q^{59} - 2q^{61} + 18q^{62} - q^{64} + 15q^{65} + 18q^{67} - 18q^{68} + 10q^{70} - 28q^{71} + 14q^{73} - 22q^{74} - 20q^{76} + 4q^{77} - 5q^{80} + 2q^{82} + 6q^{83} - 15q^{85} - 6q^{86} + 2q^{88} + 5q^{89} - 12q^{91} + 6q^{92} + 2q^{94} - 30q^{95} + 18q^{97} + 3q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/450\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$1$$ $$-\zeta_{10}^{3}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
91.1
 0.809017 − 0.587785i −0.309017 + 0.951057i −0.309017 − 0.951057i 0.809017 + 0.587785i
−0.809017 0.587785i 0 0.309017 + 0.951057i −0.690983 + 2.12663i 0 2.00000 0.309017 0.951057i 0 1.80902 1.31433i
181.1 0.309017 + 0.951057i 0 −0.809017 + 0.587785i −1.80902 1.31433i 0 2.00000 −0.809017 0.587785i 0 0.690983 2.12663i
271.1 0.309017 0.951057i 0 −0.809017 0.587785i −1.80902 + 1.31433i 0 2.00000 −0.809017 + 0.587785i 0 0.690983 + 2.12663i
361.1 −0.809017 + 0.587785i 0 0.309017 0.951057i −0.690983 2.12663i 0 2.00000 0.309017 + 0.951057i 0 1.80902 + 1.31433i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.h.b 4
3.b odd 2 1 150.2.g.b 4
15.d odd 2 1 750.2.g.a 4
15.e even 4 2 750.2.h.a 8
25.d even 5 1 inner 450.2.h.b 4
75.h odd 10 1 750.2.g.a 4
75.h odd 10 1 3750.2.a.g 2
75.j odd 10 1 150.2.g.b 4
75.j odd 10 1 3750.2.a.b 2
75.l even 20 2 750.2.h.a 8
75.l even 20 2 3750.2.c.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.2.g.b 4 3.b odd 2 1
150.2.g.b 4 75.j odd 10 1
450.2.h.b 4 1.a even 1 1 trivial
450.2.h.b 4 25.d even 5 1 inner
750.2.g.a 4 15.d odd 2 1
750.2.g.a 4 75.h odd 10 1
750.2.h.a 8 15.e even 4 2
750.2.h.a 8 75.l even 20 2
3750.2.a.b 2 75.j odd 10 1
3750.2.a.g 2 75.h odd 10 1
3750.2.c.c 4 75.l even 20 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(450, [\chi])$$:

 $$T_{7} - 2$$ $$T_{11}^{4} - 2 T_{11}^{3} + 24 T_{11}^{2} + 32 T_{11} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2} + T^{3} + T^{4}$$
$3$ $$T^{4}$$
$5$ $$25 + 25 T + 15 T^{2} + 5 T^{3} + T^{4}$$
$7$ $$( -2 + T )^{4}$$
$11$ $$16 + 32 T + 24 T^{2} - 2 T^{3} + T^{4}$$
$13$ $$81 + 81 T + 36 T^{2} + 6 T^{3} + T^{4}$$
$17$ $$81 + 27 T + 54 T^{2} - 12 T^{3} + T^{4}$$
$19$ $$400 - 200 T + 40 T^{2} + T^{4}$$
$23$ $$1296 - 216 T + 36 T^{2} - 6 T^{3} + T^{4}$$
$29$ $$25 + 25 T + 10 T^{2} + T^{4}$$
$31$ $$1296 + 648 T + 144 T^{2} + 12 T^{3} + T^{4}$$
$37$ $$361 + 38 T + 64 T^{2} - 13 T^{3} + T^{4}$$
$41$ $$961 - 403 T + 94 T^{2} - 12 T^{3} + T^{4}$$
$43$ $$( -4 - 2 T + T^{2} )^{2}$$
$47$ $$1936 - 528 T + 64 T^{2} - 2 T^{3} + T^{4}$$
$53$ $$9801 - 2376 T + 306 T^{2} - 21 T^{3} + T^{4}$$
$59$ $$6400 + 1600 T + 240 T^{2} + 20 T^{3} + T^{4}$$
$61$ $$361 - 247 T + 64 T^{2} + 2 T^{3} + T^{4}$$
$67$ $$1296 - 432 T + 144 T^{2} - 18 T^{3} + T^{4}$$
$71$ $$13456 + 2552 T + 384 T^{2} + 28 T^{3} + T^{4}$$
$73$ $$961 + 31 T + 76 T^{2} - 14 T^{3} + T^{4}$$
$79$ $$T^{4}$$
$83$ $$1296 - 216 T + 36 T^{2} - 6 T^{3} + T^{4}$$
$89$ $$25 + 10 T^{2} - 5 T^{3} + T^{4}$$
$97$ $$9801 - 297 T + 144 T^{2} - 18 T^{3} + T^{4}$$