Properties

Label 450.2.e.j
Level $450$
Weight $2$
Character orbit 450.e
Analytic conductor $3.593$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} + (\beta_{3} - \beta_1) q^{3} - \beta_{2} q^{4} + \beta_1 q^{6} + ( - 2 \beta_{3} - \beta_{2} + \beta_1) q^{7} + q^{8} + ( - \beta_{3} + \beta_1 - 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} - 1) q^{2} + (\beta_{3} - \beta_1) q^{3} - \beta_{2} q^{4} + \beta_1 q^{6} + ( - 2 \beta_{3} - \beta_{2} + \beta_1) q^{7} + q^{8} + ( - \beta_{3} + \beta_1 - 3) q^{9} + ( - 2 \beta_{3} - 2 \beta_{2} + \cdots + 1) q^{11}+ \cdots + (5 \beta_{3} + 3 \beta_{2} - \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + q^{6} + q^{7} + 4 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + q^{6} + q^{7} + 4 q^{8} - 10 q^{9} + 3 q^{11} + q^{12} - 2 q^{13} + q^{14} - 2 q^{16} + 18 q^{17} + 5 q^{18} + 2 q^{19} + 16 q^{21} + 3 q^{22} - 3 q^{23} - 2 q^{24} + 4 q^{26} + 16 q^{27} - 2 q^{28} + 3 q^{29} + 2 q^{31} - 2 q^{32} + 15 q^{33} - 9 q^{34} + 5 q^{36} + 16 q^{37} - q^{38} + 34 q^{39} + 6 q^{41} - 17 q^{42} - 17 q^{43} - 6 q^{44} + 6 q^{46} - 9 q^{47} + q^{48} - 3 q^{49} - 9 q^{51} - 2 q^{52} - 8 q^{54} + q^{56} - q^{57} + 3 q^{58} - 3 q^{59} - q^{61} - 4 q^{62} - 19 q^{63} + 4 q^{64} - 18 q^{66} - 14 q^{67} - 9 q^{68} - 15 q^{69} - 24 q^{71} - 10 q^{72} + 22 q^{73} - 8 q^{74} - q^{76} - 18 q^{77} - 2 q^{78} - 4 q^{79} + 14 q^{81} - 12 q^{82} + 9 q^{83} + q^{84} - 17 q^{86} - 18 q^{87} + 3 q^{88} + 30 q^{89} - 68 q^{91} - 3 q^{92} + 32 q^{93} - 9 q^{94} + q^{96} - 11 q^{97} + 6 q^{98} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} + 2\beta _1 + 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
151.1
1.68614 + 0.396143i
−1.18614 1.26217i
−1.18614 + 1.26217i
1.68614 0.396143i
−0.500000 + 0.866025i −0.500000 1.65831i −0.500000 0.866025i 0 1.68614 + 0.396143i −1.18614 + 2.05446i 1.00000 −2.50000 + 1.65831i 0
151.2 −0.500000 + 0.866025i −0.500000 + 1.65831i −0.500000 0.866025i 0 −1.18614 1.26217i 1.68614 2.92048i 1.00000 −2.50000 1.65831i 0
301.1 −0.500000 0.866025i −0.500000 1.65831i −0.500000 + 0.866025i 0 −1.18614 + 1.26217i 1.68614 + 2.92048i 1.00000 −2.50000 + 1.65831i 0
301.2 −0.500000 0.866025i −0.500000 + 1.65831i −0.500000 + 0.866025i 0 1.68614 0.396143i −1.18614 2.05446i 1.00000 −2.50000 1.65831i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.e.j 4
3.b odd 2 1 1350.2.e.l 4
5.b even 2 1 90.2.e.c 4
5.c odd 4 2 450.2.j.g 8
9.c even 3 1 inner 450.2.e.j 4
9.c even 3 1 4050.2.a.bw 2
9.d odd 6 1 1350.2.e.l 4
9.d odd 6 1 4050.2.a.bo 2
15.d odd 2 1 270.2.e.c 4
15.e even 4 2 1350.2.j.f 8
20.d odd 2 1 720.2.q.f 4
45.h odd 6 1 270.2.e.c 4
45.h odd 6 1 810.2.a.k 2
45.j even 6 1 90.2.e.c 4
45.j even 6 1 810.2.a.i 2
45.k odd 12 2 450.2.j.g 8
45.k odd 12 2 4050.2.c.v 4
45.l even 12 2 1350.2.j.f 8
45.l even 12 2 4050.2.c.ba 4
60.h even 2 1 2160.2.q.f 4
180.n even 6 1 2160.2.q.f 4
180.n even 6 1 6480.2.a.bn 2
180.p odd 6 1 720.2.q.f 4
180.p odd 6 1 6480.2.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.e.c 4 5.b even 2 1
90.2.e.c 4 45.j even 6 1
270.2.e.c 4 15.d odd 2 1
270.2.e.c 4 45.h odd 6 1
450.2.e.j 4 1.a even 1 1 trivial
450.2.e.j 4 9.c even 3 1 inner
450.2.j.g 8 5.c odd 4 2
450.2.j.g 8 45.k odd 12 2
720.2.q.f 4 20.d odd 2 1
720.2.q.f 4 180.p odd 6 1
810.2.a.i 2 45.j even 6 1
810.2.a.k 2 45.h odd 6 1
1350.2.e.l 4 3.b odd 2 1
1350.2.e.l 4 9.d odd 6 1
1350.2.j.f 8 15.e even 4 2
1350.2.j.f 8 45.l even 12 2
2160.2.q.f 4 60.h even 2 1
2160.2.q.f 4 180.n even 6 1
4050.2.a.bo 2 9.d odd 6 1
4050.2.a.bw 2 9.c even 3 1
4050.2.c.v 4 45.k odd 12 2
4050.2.c.ba 4 45.l even 12 2
6480.2.a.be 2 180.p odd 6 1
6480.2.a.bn 2 180.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{4} - T_{7}^{3} + 9T_{7}^{2} + 8T_{7} + 64 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} + 15T_{11}^{2} + 18T_{11} + 36 \) Copy content Toggle raw display
\( T_{17}^{2} - 9T_{17} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$17$ \( (T^{2} - 9 T + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$31$ \( T^{4} - 2 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$37$ \( (T - 4)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 17 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$47$ \( T^{4} + 9 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$53$ \( (T^{2} - 132)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$61$ \( T^{4} + T^{3} + \cdots + 5476 \) Copy content Toggle raw display
$67$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$71$ \( (T + 6)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 11 T - 44)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 9 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$89$ \( (T^{2} - 15 T - 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 11 T^{3} + \cdots + 484 \) Copy content Toggle raw display
show more
show less