Properties

Label 450.2.e.g.301.1
Level $450$
Weight $2$
Character 450.301
Analytic conductor $3.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 301.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 450.301
Dual form 450.2.e.g.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.73205i q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(1.00000 + 1.73205i) q^{11} +(-1.50000 + 0.866025i) q^{12} +(-3.00000 + 5.19615i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +2.00000 q^{17} +(-1.50000 + 2.59808i) q^{18} +6.00000 q^{19} -1.73205i q^{21} +(-1.00000 + 1.73205i) q^{22} +(0.500000 - 0.866025i) q^{23} +(-1.50000 - 0.866025i) q^{24} -6.00000 q^{26} +5.19615i q^{27} +1.00000 q^{28} +(-4.50000 - 7.79423i) q^{29} +(1.00000 - 1.73205i) q^{31} +(0.500000 - 0.866025i) q^{32} +3.46410i q^{33} +(1.00000 + 1.73205i) q^{34} -3.00000 q^{36} -2.00000 q^{37} +(3.00000 + 5.19615i) q^{38} +(-9.00000 + 5.19615i) q^{39} +(5.50000 - 9.52628i) q^{41} +(1.50000 - 0.866025i) q^{42} +(-2.00000 - 3.46410i) q^{43} -2.00000 q^{44} +1.00000 q^{46} +(-3.50000 - 6.06218i) q^{47} -1.73205i q^{48} +(3.00000 - 5.19615i) q^{49} +(3.00000 + 1.73205i) q^{51} +(-3.00000 - 5.19615i) q^{52} +(-4.50000 + 2.59808i) q^{54} +(0.500000 + 0.866025i) q^{56} +(9.00000 + 5.19615i) q^{57} +(4.50000 - 7.79423i) q^{58} +(2.00000 - 3.46410i) q^{59} +(3.50000 + 6.06218i) q^{61} +2.00000 q^{62} +(1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(-3.00000 + 1.73205i) q^{66} +(-5.50000 + 9.52628i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(1.50000 - 0.866025i) q^{69} -6.00000 q^{71} +(-1.50000 - 2.59808i) q^{72} +4.00000 q^{73} +(-1.00000 - 1.73205i) q^{74} +(-3.00000 + 5.19615i) q^{76} +(1.00000 - 1.73205i) q^{77} +(-9.00000 - 5.19615i) q^{78} +(6.00000 + 10.3923i) q^{79} +(-4.50000 + 7.79423i) q^{81} +11.0000 q^{82} +(-5.50000 - 9.52628i) q^{83} +(1.50000 + 0.866025i) q^{84} +(2.00000 - 3.46410i) q^{86} -15.5885i q^{87} +(-1.00000 - 1.73205i) q^{88} +1.00000 q^{89} +6.00000 q^{91} +(0.500000 + 0.866025i) q^{92} +(3.00000 - 1.73205i) q^{93} +(3.50000 - 6.06218i) q^{94} +(1.50000 - 0.866025i) q^{96} +(-4.00000 - 6.92820i) q^{97} +6.00000 q^{98} +(-3.00000 + 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} - q^{7} - 2 q^{8} + 3 q^{9} + 2 q^{11} - 3 q^{12} - 6 q^{13} + q^{14} - q^{16} + 4 q^{17} - 3 q^{18} + 12 q^{19} - 2 q^{22} + q^{23} - 3 q^{24} - 12 q^{26} + 2 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) −1.50000 + 0.866025i −0.433013 + 0.250000i
\(13\) −3.00000 + 5.19615i −0.832050 + 1.44115i 0.0643593 + 0.997927i \(0.479500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −1.50000 + 2.59808i −0.353553 + 0.612372i
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) −1.00000 + 1.73205i −0.213201 + 0.369274i
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 5.19615i 1.00000i
\(28\) 1.00000 0.188982
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 3.46410i 0.603023i
\(34\) 1.00000 + 1.73205i 0.171499 + 0.297044i
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 3.00000 + 5.19615i 0.486664 + 0.842927i
\(39\) −9.00000 + 5.19615i −1.44115 + 0.832050i
\(40\) 0 0
\(41\) 5.50000 9.52628i 0.858956 1.48775i −0.0139704 0.999902i \(-0.504447\pi\)
0.872926 0.487852i \(-0.162220\pi\)
\(42\) 1.50000 0.866025i 0.231455 0.133631i
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −3.50000 6.06218i −0.510527 0.884260i −0.999926 0.0121990i \(-0.996117\pi\)
0.489398 0.872060i \(-0.337217\pi\)
\(48\) 1.73205i 0.250000i
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 3.00000 + 1.73205i 0.420084 + 0.242536i
\(52\) −3.00000 5.19615i −0.416025 0.720577i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −4.50000 + 2.59808i −0.612372 + 0.353553i
\(55\) 0 0
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 9.00000 + 5.19615i 1.19208 + 0.688247i
\(58\) 4.50000 7.79423i 0.590879 1.02343i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 2.00000 0.254000
\(63\) 1.50000 2.59808i 0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.00000 + 1.73205i −0.369274 + 0.213201i
\(67\) −5.50000 + 9.52628i −0.671932 + 1.16382i 0.305424 + 0.952217i \(0.401202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 1.50000 0.866025i 0.180579 0.104257i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 0 0
\(76\) −3.00000 + 5.19615i −0.344124 + 0.596040i
\(77\) 1.00000 1.73205i 0.113961 0.197386i
\(78\) −9.00000 5.19615i −1.01905 0.588348i
\(79\) 6.00000 + 10.3923i 0.675053 + 1.16923i 0.976453 + 0.215728i \(0.0692125\pi\)
−0.301401 + 0.953498i \(0.597454\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 11.0000 1.21475
\(83\) −5.50000 9.52628i −0.603703 1.04565i −0.992255 0.124218i \(-0.960358\pi\)
0.388552 0.921427i \(-0.372976\pi\)
\(84\) 1.50000 + 0.866025i 0.163663 + 0.0944911i
\(85\) 0 0
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 15.5885i 1.67126i
\(88\) −1.00000 1.73205i −0.106600 0.184637i
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0.500000 + 0.866025i 0.0521286 + 0.0902894i
\(93\) 3.00000 1.73205i 0.311086 0.179605i
\(94\) 3.50000 6.06218i 0.360997 0.625266i
\(95\) 0 0
\(96\) 1.50000 0.866025i 0.153093 0.0883883i
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) 6.00000 0.606092
\(99\) −3.00000 + 5.19615i −0.301511 + 0.522233i
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 3.46410i 0.342997i
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 3.00000 5.19615i 0.294174 0.509525i
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) −3.00000 1.73205i −0.284747 0.164399i
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 6.00000 10.3923i 0.564433 0.977626i −0.432670 0.901553i \(-0.642428\pi\)
0.997102 0.0760733i \(-0.0242383\pi\)
\(114\) 10.3923i 0.973329i
\(115\) 0 0
\(116\) 9.00000 0.835629
\(117\) −18.0000 −1.66410
\(118\) 4.00000 0.368230
\(119\) −1.00000 1.73205i −0.0916698 0.158777i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −3.50000 + 6.06218i −0.316875 + 0.548844i
\(123\) 16.5000 9.52628i 1.48775 0.858956i
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) 0 0
\(126\) 3.00000 0.267261
\(127\) 19.0000 1.68598 0.842989 0.537931i \(-0.180794\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) −3.00000 1.73205i −0.261116 0.150756i
\(133\) −3.00000 5.19615i −0.260133 0.450564i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 1.50000 + 0.866025i 0.127688 + 0.0737210i
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 12.1244i 1.02105i
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) −12.0000 −1.00349
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) 0 0
\(146\) 2.00000 + 3.46410i 0.165521 + 0.286691i
\(147\) 9.00000 5.19615i 0.742307 0.428571i
\(148\) 1.00000 1.73205i 0.0821995 0.142374i
\(149\) 0.500000 0.866025i 0.0409616 0.0709476i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(150\) 0 0
\(151\) −5.00000 8.66025i −0.406894 0.704761i 0.587646 0.809118i \(-0.300055\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) −6.00000 −0.486664
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 10.3923i 0.832050i
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) −6.00000 + 10.3923i −0.477334 + 0.826767i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) −9.00000 −0.707107
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 5.50000 + 9.52628i 0.429478 + 0.743877i
\(165\) 0 0
\(166\) 5.50000 9.52628i 0.426883 0.739383i
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 1.73205i 0.133631i
\(169\) −11.5000 19.9186i −0.884615 1.53220i
\(170\) 0 0
\(171\) 9.00000 + 15.5885i 0.688247 + 1.19208i
\(172\) 4.00000 0.304997
\(173\) −2.00000 3.46410i −0.152057 0.263371i 0.779926 0.625871i \(-0.215256\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(174\) 13.5000 7.79423i 1.02343 0.590879i
\(175\) 0 0
\(176\) 1.00000 1.73205i 0.0753778 0.130558i
\(177\) 6.00000 3.46410i 0.450988 0.260378i
\(178\) 0.500000 + 0.866025i 0.0374766 + 0.0649113i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 3.00000 + 5.19615i 0.222375 + 0.385164i
\(183\) 12.1244i 0.896258i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 0 0
\(186\) 3.00000 + 1.73205i 0.219971 + 0.127000i
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) 7.00000 0.510527
\(189\) 4.50000 2.59808i 0.327327 0.188982i
\(190\) 0 0
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) −5.00000 + 8.66025i −0.359908 + 0.623379i −0.987945 0.154805i \(-0.950525\pi\)
0.628037 + 0.778183i \(0.283859\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) −6.00000 −0.426401
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) −16.5000 + 9.52628i −1.16382 + 0.671932i
\(202\) 1.00000 1.73205i 0.0703598 0.121867i
\(203\) −4.50000 + 7.79423i −0.315838 + 0.547048i
\(204\) −3.00000 + 1.73205i −0.210042 + 0.121268i
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 3.00000 0.208514
\(208\) 6.00000 0.416025
\(209\) 6.00000 + 10.3923i 0.415029 + 0.718851i
\(210\) 0 0
\(211\) −9.00000 + 15.5885i −0.619586 + 1.07315i 0.369976 + 0.929041i \(0.379366\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(212\) 0 0
\(213\) −9.00000 5.19615i −0.616670 0.356034i
\(214\) −1.50000 2.59808i −0.102538 0.177601i
\(215\) 0 0
\(216\) 5.19615i 0.353553i
\(217\) −2.00000 −0.135769
\(218\) 3.50000 + 6.06218i 0.237050 + 0.410582i
\(219\) 6.00000 + 3.46410i 0.405442 + 0.234082i
\(220\) 0 0
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 3.46410i 0.232495i
\(223\) 11.5000 + 19.9186i 0.770097 + 1.33385i 0.937509 + 0.347960i \(0.113126\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −4.00000 6.92820i −0.265489 0.459841i 0.702202 0.711977i \(-0.252200\pi\)
−0.967692 + 0.252136i \(0.918867\pi\)
\(228\) −9.00000 + 5.19615i −0.596040 + 0.344124i
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 3.00000 1.73205i 0.197386 0.113961i
\(232\) 4.50000 + 7.79423i 0.295439 + 0.511716i
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) −9.00000 15.5885i −0.588348 1.01905i
\(235\) 0 0
\(236\) 2.00000 + 3.46410i 0.130189 + 0.225494i
\(237\) 20.7846i 1.35011i
\(238\) 1.00000 1.73205i 0.0648204 0.112272i
\(239\) −14.0000 + 24.2487i −0.905585 + 1.56852i −0.0854543 + 0.996342i \(0.527234\pi\)
−0.820130 + 0.572177i \(0.806099\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 7.00000 0.449977
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) −7.00000 −0.448129
\(245\) 0 0
\(246\) 16.5000 + 9.52628i 1.05200 + 0.607373i
\(247\) −18.0000 + 31.1769i −1.14531 + 1.98374i
\(248\) −1.00000 + 1.73205i −0.0635001 + 0.109985i
\(249\) 19.0526i 1.20741i
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 1.50000 + 2.59808i 0.0944911 + 0.163663i
\(253\) 2.00000 0.125739
\(254\) 9.50000 + 16.4545i 0.596083 + 1.03245i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) 6.00000 3.46410i 0.373544 0.215666i
\(259\) 1.00000 + 1.73205i 0.0621370 + 0.107624i
\(260\) 0 0
\(261\) 13.5000 23.3827i 0.835629 1.44735i
\(262\) −12.0000 −0.741362
\(263\) 8.00000 + 13.8564i 0.493301 + 0.854423i 0.999970 0.00771799i \(-0.00245674\pi\)
−0.506669 + 0.862141i \(0.669123\pi\)
\(264\) 3.46410i 0.213201i
\(265\) 0 0
\(266\) 3.00000 5.19615i 0.183942 0.318597i
\(267\) 1.50000 + 0.866025i 0.0917985 + 0.0529999i
\(268\) −5.50000 9.52628i −0.335966 0.581910i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) −1.00000 1.73205i −0.0606339 0.105021i
\(273\) 9.00000 + 5.19615i 0.544705 + 0.314485i
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) 0 0
\(276\) 1.73205i 0.104257i
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) −16.0000 −0.959616
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 10.5000 6.06218i 0.625266 0.360997i
\(283\) 0.500000 0.866025i 0.0297219 0.0514799i −0.850782 0.525519i \(-0.823871\pi\)
0.880504 + 0.474039i \(0.157204\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) −11.0000 −0.649309
\(288\) 3.00000 0.176777
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) −2.00000 + 3.46410i −0.117041 + 0.202721i
\(293\) −9.00000 + 15.5885i −0.525786 + 0.910687i 0.473763 + 0.880652i \(0.342895\pi\)
−0.999549 + 0.0300351i \(0.990438\pi\)
\(294\) 9.00000 + 5.19615i 0.524891 + 0.303046i
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) −9.00000 + 5.19615i −0.522233 + 0.301511i
\(298\) 1.00000 0.0579284
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) 5.00000 8.66025i 0.287718 0.498342i
\(303\) 3.46410i 0.199007i
\(304\) −3.00000 5.19615i −0.172062 0.298020i
\(305\) 0 0
\(306\) −3.00000 + 5.19615i −0.171499 + 0.297044i
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) 1.00000 + 1.73205i 0.0569803 + 0.0986928i
\(309\) −12.0000 + 6.92820i −0.682656 + 0.394132i
\(310\) 0 0
\(311\) −3.00000 + 5.19615i −0.170114 + 0.294647i −0.938460 0.345389i \(-0.887747\pi\)
0.768345 + 0.640036i \(0.221080\pi\)
\(312\) 9.00000 5.19615i 0.509525 0.294174i
\(313\) −11.0000 19.0526i −0.621757 1.07691i −0.989158 0.146852i \(-0.953086\pi\)
0.367402 0.930062i \(-0.380247\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) −1.00000 1.73205i −0.0561656 0.0972817i 0.836576 0.547852i \(-0.184554\pi\)
−0.892741 + 0.450570i \(0.851221\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) −4.50000 2.59808i −0.251166 0.145010i
\(322\) −0.500000 0.866025i −0.0278639 0.0482617i
\(323\) 12.0000 0.667698
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 0 0
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 10.5000 + 6.06218i 0.580651 + 0.335239i
\(328\) −5.50000 + 9.52628i −0.303687 + 0.526001i
\(329\) −3.50000 + 6.06218i −0.192961 + 0.334219i
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 11.0000 0.603703
\(333\) −3.00000 5.19615i −0.164399 0.284747i
\(334\) −3.00000 −0.164153
\(335\) 0 0
\(336\) −1.50000 + 0.866025i −0.0818317 + 0.0472456i
\(337\) 4.00000 6.92820i 0.217894 0.377403i −0.736270 0.676688i \(-0.763415\pi\)
0.954164 + 0.299285i \(0.0967480\pi\)
\(338\) 11.5000 19.9186i 0.625518 1.08343i
\(339\) 18.0000 10.3923i 0.977626 0.564433i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) −9.00000 + 15.5885i −0.486664 + 0.842927i
\(343\) −13.0000 −0.701934
\(344\) 2.00000 + 3.46410i 0.107833 + 0.186772i
\(345\) 0 0
\(346\) 2.00000 3.46410i 0.107521 0.186231i
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 13.5000 + 7.79423i 0.723676 + 0.417815i
\(349\) 5.50000 + 9.52628i 0.294408 + 0.509930i 0.974847 0.222875i \(-0.0715441\pi\)
−0.680439 + 0.732805i \(0.738211\pi\)
\(350\) 0 0
\(351\) −27.0000 15.5885i −1.44115 0.832050i
\(352\) 2.00000 0.106600
\(353\) −8.00000 13.8564i −0.425797 0.737502i 0.570697 0.821160i \(-0.306673\pi\)
−0.996495 + 0.0836583i \(0.973340\pi\)
\(354\) 6.00000 + 3.46410i 0.318896 + 0.184115i
\(355\) 0 0
\(356\) −0.500000 + 0.866025i −0.0264999 + 0.0458993i
\(357\) 3.46410i 0.183340i
\(358\) 1.00000 + 1.73205i 0.0528516 + 0.0915417i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −6.50000 11.2583i −0.341632 0.591725i
\(363\) 10.5000 6.06218i 0.551107 0.318182i
\(364\) −3.00000 + 5.19615i −0.157243 + 0.272352i
\(365\) 0 0
\(366\) −10.5000 + 6.06218i −0.548844 + 0.316875i
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 33.0000 1.71791
\(370\) 0 0
\(371\) 0 0
\(372\) 3.46410i 0.179605i
\(373\) 6.00000 10.3923i 0.310668 0.538093i −0.667839 0.744306i \(-0.732781\pi\)
0.978507 + 0.206213i \(0.0661139\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0 0
\(376\) 3.50000 + 6.06218i 0.180499 + 0.312633i
\(377\) 54.0000 2.78114
\(378\) 4.50000 + 2.59808i 0.231455 + 0.133631i
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 28.5000 + 16.4545i 1.46010 + 0.842989i
\(382\) 3.00000 5.19615i 0.153493 0.265858i
\(383\) 16.0000 27.7128i 0.817562 1.41606i −0.0899119 0.995950i \(-0.528659\pi\)
0.907474 0.420109i \(-0.138008\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 6.00000 10.3923i 0.304997 0.528271i
\(388\) 8.00000 0.406138
\(389\) −9.50000 16.4545i −0.481669 0.834275i 0.518110 0.855314i \(-0.326636\pi\)
−0.999779 + 0.0210389i \(0.993303\pi\)
\(390\) 0 0
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) −3.00000 + 5.19615i −0.151523 + 0.262445i
\(393\) −18.0000 + 10.3923i −0.907980 + 0.524222i
\(394\) −4.00000 6.92820i −0.201517 0.349038i
\(395\) 0 0
\(396\) −3.00000 5.19615i −0.150756 0.261116i
\(397\) 4.00000 0.200754 0.100377 0.994949i \(-0.467995\pi\)
0.100377 + 0.994949i \(0.467995\pi\)
\(398\) −9.00000 15.5885i −0.451129 0.781379i
\(399\) 10.3923i 0.520266i
\(400\) 0 0
\(401\) 5.00000 8.66025i 0.249688 0.432472i −0.713751 0.700399i \(-0.753005\pi\)
0.963439 + 0.267927i \(0.0863386\pi\)
\(402\) −16.5000 9.52628i −0.822945 0.475128i
\(403\) 6.00000 + 10.3923i 0.298881 + 0.517678i
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) −2.00000 3.46410i −0.0991363 0.171709i
\(408\) −3.00000 1.73205i −0.148522 0.0857493i
\(409\) −19.0000 + 32.9090i −0.939490 + 1.62724i −0.173064 + 0.984911i \(0.555367\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) −4.00000 −0.196827
\(414\) 1.50000 + 2.59808i 0.0737210 + 0.127688i
\(415\) 0 0
\(416\) 3.00000 + 5.19615i 0.147087 + 0.254762i
\(417\) −24.0000 + 13.8564i −1.17529 + 0.678551i
\(418\) −6.00000 + 10.3923i −0.293470 + 0.508304i
\(419\) −17.0000 + 29.4449i −0.830504 + 1.43848i 0.0671345 + 0.997744i \(0.478614\pi\)
−0.897639 + 0.440732i \(0.854719\pi\)
\(420\) 0 0
\(421\) −11.0000 19.0526i −0.536107 0.928565i −0.999109 0.0422075i \(-0.986561\pi\)
0.463002 0.886357i \(-0.346772\pi\)
\(422\) −18.0000 −0.876226
\(423\) 10.5000 18.1865i 0.510527 0.884260i
\(424\) 0 0
\(425\) 0 0
\(426\) 10.3923i 0.503509i
\(427\) 3.50000 6.06218i 0.169377 0.293369i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) −18.0000 10.3923i −0.869048 0.501745i
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −1.00000 1.73205i −0.0480015 0.0831411i
\(435\) 0 0
\(436\) −3.50000 + 6.06218i −0.167620 + 0.290326i
\(437\) 3.00000 5.19615i 0.143509 0.248566i
\(438\) 6.92820i 0.331042i
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) −12.0000 −0.570782
\(443\) −4.50000 7.79423i −0.213801 0.370315i 0.739100 0.673596i \(-0.235251\pi\)
−0.952901 + 0.303281i \(0.901918\pi\)
\(444\) 3.00000 1.73205i 0.142374 0.0821995i
\(445\) 0 0
\(446\) −11.5000 + 19.9186i −0.544541 + 0.943172i
\(447\) 1.50000 0.866025i 0.0709476 0.0409616i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) 6.00000 + 10.3923i 0.282216 + 0.488813i
\(453\) 17.3205i 0.813788i
\(454\) 4.00000 6.92820i 0.187729 0.325157i
\(455\) 0 0
\(456\) −9.00000 5.19615i −0.421464 0.243332i
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 7.00000 0.327089
\(459\) 10.3923i 0.485071i
\(460\) 0 0
\(461\) 10.5000 + 18.1865i 0.489034 + 0.847031i 0.999920 0.0126168i \(-0.00401615\pi\)
−0.510887 + 0.859648i \(0.670683\pi\)
\(462\) 3.00000 + 1.73205i 0.139573 + 0.0805823i
\(463\) 18.0000 31.1769i 0.836531 1.44891i −0.0562469 0.998417i \(-0.517913\pi\)
0.892778 0.450497i \(-0.148753\pi\)
\(464\) −4.50000 + 7.79423i −0.208907 + 0.361838i
\(465\) 0 0
\(466\) 5.00000 + 8.66025i 0.231621 + 0.401179i
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 9.00000 15.5885i 0.416025 0.720577i
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 6.00000 3.46410i 0.276465 0.159617i
\(472\) −2.00000 + 3.46410i −0.0920575 + 0.159448i
\(473\) 4.00000 6.92820i 0.183920 0.318559i
\(474\) −18.0000 + 10.3923i −0.826767 + 0.477334i
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) −28.0000 −1.28069
\(479\) −14.0000 24.2487i −0.639676 1.10795i −0.985504 0.169654i \(-0.945735\pi\)
0.345827 0.938298i \(-0.387598\pi\)
\(480\) 0 0
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) 0.500000 0.866025i 0.0227744 0.0394464i
\(483\) −1.50000 0.866025i −0.0682524 0.0394055i
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) 0 0
\(486\) −13.5000 7.79423i −0.612372 0.353553i
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) −3.50000 6.06218i −0.158438 0.274422i
\(489\) −6.00000 3.46410i −0.271329 0.156652i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 19.0526i 0.858956i
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) −36.0000 −1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) 16.5000 9.52628i 0.739383 0.426883i
\(499\) 12.0000 20.7846i 0.537194 0.930447i −0.461860 0.886953i \(-0.652818\pi\)
0.999054 0.0434940i \(-0.0138489\pi\)
\(500\) 0 0
\(501\) −4.50000 + 2.59808i −0.201045 + 0.116073i
\(502\) 9.00000 + 15.5885i 0.401690 + 0.695747i
\(503\) −27.0000 −1.20387 −0.601935 0.798545i \(-0.705603\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(504\) −1.50000 + 2.59808i −0.0668153 + 0.115728i
\(505\) 0 0
\(506\) 1.00000 + 1.73205i 0.0444554 + 0.0769991i
\(507\) 39.8372i 1.76923i
\(508\) −9.50000 + 16.4545i −0.421494 + 0.730050i
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −1.00000 −0.0441942
\(513\) 31.1769i 1.37649i
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) 6.00000 + 3.46410i 0.264135 + 0.152499i
\(517\) 7.00000 12.1244i 0.307860 0.533229i
\(518\) −1.00000 + 1.73205i −0.0439375 + 0.0761019i
\(519\) 6.92820i 0.304114i
\(520\) 0 0
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) 27.0000 1.18176
\(523\) 29.0000 1.26808 0.634041 0.773300i \(-0.281395\pi\)
0.634041 + 0.773300i \(0.281395\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 0 0
\(526\) −8.00000 + 13.8564i −0.348817 + 0.604168i
\(527\) 2.00000 3.46410i 0.0871214 0.150899i
\(528\) 3.00000 1.73205i 0.130558 0.0753778i
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 6.00000 0.260133
\(533\) 33.0000 + 57.1577i 1.42939 + 2.47577i
\(534\) 1.73205i 0.0749532i
\(535\) 0 0
\(536\) 5.50000 9.52628i 0.237564 0.411473i
\(537\) 3.00000 + 1.73205i 0.129460 + 0.0747435i
\(538\) 1.50000 + 2.59808i 0.0646696 + 0.112011i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) −7.00000 12.1244i −0.300676 0.520786i
\(543\) −19.5000 11.2583i −0.836825 0.483141i
\(544\) 1.00000 1.73205i 0.0428746 0.0742611i
\(545\) 0 0
\(546\) 10.3923i 0.444750i
\(547\) 17.5000 + 30.3109i 0.748246 + 1.29600i 0.948663 + 0.316289i \(0.102437\pi\)
−0.200417 + 0.979711i \(0.564230\pi\)
\(548\) −12.0000 −0.512615
\(549\) −10.5000 + 18.1865i −0.448129 + 0.776182i
\(550\) 0 0
\(551\) −27.0000 46.7654i −1.15024 1.99227i
\(552\) −1.50000 + 0.866025i −0.0638442 + 0.0368605i
\(553\) 6.00000 10.3923i 0.255146 0.441926i
\(554\) 11.0000 19.0526i 0.467345 0.809466i
\(555\) 0 0
\(556\) −8.00000 13.8564i −0.339276 0.587643i
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 3.00000 + 5.19615i 0.127000 + 0.219971i
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 6.92820i 0.292509i
\(562\) −1.50000 + 2.59808i −0.0632737 + 0.109593i
\(563\) −18.5000 + 32.0429i −0.779682 + 1.35045i 0.152443 + 0.988312i \(0.451286\pi\)
−0.932125 + 0.362137i \(0.882047\pi\)
\(564\) 10.5000 + 6.06218i 0.442130 + 0.255264i
\(565\) 0 0
\(566\) 1.00000 0.0420331
\(567\) 9.00000 0.377964
\(568\) 6.00000 0.251754
\(569\) 1.00000 + 1.73205i 0.0419222 + 0.0726113i 0.886225 0.463255i \(-0.153319\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(570\) 0 0
\(571\) 10.0000 17.3205i 0.418487 0.724841i −0.577301 0.816532i \(-0.695894\pi\)
0.995788 + 0.0916910i \(0.0292272\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) 10.3923i 0.434145i
\(574\) −5.50000 9.52628i −0.229566 0.397619i
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) −6.50000 11.2583i −0.270364 0.468285i
\(579\) −15.0000 + 8.66025i −0.623379 + 0.359908i
\(580\) 0 0
\(581\) −5.50000 + 9.52628i −0.228178 + 0.395217i
\(582\) 12.0000 6.92820i 0.497416 0.287183i
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 1.50000 + 2.59808i 0.0619116 + 0.107234i 0.895320 0.445424i \(-0.146947\pi\)
−0.833408 + 0.552658i \(0.813614\pi\)
\(588\) 10.3923i 0.428571i
\(589\) 6.00000 10.3923i 0.247226 0.428207i
\(590\) 0 0
\(591\) −12.0000 6.92820i −0.493614 0.284988i
\(592\) 1.00000 + 1.73205i 0.0410997 + 0.0711868i
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) −9.00000 5.19615i −0.369274 0.213201i
\(595\) 0 0
\(596\) 0.500000 + 0.866025i 0.0204808 + 0.0354738i
\(597\) −27.0000 15.5885i −1.10504 0.637993i
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) −4.00000 −0.163028
\(603\) −33.0000 −1.34386
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 3.00000 1.73205i 0.121867 0.0703598i
\(607\) 0.500000 0.866025i 0.0202944 0.0351509i −0.855700 0.517472i \(-0.826873\pi\)
0.875994 + 0.482322i \(0.160206\pi\)
\(608\) 3.00000 5.19615i 0.121666 0.210732i
\(609\) −13.5000 + 7.79423i −0.547048 + 0.315838i
\(610\) 0 0
\(611\) 42.0000 1.69914
\(612\) −6.00000 −0.242536
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) 4.50000 + 7.79423i 0.181605 + 0.314549i
\(615\) 0 0
\(616\) −1.00000 + 1.73205i −0.0402911 + 0.0697863i
\(617\) −16.0000 + 27.7128i −0.644136 + 1.11568i 0.340365 + 0.940294i \(0.389449\pi\)
−0.984500 + 0.175382i \(0.943884\pi\)
\(618\) −12.0000 6.92820i −0.482711 0.278693i
\(619\) 5.00000 + 8.66025i 0.200967 + 0.348085i 0.948840 0.315757i \(-0.102258\pi\)
−0.747873 + 0.663842i \(0.768925\pi\)
\(620\) 0 0
\(621\) 4.50000 + 2.59808i 0.180579 + 0.104257i
\(622\) −6.00000 −0.240578
\(623\) −0.500000 0.866025i −0.0200321 0.0346966i
\(624\) 9.00000 + 5.19615i 0.360288 + 0.208013i
\(625\) 0 0
\(626\) 11.0000 19.0526i 0.439648 0.761493i
\(627\) 20.7846i 0.830057i
\(628\) 2.00000 + 3.46410i 0.0798087 + 0.138233i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −6.00000 10.3923i −0.238667 0.413384i
\(633\) −27.0000 + 15.5885i −1.07315 + 0.619586i
\(634\) 1.00000 1.73205i 0.0397151 0.0687885i
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0000 + 31.1769i 0.713186 + 1.23527i
\(638\) 18.0000 0.712627
\(639\) −9.00000 15.5885i −0.356034 0.616670i
\(640\) 0 0
\(641\) −6.50000 11.2583i −0.256735 0.444677i 0.708631 0.705580i \(-0.249313\pi\)
−0.965365 + 0.260902i \(0.915980\pi\)
\(642\) 5.19615i 0.205076i
\(643\) −16.5000 + 28.5788i −0.650696 + 1.12704i 0.332258 + 0.943189i \(0.392190\pi\)
−0.982954 + 0.183851i \(0.941144\pi\)
\(644\) 0.500000 0.866025i 0.0197028 0.0341262i
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) −33.0000 −1.29736 −0.648682 0.761060i \(-0.724679\pi\)
−0.648682 + 0.761060i \(0.724679\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) −3.00000 1.73205i −0.117579 0.0678844i
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −13.0000 + 22.5167i −0.508729 + 0.881145i 0.491220 + 0.871036i \(0.336551\pi\)
−0.999949 + 0.0101092i \(0.996782\pi\)
\(654\) 12.1244i 0.474100i
\(655\) 0 0
\(656\) −11.0000 −0.429478
\(657\) 6.00000 + 10.3923i 0.234082 + 0.405442i
\(658\) −7.00000 −0.272888
\(659\) −10.0000 17.3205i −0.389545 0.674711i 0.602844 0.797859i \(-0.294034\pi\)
−0.992388 + 0.123148i \(0.960701\pi\)
\(660\) 0 0
\(661\) 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i \(-0.771032\pi\)
0.946729 + 0.322031i \(0.104366\pi\)
\(662\) −4.00000 + 6.92820i −0.155464 + 0.269272i
\(663\) −18.0000 + 10.3923i −0.699062 + 0.403604i
\(664\) 5.50000 + 9.52628i 0.213441 + 0.369691i
\(665\) 0 0
\(666\) 3.00000 5.19615i 0.116248 0.201347i
\(667\) −9.00000 −0.348481
\(668\) −1.50000 2.59808i −0.0580367 0.100523i
\(669\) 39.8372i 1.54019i
\(670\) 0 0
\(671\) −7.00000 + 12.1244i −0.270232 + 0.468056i
\(672\) −1.50000 0.866025i −0.0578638 0.0334077i
\(673\) 3.00000 + 5.19615i 0.115642 + 0.200297i 0.918036 0.396497i \(-0.129774\pi\)
−0.802395 + 0.596794i \(0.796441\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 11.0000 + 19.0526i 0.422764 + 0.732249i 0.996209 0.0869952i \(-0.0277265\pi\)
−0.573444 + 0.819244i \(0.694393\pi\)
\(678\) 18.0000 + 10.3923i 0.691286 + 0.399114i
\(679\) −4.00000 + 6.92820i −0.153506 + 0.265880i
\(680\) 0 0
\(681\) 13.8564i 0.530979i
\(682\) 2.00000 + 3.46410i 0.0765840 + 0.132647i
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) −18.0000 −0.688247
\(685\) 0 0
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) 10.5000 6.06218i 0.400600 0.231287i
\(688\) −2.00000 + 3.46410i −0.0762493 + 0.132068i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) 4.00000 0.152057
\(693\) 6.00000 0.227921
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 15.5885i 0.590879i
\(697\) 11.0000 19.0526i 0.416655 0.721667i
\(698\) −5.50000 + 9.52628i −0.208178 + 0.360575i
\(699\) 15.0000 + 8.66025i 0.567352 + 0.327561i
\(700\) 0 0
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 31.1769i 1.17670i
\(703\) −12.0000 −0.452589
\(704\) 1.00000 + 1.73205i 0.0376889 + 0.0652791i
\(705\) 0 0
\(706\) 8.00000 13.8564i 0.301084 0.521493i
\(707\) −1.00000 + 1.73205i −0.0376089 + 0.0651405i
\(708\) 6.92820i 0.260378i
\(709\) 13.5000 + 23.3827i 0.507003 + 0.878155i 0.999967 + 0.00810550i \(0.00258009\pi\)
−0.492964 + 0.870050i \(0.664087\pi\)
\(710\) 0 0
\(711\) −18.0000 + 31.1769i −0.675053 + 1.16923i
\(712\) −1.00000 −0.0374766
\(713\) −1.00000 1.73205i −0.0374503 0.0648658i
\(714\) 3.00000 1.73205i 0.112272 0.0648204i
\(715\) 0 0
\(716\) −1.00000 + 1.73205i −0.0373718 + 0.0647298i
\(717\) −42.0000 + 24.2487i −1.56852 + 0.905585i
\(718\) 15.0000 + 25.9808i 0.559795 + 0.969593i
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 8.50000 + 14.7224i 0.316337 + 0.547912i
\(723\) 1.73205i 0.0644157i
\(724\) 6.50000 11.2583i 0.241571 0.418413i
\(725\) 0 0
\(726\) 10.5000 + 6.06218i 0.389692 + 0.224989i
\(727\) 10.5000 + 18.1865i 0.389423 + 0.674501i 0.992372 0.123279i \(-0.0393409\pi\)
−0.602949 + 0.797780i \(0.706008\pi\)
\(728\) −6.00000 −0.222375
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −4.00000 6.92820i −0.147945 0.256249i
\(732\) −10.5000 6.06218i −0.388091 0.224065i
\(733\) 2.00000 3.46410i 0.0738717 0.127950i −0.826723 0.562609i \(-0.809798\pi\)
0.900595 + 0.434659i \(0.143131\pi\)
\(734\) 8.00000 13.8564i 0.295285 0.511449i
\(735\) 0 0
\(736\) −0.500000 0.866025i −0.0184302 0.0319221i
\(737\) −22.0000 −0.810380
\(738\) 16.5000 + 28.5788i 0.607373 + 1.05200i
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) −54.0000 + 31.1769i −1.98374 + 1.14531i
\(742\) 0 0
\(743\) −7.50000 + 12.9904i −0.275148 + 0.476571i −0.970173 0.242415i \(-0.922060\pi\)
0.695024 + 0.718986i \(0.255394\pi\)
\(744\) −3.00000 + 1.73205i −0.109985 + 0.0635001i
\(745\) 0 0
\(746\) 12.0000 0.439351
\(747\) 16.5000 28.5788i 0.603703 1.04565i
\(748\) −4.00000 −0.146254
\(749\) 1.50000 + 2.59808i 0.0548088 + 0.0949316i
\(750\) 0 0
\(751\) −13.0000 + 22.5167i −0.474377 + 0.821645i −0.999570 0.0293387i \(-0.990660\pi\)
0.525193 + 0.850983i \(0.323993\pi\)
\(752\) −3.50000 + 6.06218i −0.127632 + 0.221065i
\(753\) 27.0000 + 15.5885i 0.983935 + 0.568075i
\(754\) 27.0000 + 46.7654i 0.983282 + 1.70309i
\(755\) 0 0
\(756\) 5.19615i 0.188982i
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −8.00000 13.8564i −0.290573 0.503287i
\(759\) 3.00000 + 1.73205i 0.108893 + 0.0628695i
\(760\) 0 0
\(761\) 4.50000 7.79423i 0.163125 0.282541i −0.772863 0.634573i \(-0.781176\pi\)
0.935988 + 0.352032i \(0.114509\pi\)
\(762\) 32.9090i 1.19217i
\(763\) −3.50000 6.06218i −0.126709 0.219466i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 12.0000 + 20.7846i 0.433295 + 0.750489i
\(768\) −1.50000 + 0.866025i −0.0541266 + 0.0312500i
\(769\) 7.50000 12.9904i 0.270457 0.468445i −0.698522 0.715589i \(-0.746159\pi\)
0.968979 + 0.247143i \(0.0794919\pi\)
\(770\) 0 0
\(771\) 18.0000 10.3923i 0.648254 0.374270i
\(772\) −5.00000 8.66025i −0.179954 0.311689i
\(773\) −12.0000 −0.431610 −0.215805 0.976436i \(-0.569238\pi\)
−0.215805 + 0.976436i \(0.569238\pi\)
\(774\) 12.0000 0.431331
\(775\) 0 0
\(776\) 4.00000 + 6.92820i 0.143592 + 0.248708i
\(777\) 3.46410i 0.124274i
\(778\) 9.50000 16.4545i 0.340592 0.589922i
\(779\) 33.0000 57.1577i 1.18235 2.04789i
\(780\) 0 0
\(781\) −6.00000