Properties

Label 450.2.a
Level $450$
Weight $2$
Character orbit 450.a
Rep. character $\chi_{450}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $7$
Sturm bound $180$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(180\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(450))\).

Total New Old
Modular forms 114 7 107
Cusp forms 67 7 60
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(5\)

Trace form

\( 7 q - q^{2} + 7 q^{4} - q^{8} + 2 q^{11} + 6 q^{13} + 4 q^{14} + 7 q^{16} + 6 q^{17} - 2 q^{19} + 12 q^{22} + 6 q^{26} + 6 q^{29} - 12 q^{31} - q^{32} + 8 q^{34} - 18 q^{37} + 4 q^{38} + 8 q^{41} - 12 q^{43}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(450))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
450.2.a.a 450.a 1.a $1$ $3.593$ \(\Q\) None 90.2.a.a \(-1\) \(0\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}-6q^{11}+4q^{13}+\cdots\)
450.2.a.b 450.a 1.a $1$ $3.593$ \(\Q\) None 30.2.c.a \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}-2q^{11}-6q^{13}+\cdots\)
450.2.a.c 450.a 1.a $1$ $3.593$ \(\Q\) None 50.2.a.a \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}+3q^{11}+4q^{13}+\cdots\)
450.2.a.d 450.a 1.a $1$ $3.593$ \(\Q\) None 30.2.a.a \(-1\) \(0\) \(0\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{7}-q^{8}-2q^{13}-4q^{14}+\cdots\)
450.2.a.e 450.a 1.a $1$ $3.593$ \(\Q\) None 90.2.a.a \(1\) \(0\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{7}+q^{8}+6q^{11}+4q^{13}+\cdots\)
450.2.a.f 450.a 1.a $1$ $3.593$ \(\Q\) None 30.2.c.a \(1\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-2q^{11}+6q^{13}+\cdots\)
450.2.a.g 450.a 1.a $1$ $3.593$ \(\Q\) None 50.2.a.a \(1\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}+3q^{11}-4q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(450))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(450)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)