Properties

Label 45.8.b.a.19.1
Level $45$
Weight $8$
Character 45.19
Analytic conductor $14.057$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,8,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0573261468\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-29}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(-5.38516i\) of defining polynomial
Character \(\chi\) \(=\) 45.19
Dual form 45.8.b.a.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.7703i q^{2} +12.0000 q^{4} +(-75.0000 + 269.258i) q^{5} -420.043i q^{7} -1507.85i q^{8} +O(q^{10})\) \(q-10.7703i q^{2} +12.0000 q^{4} +(-75.0000 + 269.258i) q^{5} -420.043i q^{7} -1507.85i q^{8} +(2900.00 + 807.775i) q^{10} +6828.00 q^{11} -10145.7i q^{13} -4524.00 q^{14} -14704.0 q^{16} -15681.6i q^{17} +6860.00 q^{19} +(-900.000 + 3231.10i) q^{20} -73539.8i q^{22} -29219.9i q^{23} +(-66875.0 - 40388.7i) q^{25} -109272. q^{26} -5040.51i q^{28} -25590.0 q^{29} +82112.0 q^{31} -34637.4i q^{32} -168896. q^{34} +(113100. + 31503.2i) q^{35} -223527. i q^{37} -73884.5i q^{38} +(406000. + 113088. i) q^{40} +533118. q^{41} +708935. i q^{43} +81936.0 q^{44} -314708. q^{46} -5826.75i q^{47} +647107. q^{49} +(-435000. + 720266. i) q^{50} -121748. i q^{52} +589374. i q^{53} +(-512100. + 1.83850e6i) q^{55} -633360. q^{56} +275613. i q^{58} -1.43898e6 q^{59} +1.38102e6 q^{61} -884373. i q^{62} -2.25517e6 q^{64} +(2.73180e6 + 760924. i) q^{65} -2.71487e6i q^{67} -188179. i q^{68} +(339300. - 1.21812e6i) q^{70} +481608. q^{71} +1.48618e6i q^{73} -2.40746e6 q^{74} +82320.0 q^{76} -2.86805e6i q^{77} -1.05976e6 q^{79} +(1.10280e6 - 3.95917e6i) q^{80} -5.74186e6i q^{82} +2.60380e6i q^{83} +(4.22240e6 + 1.17612e6i) q^{85} +7.63547e6 q^{86} -1.02956e7i q^{88} -5.64417e6 q^{89} -4.26161e6 q^{91} -350639. i q^{92} -62756.0 q^{94} +(-514500. + 1.84711e6i) q^{95} +1.20091e7i q^{97} -6.96956e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{4} - 150 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 24 q^{4} - 150 q^{5} + 5800 q^{10} + 13656 q^{11} - 9048 q^{14} - 29408 q^{16} + 13720 q^{19} - 1800 q^{20} - 133750 q^{25} - 218544 q^{26} - 51180 q^{29} + 164224 q^{31} - 337792 q^{34} + 226200 q^{35} + 812000 q^{40} + 1066236 q^{41} + 163872 q^{44} - 629416 q^{46} + 1294214 q^{49} - 870000 q^{50} - 1024200 q^{55} - 1266720 q^{56} - 2877960 q^{59} + 2762044 q^{61} - 4510336 q^{64} + 5463600 q^{65} + 678600 q^{70} + 963216 q^{71} - 4814928 q^{74} + 164640 q^{76} - 2119520 q^{79} + 2205600 q^{80} + 8444800 q^{85} + 15270936 q^{86} - 11288340 q^{89} - 8523216 q^{91} - 125512 q^{94} - 1029000 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.7703i 0.951972i −0.879453 0.475986i \(-0.842091\pi\)
0.879453 0.475986i \(-0.157909\pi\)
\(3\) 0 0
\(4\) 12.0000 0.0937500
\(5\) −75.0000 + 269.258i −0.268328 + 0.963328i
\(6\) 0 0
\(7\) 420.043i 0.462861i −0.972851 0.231430i \(-0.925659\pi\)
0.972851 0.231430i \(-0.0743406\pi\)
\(8\) 1507.85i 1.04122i
\(9\) 0 0
\(10\) 2900.00 + 807.775i 0.917061 + 0.255441i
\(11\) 6828.00 1.54675 0.773373 0.633951i \(-0.218568\pi\)
0.773373 + 0.633951i \(0.218568\pi\)
\(12\) 0 0
\(13\) 10145.7i 1.28079i −0.768045 0.640395i \(-0.778771\pi\)
0.768045 0.640395i \(-0.221229\pi\)
\(14\) −4524.00 −0.440630
\(15\) 0 0
\(16\) −14704.0 −0.897461
\(17\) 15681.6i 0.774139i −0.922050 0.387070i \(-0.873487\pi\)
0.922050 0.387070i \(-0.126513\pi\)
\(18\) 0 0
\(19\) 6860.00 0.229449 0.114725 0.993397i \(-0.463401\pi\)
0.114725 + 0.993397i \(0.463401\pi\)
\(20\) −900.000 + 3231.10i −0.0251558 + 0.0903120i
\(21\) 0 0
\(22\) 73539.8i 1.47246i
\(23\) 29219.9i 0.500762i −0.968147 0.250381i \(-0.919444\pi\)
0.968147 0.250381i \(-0.0805559\pi\)
\(24\) 0 0
\(25\) −66875.0 40388.7i −0.856000 0.516976i
\(26\) −109272. −1.21928
\(27\) 0 0
\(28\) 5040.51i 0.0433932i
\(29\) −25590.0 −0.194840 −0.0974198 0.995243i \(-0.531059\pi\)
−0.0974198 + 0.995243i \(0.531059\pi\)
\(30\) 0 0
\(31\) 82112.0 0.495040 0.247520 0.968883i \(-0.420384\pi\)
0.247520 + 0.968883i \(0.420384\pi\)
\(32\) 34637.4i 0.186862i
\(33\) 0 0
\(34\) −168896. −0.736959
\(35\) 113100. + 31503.2i 0.445887 + 0.124199i
\(36\) 0 0
\(37\) 223527.i 0.725479i −0.931891 0.362739i \(-0.881842\pi\)
0.931891 0.362739i \(-0.118158\pi\)
\(38\) 73884.5i 0.218429i
\(39\) 0 0
\(40\) 406000. + 113088.i 1.00303 + 0.279388i
\(41\) 533118. 1.20804 0.604018 0.796971i \(-0.293566\pi\)
0.604018 + 0.796971i \(0.293566\pi\)
\(42\) 0 0
\(43\) 708935.i 1.35978i 0.733316 + 0.679888i \(0.237971\pi\)
−0.733316 + 0.679888i \(0.762029\pi\)
\(44\) 81936.0 0.145007
\(45\) 0 0
\(46\) −314708. −0.476711
\(47\) 5826.75i 0.00818623i −0.999992 0.00409311i \(-0.998697\pi\)
0.999992 0.00409311i \(-0.00130288\pi\)
\(48\) 0 0
\(49\) 647107. 0.785760
\(50\) −435000. + 720266.i −0.492146 + 0.814888i
\(51\) 0 0
\(52\) 121748.i 0.120074i
\(53\) 589374.i 0.543783i 0.962328 + 0.271891i \(0.0876491\pi\)
−0.962328 + 0.271891i \(0.912351\pi\)
\(54\) 0 0
\(55\) −512100. + 1.83850e6i −0.415036 + 1.49002i
\(56\) −633360. −0.481940
\(57\) 0 0
\(58\) 275613.i 0.185482i
\(59\) −1.43898e6 −0.912164 −0.456082 0.889938i \(-0.650748\pi\)
−0.456082 + 0.889938i \(0.650748\pi\)
\(60\) 0 0
\(61\) 1.38102e6 0.779016 0.389508 0.921023i \(-0.372645\pi\)
0.389508 + 0.921023i \(0.372645\pi\)
\(62\) 884373.i 0.471264i
\(63\) 0 0
\(64\) −2.25517e6 −1.07535
\(65\) 2.73180e6 + 760924.i 1.23382 + 0.343672i
\(66\) 0 0
\(67\) 2.71487e6i 1.10277i −0.834250 0.551387i \(-0.814099\pi\)
0.834250 0.551387i \(-0.185901\pi\)
\(68\) 188179.i 0.0725756i
\(69\) 0 0
\(70\) 339300. 1.21812e6i 0.118234 0.424471i
\(71\) 481608. 0.159694 0.0798472 0.996807i \(-0.474557\pi\)
0.0798472 + 0.996807i \(0.474557\pi\)
\(72\) 0 0
\(73\) 1.48618e6i 0.447137i 0.974688 + 0.223568i \(0.0717706\pi\)
−0.974688 + 0.223568i \(0.928229\pi\)
\(74\) −2.40746e6 −0.690635
\(75\) 0 0
\(76\) 82320.0 0.0215109
\(77\) 2.86805e6i 0.715928i
\(78\) 0 0
\(79\) −1.05976e6 −0.241831 −0.120916 0.992663i \(-0.538583\pi\)
−0.120916 + 0.992663i \(0.538583\pi\)
\(80\) 1.10280e6 3.95917e6i 0.240814 0.864549i
\(81\) 0 0
\(82\) 5.74186e6i 1.15002i
\(83\) 2.60380e6i 0.499844i 0.968266 + 0.249922i \(0.0804050\pi\)
−0.968266 + 0.249922i \(0.919595\pi\)
\(84\) 0 0
\(85\) 4.22240e6 + 1.17612e6i 0.745750 + 0.207723i
\(86\) 7.63547e6 1.29447
\(87\) 0 0
\(88\) 1.02956e7i 1.61050i
\(89\) −5.64417e6 −0.848663 −0.424331 0.905507i \(-0.639491\pi\)
−0.424331 + 0.905507i \(0.639491\pi\)
\(90\) 0 0
\(91\) −4.26161e6 −0.592828
\(92\) 350639.i 0.0469464i
\(93\) 0 0
\(94\) −62756.0 −0.00779306
\(95\) −514500. + 1.84711e6i −0.0615677 + 0.221035i
\(96\) 0 0
\(97\) 1.20091e7i 1.33601i 0.744158 + 0.668004i \(0.232851\pi\)
−0.744158 + 0.668004i \(0.767149\pi\)
\(98\) 6.96956e6i 0.748021i
\(99\) 0 0
\(100\) −802500. 484665.i −0.0802500 0.0484665i
\(101\) −5.14270e6 −0.496668 −0.248334 0.968674i \(-0.579883\pi\)
−0.248334 + 0.968674i \(0.579883\pi\)
\(102\) 0 0
\(103\) 3.48477e6i 0.314227i 0.987581 + 0.157114i \(0.0502189\pi\)
−0.987581 + 0.157114i \(0.949781\pi\)
\(104\) −1.52981e7 −1.33358
\(105\) 0 0
\(106\) 6.34775e6 0.517666
\(107\) 1.48640e7i 1.17299i 0.809954 + 0.586493i \(0.199492\pi\)
−0.809954 + 0.586493i \(0.800508\pi\)
\(108\) 0 0
\(109\) −2.01124e7 −1.48755 −0.743773 0.668432i \(-0.766966\pi\)
−0.743773 + 0.668432i \(0.766966\pi\)
\(110\) 1.98012e7 + 5.51549e6i 1.41846 + 0.395102i
\(111\) 0 0
\(112\) 6.17631e6i 0.415400i
\(113\) 5.62633e6i 0.366818i 0.983037 + 0.183409i \(0.0587133\pi\)
−0.983037 + 0.183409i \(0.941287\pi\)
\(114\) 0 0
\(115\) 7.86770e6 + 2.19149e6i 0.482398 + 0.134369i
\(116\) −307080. −0.0182662
\(117\) 0 0
\(118\) 1.54983e7i 0.868354i
\(119\) −6.58694e6 −0.358319
\(120\) 0 0
\(121\) 2.71344e7 1.39242
\(122\) 1.48741e7i 0.741601i
\(123\) 0 0
\(124\) 985344. 0.0464100
\(125\) 1.58906e7 1.49775e7i 0.727706 0.685889i
\(126\) 0 0
\(127\) 2.85360e7i 1.23618i 0.786109 + 0.618088i \(0.212092\pi\)
−0.786109 + 0.618088i \(0.787908\pi\)
\(128\) 1.98553e7i 0.836839i
\(129\) 0 0
\(130\) 8.19540e6 2.94224e7i 0.327166 1.17456i
\(131\) 3.33132e7 1.29469 0.647346 0.762196i \(-0.275879\pi\)
0.647346 + 0.762196i \(0.275879\pi\)
\(132\) 0 0
\(133\) 2.88149e6i 0.106203i
\(134\) −2.92400e7 −1.04981
\(135\) 0 0
\(136\) −2.36454e7 −0.806049
\(137\) 4.28099e7i 1.42240i 0.702988 + 0.711202i \(0.251849\pi\)
−0.702988 + 0.711202i \(0.748151\pi\)
\(138\) 0 0
\(139\) 1.13808e7 0.359436 0.179718 0.983718i \(-0.442481\pi\)
0.179718 + 0.983718i \(0.442481\pi\)
\(140\) 1.35720e6 + 378039.i 0.0418019 + 0.0116436i
\(141\) 0 0
\(142\) 5.18708e6i 0.152024i
\(143\) 6.92745e7i 1.98106i
\(144\) 0 0
\(145\) 1.91925e6 6.89032e6i 0.0522810 0.187694i
\(146\) 1.60066e7 0.425661
\(147\) 0 0
\(148\) 2.68233e6i 0.0680136i
\(149\) −4.00070e7 −0.990794 −0.495397 0.868667i \(-0.664977\pi\)
−0.495397 + 0.868667i \(0.664977\pi\)
\(150\) 0 0
\(151\) −2.86594e7 −0.677405 −0.338703 0.940893i \(-0.609988\pi\)
−0.338703 + 0.940893i \(0.609988\pi\)
\(152\) 1.03438e7i 0.238907i
\(153\) 0 0
\(154\) −3.08899e7 −0.681544
\(155\) −6.15840e6 + 2.21093e7i −0.132833 + 0.476886i
\(156\) 0 0
\(157\) 3.01958e7i 0.622728i −0.950291 0.311364i \(-0.899214\pi\)
0.950291 0.311364i \(-0.100786\pi\)
\(158\) 1.14140e7i 0.230217i
\(159\) 0 0
\(160\) 9.32640e6 + 2.59780e6i 0.180009 + 0.0501402i
\(161\) −1.22736e7 −0.231783
\(162\) 0 0
\(163\) 9.35416e7i 1.69180i −0.533345 0.845898i \(-0.679065\pi\)
0.533345 0.845898i \(-0.320935\pi\)
\(164\) 6.39742e6 0.113253
\(165\) 0 0
\(166\) 2.80438e7 0.475838
\(167\) 5.73507e7i 0.952865i −0.879211 0.476432i \(-0.841930\pi\)
0.879211 0.476432i \(-0.158070\pi\)
\(168\) 0 0
\(169\) −4.01857e7 −0.640425
\(170\) 1.26672e7 4.54766e7i 0.197747 0.709933i
\(171\) 0 0
\(172\) 8.50722e6i 0.127479i
\(173\) 4.87192e7i 0.715383i 0.933840 + 0.357691i \(0.116436\pi\)
−0.933840 + 0.357691i \(0.883564\pi\)
\(174\) 0 0
\(175\) −1.69650e7 + 2.80904e7i −0.239288 + 0.396209i
\(176\) −1.00399e8 −1.38814
\(177\) 0 0
\(178\) 6.07896e7i 0.807903i
\(179\) −1.93505e7 −0.252178 −0.126089 0.992019i \(-0.540243\pi\)
−0.126089 + 0.992019i \(0.540243\pi\)
\(180\) 0 0
\(181\) 7.82617e7 0.981011 0.490506 0.871438i \(-0.336812\pi\)
0.490506 + 0.871438i \(0.336812\pi\)
\(182\) 4.58989e7i 0.564355i
\(183\) 0 0
\(184\) −4.40591e7 −0.521403
\(185\) 6.01866e7 + 1.67646e7i 0.698874 + 0.194666i
\(186\) 0 0
\(187\) 1.07074e8i 1.19740i
\(188\) 69921.0i 0.000767459i
\(189\) 0 0
\(190\) 1.98940e7 + 5.54133e6i 0.210419 + 0.0586107i
\(191\) 1.19454e8 1.24046 0.620229 0.784420i \(-0.287040\pi\)
0.620229 + 0.784420i \(0.287040\pi\)
\(192\) 0 0
\(193\) 5.98469e7i 0.599227i 0.954061 + 0.299613i \(0.0968577\pi\)
−0.954061 + 0.299613i \(0.903142\pi\)
\(194\) 1.29342e8 1.27184
\(195\) 0 0
\(196\) 7.76528e6 0.0736650
\(197\) 1.22964e8i 1.14590i −0.819589 0.572952i \(-0.805798\pi\)
0.819589 0.572952i \(-0.194202\pi\)
\(198\) 0 0
\(199\) 1.69053e8 1.52067 0.760337 0.649529i \(-0.225034\pi\)
0.760337 + 0.649529i \(0.225034\pi\)
\(200\) −6.09000e7 + 1.00837e8i −0.538285 + 0.891283i
\(201\) 0 0
\(202\) 5.53886e7i 0.472814i
\(203\) 1.07489e7i 0.0901836i
\(204\) 0 0
\(205\) −3.99838e7 + 1.43546e8i −0.324150 + 1.16373i
\(206\) 3.75321e7 0.299136
\(207\) 0 0
\(208\) 1.49182e8i 1.14946i
\(209\) 4.68401e7 0.354900
\(210\) 0 0
\(211\) −2.67605e8 −1.96113 −0.980565 0.196195i \(-0.937141\pi\)
−0.980565 + 0.196195i \(0.937141\pi\)
\(212\) 7.07249e6i 0.0509796i
\(213\) 0 0
\(214\) 1.60090e8 1.11665
\(215\) −1.90887e8 5.31702e7i −1.30991 0.364866i
\(216\) 0 0
\(217\) 3.44906e7i 0.229135i
\(218\) 2.16617e8i 1.41610i
\(219\) 0 0
\(220\) −6.14520e6 + 2.20619e7i −0.0389096 + 0.139690i
\(221\) −1.59100e8 −0.991510
\(222\) 0 0
\(223\) 1.49333e8i 0.901753i −0.892586 0.450877i \(-0.851111\pi\)
0.892586 0.450877i \(-0.148889\pi\)
\(224\) −1.45492e7 −0.0864909
\(225\) 0 0
\(226\) 6.05975e7 0.349201
\(227\) 2.34185e8i 1.32883i 0.747365 + 0.664414i \(0.231319\pi\)
−0.747365 + 0.664414i \(0.768681\pi\)
\(228\) 0 0
\(229\) −1.31882e8 −0.725706 −0.362853 0.931846i \(-0.618197\pi\)
−0.362853 + 0.931846i \(0.618197\pi\)
\(230\) 2.36031e7 8.47377e7i 0.127915 0.459229i
\(231\) 0 0
\(232\) 3.85858e7i 0.202871i
\(233\) 1.83419e8i 0.949948i −0.880000 0.474974i \(-0.842458\pi\)
0.880000 0.474974i \(-0.157542\pi\)
\(234\) 0 0
\(235\) 1.56890e6 + 437006.i 0.00788602 + 0.00219660i
\(236\) −1.72678e7 −0.0855153
\(237\) 0 0
\(238\) 7.09436e7i 0.341109i
\(239\) 1.05117e8 0.498058 0.249029 0.968496i \(-0.419889\pi\)
0.249029 + 0.968496i \(0.419889\pi\)
\(240\) 0 0
\(241\) 1.94216e8 0.893770 0.446885 0.894591i \(-0.352533\pi\)
0.446885 + 0.894591i \(0.352533\pi\)
\(242\) 2.92247e8i 1.32555i
\(243\) 0 0
\(244\) 1.65723e7 0.0730327
\(245\) −4.85330e7 + 1.74239e8i −0.210841 + 0.756944i
\(246\) 0 0
\(247\) 6.95992e7i 0.293876i
\(248\) 1.23812e8i 0.515446i
\(249\) 0 0
\(250\) −1.61312e8 1.71147e8i −0.652947 0.692755i
\(251\) −2.02689e8 −0.809045 −0.404523 0.914528i \(-0.632562\pi\)
−0.404523 + 0.914528i \(0.632562\pi\)
\(252\) 0 0
\(253\) 1.99514e8i 0.774552i
\(254\) 3.07342e8 1.17680
\(255\) 0 0
\(256\) −7.48132e7 −0.278701
\(257\) 1.34593e7i 0.0494603i 0.999694 + 0.0247301i \(0.00787265\pi\)
−0.999694 + 0.0247301i \(0.992127\pi\)
\(258\) 0 0
\(259\) −9.38911e7 −0.335796
\(260\) 3.27816e7 + 9.13109e6i 0.115671 + 0.0322193i
\(261\) 0 0
\(262\) 3.58794e8i 1.23251i
\(263\) 1.42205e8i 0.482026i −0.970522 0.241013i \(-0.922520\pi\)
0.970522 0.241013i \(-0.0774797\pi\)
\(264\) 0 0
\(265\) −1.58694e8 4.42030e7i −0.523841 0.145912i
\(266\) −3.10346e7 −0.101102
\(267\) 0 0
\(268\) 3.25784e7i 0.103385i
\(269\) 5.07548e8 1.58981 0.794903 0.606737i \(-0.207522\pi\)
0.794903 + 0.606737i \(0.207522\pi\)
\(270\) 0 0
\(271\) 1.12836e8 0.344393 0.172197 0.985063i \(-0.444914\pi\)
0.172197 + 0.985063i \(0.444914\pi\)
\(272\) 2.30582e8i 0.694760i
\(273\) 0 0
\(274\) 4.61077e8 1.35409
\(275\) −4.56622e8 2.75774e8i −1.32401 0.799630i
\(276\) 0 0
\(277\) 5.10728e8i 1.44381i 0.691991 + 0.721906i \(0.256734\pi\)
−0.691991 + 0.721906i \(0.743266\pi\)
\(278\) 1.22575e8i 0.342173i
\(279\) 0 0
\(280\) 4.75020e7 1.70537e8i 0.129318 0.464266i
\(281\) 1.70459e8 0.458297 0.229148 0.973391i \(-0.426406\pi\)
0.229148 + 0.973391i \(0.426406\pi\)
\(282\) 0 0
\(283\) 1.62144e8i 0.425253i −0.977134 0.212626i \(-0.931798\pi\)
0.977134 0.212626i \(-0.0682017\pi\)
\(284\) 5.77930e6 0.0149713
\(285\) 0 0
\(286\) −7.46109e8 −1.88591
\(287\) 2.23932e8i 0.559153i
\(288\) 0 0
\(289\) 1.64426e8 0.400708
\(290\) −7.42110e7 2.06710e7i −0.178680 0.0497700i
\(291\) 0 0
\(292\) 1.78341e7i 0.0419191i
\(293\) 3.85845e8i 0.896141i 0.893998 + 0.448070i \(0.147889\pi\)
−0.893998 + 0.448070i \(0.852111\pi\)
\(294\) 0 0
\(295\) 1.07924e8 3.87457e8i 0.244759 0.878712i
\(296\) −3.37045e8 −0.755382
\(297\) 0 0
\(298\) 4.30888e8i 0.943208i
\(299\) −2.96455e8 −0.641371
\(300\) 0 0
\(301\) 2.97783e8 0.629387
\(302\) 3.08672e8i 0.644871i
\(303\) 0 0
\(304\) −1.00869e8 −0.205922
\(305\) −1.03577e8 + 3.71852e8i −0.209032 + 0.750447i
\(306\) 0 0
\(307\) 6.37817e8i 1.25809i 0.777369 + 0.629045i \(0.216554\pi\)
−0.777369 + 0.629045i \(0.783446\pi\)
\(308\) 3.44166e7i 0.0671183i
\(309\) 0 0
\(310\) 2.38125e8 + 6.63280e7i 0.453982 + 0.126454i
\(311\) 7.27817e8 1.37202 0.686010 0.727592i \(-0.259360\pi\)
0.686010 + 0.727592i \(0.259360\pi\)
\(312\) 0 0
\(313\) 4.46869e8i 0.823711i 0.911249 + 0.411855i \(0.135119\pi\)
−0.911249 + 0.411855i \(0.864881\pi\)
\(314\) −3.25219e8 −0.592819
\(315\) 0 0
\(316\) −1.27171e7 −0.0226717
\(317\) 5.91083e8i 1.04218i 0.853503 + 0.521088i \(0.174474\pi\)
−0.853503 + 0.521088i \(0.825526\pi\)
\(318\) 0 0
\(319\) −1.74729e8 −0.301367
\(320\) 1.69138e8 6.07223e8i 0.288546 1.03591i
\(321\) 0 0
\(322\) 1.32191e8i 0.220651i
\(323\) 1.07576e8i 0.177626i
\(324\) 0 0
\(325\) −4.09770e8 + 6.78490e8i −0.662138 + 1.09636i
\(326\) −1.00747e9 −1.61054
\(327\) 0 0
\(328\) 8.03860e8i 1.25783i
\(329\) −2.44748e6 −0.00378908
\(330\) 0 0
\(331\) 5.84868e8 0.886462 0.443231 0.896407i \(-0.353832\pi\)
0.443231 + 0.896407i \(0.353832\pi\)
\(332\) 3.12456e7i 0.0468604i
\(333\) 0 0
\(334\) −6.17686e8 −0.907100
\(335\) 7.31000e8 + 2.03615e8i 1.06233 + 0.295905i
\(336\) 0 0
\(337\) 7.39373e8i 1.05235i 0.850377 + 0.526174i \(0.176374\pi\)
−0.850377 + 0.526174i \(0.823626\pi\)
\(338\) 4.32813e8i 0.609666i
\(339\) 0 0
\(340\) 5.06688e7 + 1.41134e7i 0.0699140 + 0.0194741i
\(341\) 5.60661e8 0.765702
\(342\) 0 0
\(343\) 6.17736e8i 0.826558i
\(344\) 1.06897e9 1.41582
\(345\) 0 0
\(346\) 5.24722e8 0.681024
\(347\) 3.70870e8i 0.476506i −0.971203 0.238253i \(-0.923425\pi\)
0.971203 0.238253i \(-0.0765747\pi\)
\(348\) 0 0
\(349\) 1.13274e9 1.42640 0.713199 0.700962i \(-0.247246\pi\)
0.713199 + 0.700962i \(0.247246\pi\)
\(350\) 3.02542e8 + 1.82719e8i 0.377180 + 0.227795i
\(351\) 0 0
\(352\) 2.36504e8i 0.289028i
\(353\) 8.32858e8i 1.00777i −0.863772 0.503883i \(-0.831904\pi\)
0.863772 0.503883i \(-0.168096\pi\)
\(354\) 0 0
\(355\) −3.61206e7 + 1.29677e8i −0.0428505 + 0.153838i
\(356\) −6.77300e7 −0.0795621
\(357\) 0 0
\(358\) 2.08412e8i 0.240066i
\(359\) −6.75318e8 −0.770332 −0.385166 0.922847i \(-0.625856\pi\)
−0.385166 + 0.922847i \(0.625856\pi\)
\(360\) 0 0
\(361\) −8.46812e8 −0.947353
\(362\) 8.42904e8i 0.933895i
\(363\) 0 0
\(364\) −5.11393e7 −0.0555776
\(365\) −4.00165e8 1.11463e8i −0.430739 0.119979i
\(366\) 0 0
\(367\) 1.80237e9i 1.90333i −0.307141 0.951664i \(-0.599372\pi\)
0.307141 0.951664i \(-0.400628\pi\)
\(368\) 4.29649e8i 0.449414i
\(369\) 0 0
\(370\) 1.80560e8 6.48230e8i 0.185317 0.665308i
\(371\) 2.47562e8 0.251696
\(372\) 0 0
\(373\) 9.29928e8i 0.927830i 0.885880 + 0.463915i \(0.153556\pi\)
−0.885880 + 0.463915i \(0.846444\pi\)
\(374\) −1.15322e9 −1.13989
\(375\) 0 0
\(376\) −8.78584e6 −0.00852365
\(377\) 2.59627e8i 0.249549i
\(378\) 0 0
\(379\) −1.43545e9 −1.35441 −0.677206 0.735794i \(-0.736809\pi\)
−0.677206 + 0.735794i \(0.736809\pi\)
\(380\) −6.17400e6 + 2.21653e7i −0.00577197 + 0.0207220i
\(381\) 0 0
\(382\) 1.28655e9i 1.18088i
\(383\) 1.57707e9i 1.43435i 0.696894 + 0.717174i \(0.254565\pi\)
−0.696894 + 0.717174i \(0.745435\pi\)
\(384\) 0 0
\(385\) 7.72247e8 + 2.15104e8i 0.689674 + 0.192104i
\(386\) 6.44571e8 0.570447
\(387\) 0 0
\(388\) 1.44109e8i 0.125251i
\(389\) −2.24425e9 −1.93307 −0.966537 0.256528i \(-0.917421\pi\)
−0.966537 + 0.256528i \(0.917421\pi\)
\(390\) 0 0
\(391\) −4.58215e8 −0.387660
\(392\) 9.75738e8i 0.818148i
\(393\) 0 0
\(394\) −1.32437e9 −1.09087
\(395\) 7.94820e7 2.85349e8i 0.0648902 0.232963i
\(396\) 0 0
\(397\) 2.26641e8i 0.181791i −0.995860 0.0908956i \(-0.971027\pi\)
0.995860 0.0908956i \(-0.0289729\pi\)
\(398\) 1.82075e9i 1.44764i
\(399\) 0 0
\(400\) 9.83330e8 + 5.93876e8i 0.768227 + 0.463966i
\(401\) 9.11721e8 0.706085 0.353042 0.935607i \(-0.385147\pi\)
0.353042 + 0.935607i \(0.385147\pi\)
\(402\) 0 0
\(403\) 8.33080e8i 0.634043i
\(404\) −6.17124e7 −0.0465627
\(405\) 0 0
\(406\) 1.15769e8 0.0858523
\(407\) 1.52625e9i 1.12213i
\(408\) 0 0
\(409\) −2.55215e8 −0.184449 −0.0922243 0.995738i \(-0.529398\pi\)
−0.0922243 + 0.995738i \(0.529398\pi\)
\(410\) 1.54604e9 + 4.30639e8i 1.10784 + 0.308582i
\(411\) 0 0
\(412\) 4.18173e7i 0.0294588i
\(413\) 6.04433e8i 0.422205i
\(414\) 0 0
\(415\) −7.01095e8 1.95285e8i −0.481514 0.134122i
\(416\) −3.51419e8 −0.239331
\(417\) 0 0
\(418\) 5.04483e8i 0.337854i
\(419\) −2.96316e8 −0.196791 −0.0983957 0.995147i \(-0.531371\pi\)
−0.0983957 + 0.995147i \(0.531371\pi\)
\(420\) 0 0
\(421\) 1.06676e9 0.696754 0.348377 0.937354i \(-0.386733\pi\)
0.348377 + 0.937354i \(0.386733\pi\)
\(422\) 2.88220e9i 1.86694i
\(423\) 0 0
\(424\) 8.88685e8 0.566197
\(425\) −6.33360e8 + 1.04871e9i −0.400211 + 0.662663i
\(426\) 0 0
\(427\) 5.80088e8i 0.360576i
\(428\) 1.78368e8i 0.109967i
\(429\) 0 0
\(430\) −5.72660e8 + 2.05591e9i −0.347342 + 1.24700i
\(431\) −9.53169e7 −0.0573455 −0.0286728 0.999589i \(-0.509128\pi\)
−0.0286728 + 0.999589i \(0.509128\pi\)
\(432\) 0 0
\(433\) 1.89973e9i 1.12456i 0.826946 + 0.562281i \(0.190076\pi\)
−0.826946 + 0.562281i \(0.809924\pi\)
\(434\) −3.71475e8 −0.218130
\(435\) 0 0
\(436\) −2.41348e8 −0.139457
\(437\) 2.00449e8i 0.114899i
\(438\) 0 0
\(439\) −1.11226e9 −0.627450 −0.313725 0.949514i \(-0.601577\pi\)
−0.313725 + 0.949514i \(0.601577\pi\)
\(440\) 2.77217e9 + 7.72168e8i 1.55144 + 0.432143i
\(441\) 0 0
\(442\) 1.71356e9i 0.943890i
\(443\) 3.22249e9i 1.76108i −0.473972 0.880540i \(-0.657180\pi\)
0.473972 0.880540i \(-0.342820\pi\)
\(444\) 0 0
\(445\) 4.23313e8 1.51974e9i 0.227720 0.817540i
\(446\) −1.60836e9 −0.858443
\(447\) 0 0
\(448\) 9.47267e8i 0.497736i
\(449\) 7.29482e7 0.0380323 0.0190161 0.999819i \(-0.493947\pi\)
0.0190161 + 0.999819i \(0.493947\pi\)
\(450\) 0 0
\(451\) 3.64013e9 1.86853
\(452\) 6.75160e7i 0.0343892i
\(453\) 0 0
\(454\) 2.52225e9 1.26501
\(455\) 3.19621e8 1.14747e9i 0.159072 0.571087i
\(456\) 0 0
\(457\) 2.45286e8i 0.120217i 0.998192 + 0.0601085i \(0.0191447\pi\)
−0.998192 + 0.0601085i \(0.980855\pi\)
\(458\) 1.42041e9i 0.690852i
\(459\) 0 0
\(460\) 9.44124e7 + 2.62979e7i 0.0452248 + 0.0125971i
\(461\) 3.25654e9 1.54812 0.774058 0.633115i \(-0.218224\pi\)
0.774058 + 0.633115i \(0.218224\pi\)
\(462\) 0 0
\(463\) 5.48463e8i 0.256811i 0.991722 + 0.128406i \(0.0409859\pi\)
−0.991722 + 0.128406i \(0.959014\pi\)
\(464\) 3.76275e8 0.174861
\(465\) 0 0
\(466\) −1.97549e9 −0.904323
\(467\) 1.31891e9i 0.599245i 0.954058 + 0.299623i \(0.0968607\pi\)
−0.954058 + 0.299623i \(0.903139\pi\)
\(468\) 0 0
\(469\) −1.14036e9 −0.510431
\(470\) 4.70670e6 1.68976e7i 0.00209110 0.00750727i
\(471\) 0 0
\(472\) 2.16976e9i 0.949762i
\(473\) 4.84061e9i 2.10323i
\(474\) 0 0
\(475\) −4.58762e8 2.77067e8i −0.196408 0.118620i
\(476\) −7.90433e7 −0.0335924
\(477\) 0 0
\(478\) 1.13214e9i 0.474137i
\(479\) −1.59989e9 −0.665144 −0.332572 0.943078i \(-0.607916\pi\)
−0.332572 + 0.943078i \(0.607916\pi\)
\(480\) 0 0
\(481\) −2.26783e9 −0.929187
\(482\) 2.09177e9i 0.850844i
\(483\) 0 0
\(484\) 3.25613e8 0.130540
\(485\) −3.23355e9 9.00682e8i −1.28701 0.358489i
\(486\) 0 0
\(487\) 1.95948e9i 0.768759i −0.923175 0.384380i \(-0.874415\pi\)
0.923175 0.384380i \(-0.125585\pi\)
\(488\) 2.08237e9i 0.811126i
\(489\) 0 0
\(490\) 1.87661e9 + 5.22717e8i 0.720589 + 0.200715i
\(491\) −2.38785e8 −0.0910376 −0.0455188 0.998963i \(-0.514494\pi\)
−0.0455188 + 0.998963i \(0.514494\pi\)
\(492\) 0 0
\(493\) 4.01292e8i 0.150833i
\(494\) −7.49606e8 −0.279762
\(495\) 0 0
\(496\) −1.20737e9 −0.444279
\(497\) 2.02296e8i 0.0739163i
\(498\) 0 0
\(499\) −3.06642e9 −1.10479 −0.552394 0.833583i \(-0.686286\pi\)
−0.552394 + 0.833583i \(0.686286\pi\)
\(500\) 1.90688e8 1.79730e8i 0.0682224 0.0643021i
\(501\) 0 0
\(502\) 2.18303e9i 0.770188i
\(503\) 1.60348e9i 0.561793i −0.959738 0.280897i \(-0.909368\pi\)
0.959738 0.280897i \(-0.0906318\pi\)
\(504\) 0 0
\(505\) 3.85703e8 1.38471e9i 0.133270 0.478454i
\(506\) −2.14883e9 −0.737351
\(507\) 0 0
\(508\) 3.42432e8i 0.115891i
\(509\) 1.21742e9 0.409192 0.204596 0.978847i \(-0.434412\pi\)
0.204596 + 0.978847i \(0.434412\pi\)
\(510\) 0 0
\(511\) 6.24258e8 0.206962
\(512\) 3.34724e9i 1.10215i
\(513\) 0 0
\(514\) 1.44961e8 0.0470848
\(515\) −9.38304e8 2.61358e8i −0.302704 0.0843161i
\(516\) 0 0
\(517\) 3.97850e7i 0.0126620i
\(518\) 1.01124e9i 0.319668i
\(519\) 0 0
\(520\) 1.14736e9 4.11913e9i 0.357838 1.28468i
\(521\) 2.08635e9 0.646331 0.323166 0.946342i \(-0.395253\pi\)
0.323166 + 0.946342i \(0.395253\pi\)
\(522\) 0 0
\(523\) 4.28922e9i 1.31106i −0.755169 0.655531i \(-0.772445\pi\)
0.755169 0.655531i \(-0.227555\pi\)
\(524\) 3.99758e8 0.121377
\(525\) 0 0
\(526\) −1.53160e9 −0.458875
\(527\) 1.28765e9i 0.383230i
\(528\) 0 0
\(529\) 2.55102e9 0.749237
\(530\) −4.76081e8 + 1.70918e9i −0.138904 + 0.498682i
\(531\) 0 0
\(532\) 3.45779e7i 0.00995654i
\(533\) 5.40883e9i 1.54724i
\(534\) 0 0
\(535\) −4.00226e9 1.11480e9i −1.12997 0.314745i
\(536\) −4.09360e9 −1.14823
\(537\) 0 0
\(538\) 5.46646e9i 1.51345i
\(539\) 4.41845e9 1.21537
\(540\) 0 0
\(541\) 4.91116e9 1.33350 0.666751 0.745280i \(-0.267684\pi\)
0.666751 + 0.745280i \(0.267684\pi\)
\(542\) 1.21528e9i 0.327852i
\(543\) 0 0
\(544\) −5.43170e8 −0.144657
\(545\) 1.50843e9 5.41542e9i 0.399151 1.43299i
\(546\) 0 0
\(547\) 1.76451e9i 0.460965i 0.973077 + 0.230482i \(0.0740304\pi\)
−0.973077 + 0.230482i \(0.925970\pi\)
\(548\) 5.13719e8i 0.133350i
\(549\) 0 0
\(550\) −2.97018e9 + 4.91797e9i −0.761226 + 1.26042i
\(551\) −1.75547e8 −0.0447058
\(552\) 0 0
\(553\) 4.45145e8i 0.111934i
\(554\) 5.50071e9 1.37447
\(555\) 0 0
\(556\) 1.36570e8 0.0336971
\(557\) 4.13406e8i 0.101364i 0.998715 + 0.0506820i \(0.0161395\pi\)
−0.998715 + 0.0506820i \(0.983860\pi\)
\(558\) 0 0
\(559\) 7.19261e9 1.74159
\(560\) −1.66302e9 4.63223e8i −0.400166 0.111463i
\(561\) 0 0
\(562\) 1.83590e9i 0.436286i
\(563\) 7.57073e9i 1.78796i 0.448104 + 0.893982i \(0.352100\pi\)
−0.448104 + 0.893982i \(0.647900\pi\)
\(564\) 0 0
\(565\) −1.51494e9 4.21975e8i −0.353366 0.0984277i
\(566\) −1.74634e9 −0.404829
\(567\) 0 0
\(568\) 7.26191e8i 0.166277i
\(569\) 8.90287e8 0.202599 0.101299 0.994856i \(-0.467700\pi\)
0.101299 + 0.994856i \(0.467700\pi\)
\(570\) 0 0
\(571\) −4.96089e9 −1.11515 −0.557575 0.830126i \(-0.688268\pi\)
−0.557575 + 0.830126i \(0.688268\pi\)
\(572\) 8.31294e8i 0.185724i
\(573\) 0 0
\(574\) −2.41183e9 −0.532297
\(575\) −1.18016e9 + 1.95408e9i −0.258882 + 0.428652i
\(576\) 0 0
\(577\) 1.53066e9i 0.331713i 0.986150 + 0.165856i \(0.0530388\pi\)
−0.986150 + 0.165856i \(0.946961\pi\)
\(578\) 1.77092e9i 0.381463i
\(579\) 0 0
\(580\) 2.30310e7 8.26838e7i 0.00490134 0.0175963i
\(581\) 1.09371e9 0.231358
\(582\) 0 0
\(583\) 4.02425e9i 0.841094i
\(584\) 2.24093e9 0.465567
\(585\) 0 0
\(586\) 4.15568e9 0.853100
\(587\) 4.39564e9i 0.896992i 0.893785 + 0.448496i \(0.148040\pi\)
−0.893785 + 0.448496i \(0.851960\pi\)
\(588\) 0 0
\(589\) 5.63288e8 0.113587
\(590\) −4.17304e9 1.16237e9i −0.836509 0.233004i
\(591\) 0 0
\(592\) 3.28675e9i 0.651089i
\(593\) 3.32990e9i 0.655753i −0.944721 0.327877i \(-0.893667\pi\)
0.944721 0.327877i \(-0.106333\pi\)
\(594\) 0 0
\(595\) 4.94021e8 1.77359e9i 0.0961470 0.345178i
\(596\) −4.80083e8 −0.0928870
\(597\) 0 0
\(598\) 3.19292e9i 0.610567i
\(599\) −4.53030e9 −0.861258 −0.430629 0.902529i \(-0.641708\pi\)
−0.430629 + 0.902529i \(0.641708\pi\)
\(600\) 0 0
\(601\) −4.70479e9 −0.884056 −0.442028 0.897001i \(-0.645741\pi\)
−0.442028 + 0.897001i \(0.645741\pi\)
\(602\) 3.20722e9i 0.599158i
\(603\) 0 0
\(604\) −3.43913e8 −0.0635067
\(605\) −2.03508e9 + 7.30616e9i −0.373627 + 1.34136i
\(606\) 0 0
\(607\) 2.24429e9i 0.407303i 0.979043 + 0.203652i \(0.0652810\pi\)
−0.979043 + 0.203652i \(0.934719\pi\)
\(608\) 2.37612e8i 0.0428752i
\(609\) 0 0
\(610\) 4.00496e9 + 1.11555e9i 0.714404 + 0.198992i
\(611\) −5.91162e7 −0.0104848
\(612\) 0 0
\(613\) 8.74415e9i 1.53323i 0.642109 + 0.766613i \(0.278059\pi\)
−0.642109 + 0.766613i \(0.721941\pi\)
\(614\) 6.86950e9 1.19767
\(615\) 0 0
\(616\) −4.32458e9 −0.745438
\(617\) 4.49031e9i 0.769623i 0.922995 + 0.384812i \(0.125734\pi\)
−0.922995 + 0.384812i \(0.874266\pi\)
\(618\) 0 0
\(619\) 3.74101e9 0.633974 0.316987 0.948430i \(-0.397329\pi\)
0.316987 + 0.948430i \(0.397329\pi\)
\(620\) −7.39008e7 + 2.65312e8i −0.0124531 + 0.0447081i
\(621\) 0 0
\(622\) 7.83883e9i 1.30612i
\(623\) 2.37079e9i 0.392813i
\(624\) 0 0
\(625\) 2.84102e9 + 5.40199e9i 0.465472 + 0.885063i
\(626\) 4.81292e9 0.784149
\(627\) 0 0
\(628\) 3.62350e8i 0.0583808i
\(629\) −3.50527e9 −0.561622
\(630\) 0 0
\(631\) 1.93545e9 0.306675 0.153337 0.988174i \(-0.450998\pi\)
0.153337 + 0.988174i \(0.450998\pi\)
\(632\) 1.59796e9i 0.251799i
\(633\) 0 0
\(634\) 6.36616e9 0.992122
\(635\) −7.68355e9 2.14020e9i −1.19084 0.331701i
\(636\) 0 0
\(637\) 6.56532e9i 1.00639i
\(638\) 1.88188e9i 0.286893i
\(639\) 0 0
\(640\) −5.34621e9 1.48915e9i −0.806150 0.224547i
\(641\) −5.89076e9 −0.883422 −0.441711 0.897157i \(-0.645628\pi\)
−0.441711 + 0.897157i \(0.645628\pi\)
\(642\) 0 0
\(643\) 3.16008e9i 0.468770i 0.972144 + 0.234385i \(0.0753076\pi\)
−0.972144 + 0.234385i \(0.924692\pi\)
\(644\) −1.47283e8 −0.0217297
\(645\) 0 0
\(646\) −1.15863e9 −0.169095
\(647\) 1.27557e10i 1.85157i −0.378054 0.925783i \(-0.623407\pi\)
0.378054 0.925783i \(-0.376593\pi\)
\(648\) 0 0
\(649\) −9.82536e9 −1.41089
\(650\) 7.30756e9 + 4.41336e9i 1.04370 + 0.630336i
\(651\) 0 0
\(652\) 1.12250e9i 0.158606i
\(653\) 4.43892e9i 0.623852i 0.950106 + 0.311926i \(0.100974\pi\)
−0.950106 + 0.311926i \(0.899026\pi\)
\(654\) 0 0
\(655\) −2.49849e9 + 8.96985e9i −0.347402 + 1.24721i
\(656\) −7.83897e9 −1.08417
\(657\) 0 0
\(658\) 2.63602e7i 0.00360710i
\(659\) 1.08526e10 1.47719 0.738595 0.674149i \(-0.235489\pi\)
0.738595 + 0.674149i \(0.235489\pi\)
\(660\) 0 0
\(661\) 8.49307e9 1.14382 0.571912 0.820315i \(-0.306202\pi\)
0.571912 + 0.820315i \(0.306202\pi\)
\(662\) 6.29922e9i 0.843887i
\(663\) 0 0
\(664\) 3.92613e9 0.520447
\(665\) 7.75866e8 + 2.16112e8i 0.102308 + 0.0284973i
\(666\) 0 0
\(667\) 7.47737e8i 0.0975683i
\(668\) 6.88209e8i 0.0893311i
\(669\) 0 0
\(670\) 2.19300e9 7.87311e9i 0.281694 1.01131i
\(671\) 9.42962e9 1.20494
\(672\) 0 0
\(673\) 4.20188e9i 0.531362i −0.964061 0.265681i \(-0.914403\pi\)
0.964061 0.265681i \(-0.0855969\pi\)
\(674\) 7.96330e9 1.00180
\(675\) 0 0
\(676\) −4.82228e8 −0.0600398
\(677\) 6.56755e9i 0.813472i 0.913546 + 0.406736i \(0.133333\pi\)
−0.913546 + 0.406736i \(0.866667\pi\)
\(678\) 0 0
\(679\) 5.04433e9 0.618386
\(680\) 1.77341e9 6.36673e9i 0.216286 0.776489i
\(681\) 0 0
\(682\) 6.03850e9i 0.728927i
\(683\) 6.31484e9i 0.758386i −0.925318 0.379193i \(-0.876202\pi\)
0.925318 0.379193i \(-0.123798\pi\)
\(684\) 0 0
\(685\) −1.15269e10 3.21075e9i −1.37024 0.381671i
\(686\) −6.65322e9 −0.786860
\(687\) 0 0
\(688\) 1.04242e10i 1.22035i
\(689\) 5.97958e9 0.696472
\(690\) 0 0
\(691\) 3.76447e9 0.434041 0.217020 0.976167i \(-0.430366\pi\)
0.217020 + 0.976167i \(0.430366\pi\)
\(692\) 5.84630e8i 0.0670672i
\(693\) 0 0
\(694\) −3.99439e9 −0.453620
\(695\) −8.53562e8 + 3.06438e9i −0.0964468 + 0.346255i
\(696\) 0 0
\(697\) 8.36014e9i 0.935188i
\(698\) 1.22000e10i 1.35789i
\(699\) 0 0
\(700\) −2.03580e8 + 3.37084e8i −0.0224332 + 0.0371446i
\(701\) −1.97083e9 −0.216090 −0.108045 0.994146i \(-0.534459\pi\)
−0.108045 + 0.994146i \(0.534459\pi\)
\(702\) 0 0
\(703\) 1.53340e9i 0.166461i
\(704\) −1.53983e10 −1.66329
\(705\) 0 0
\(706\) −8.97016e9 −0.959364
\(707\) 2.16016e9i 0.229888i
\(708\) 0 0
\(709\) −9.62853e9 −1.01461 −0.507304 0.861767i \(-0.669358\pi\)
−0.507304 + 0.861767i \(0.669358\pi\)
\(710\) 1.39666e9 + 3.89031e8i 0.146449 + 0.0407924i
\(711\) 0 0
\(712\) 8.51054e9i 0.883644i
\(713\) 2.39930e9i 0.247897i
\(714\) 0 0
\(715\) 1.86527e10 + 5.19559e9i 1.90841 + 0.531574i
\(716\) −2.32206e8 −0.0236417
\(717\) 0 0
\(718\) 7.27340e9i 0.733334i
\(719\) −1.89490e10 −1.90123 −0.950614 0.310376i \(-0.899545\pi\)
−0.950614 + 0.310376i \(0.899545\pi\)
\(720\) 0 0
\(721\) 1.46375e9 0.145444
\(722\) 9.12045e9i 0.901853i
\(723\) 0 0
\(724\) 9.39140e8 0.0919698
\(725\) 1.71133e9 + 1.03355e9i 0.166783 + 0.100727i
\(726\) 0 0
\(727\) 1.44446e9i 0.139423i −0.997567 0.0697116i \(-0.977792\pi\)
0.997567 0.0697116i \(-0.0222079\pi\)
\(728\) 6.42585e9i 0.617264i
\(729\) 0 0
\(730\) −1.20050e9 + 4.30991e9i −0.114217 + 0.410051i
\(731\) 1.11172e10 1.05266
\(732\) 0 0
\(733\) 1.38939e10i 1.30305i −0.758627 0.651525i \(-0.774129\pi\)
0.758627 0.651525i \(-0.225871\pi\)
\(734\) −1.94122e10 −1.81191
\(735\) 0 0
\(736\) −1.01210e9 −0.0935732
\(737\) 1.85371e10i 1.70571i
\(738\) 0 0
\(739\) −1.19008e10 −1.08473 −0.542366 0.840142i \(-0.682471\pi\)
−0.542366 + 0.840142i \(0.682471\pi\)
\(740\) 7.22239e8 + 2.01175e8i 0.0655194 + 0.0182500i
\(741\) 0 0
\(742\) 2.66633e9i 0.239607i
\(743\) 1.57512e10i 1.40882i 0.709796 + 0.704408i \(0.248787\pi\)
−0.709796 + 0.704408i \(0.751213\pi\)
\(744\) 0 0
\(745\) 3.00052e9 1.07722e10i 0.265858 0.954459i
\(746\) 1.00156e10 0.883268
\(747\) 0 0
\(748\) 1.28489e9i 0.112256i
\(749\) 6.24352e9 0.542929
\(750\) 0 0
\(751\) −1.60645e10 −1.38397 −0.691984 0.721912i \(-0.743263\pi\)
−0.691984 + 0.721912i \(0.743263\pi\)
\(752\) 8.56765e7i 0.00734682i
\(753\) 0 0
\(754\) 2.79627e9 0.237563
\(755\) 2.14946e9 7.71679e9i 0.181767 0.652563i
\(756\) 0 0
\(757\) 1.88969e10i 1.58327i 0.610993 + 0.791636i \(0.290771\pi\)
−0.610993 + 0.791636i \(0.709229\pi\)
\(758\) 1.54603e10i 1.28936i
\(759\) 0 0
\(760\) 2.78516e9 + 7.75787e8i 0.230146 + 0.0641054i
\(761\) −1.01100e10 −0.831584 −0.415792 0.909460i \(-0.636496\pi\)
−0.415792 + 0.909460i \(0.636496\pi\)
\(762\) 0 0
\(763\) 8.44806e9i 0.688527i
\(764\) 1.43344e9 0.116293
\(765\) 0 0
\(766\) 1.69855e10 1.36546
\(767\) 1.45994e10i 1.16829i
\(768\) 0 0
\(769\) 2.00677e10 1.59132 0.795658 0.605746i \(-0.207125\pi\)
0.795658 + 0.605746i \(0.207125\pi\)
\(770\) 2.31674e9 8.31735e9i 0.182877 0.656550i
\(771\) 0 0
\(772\) 7.18163e8i 0.0561775i
\(773\) 2.15770e10i 1.68020i −0.542428 0.840102i \(-0.682495\pi\)
0.542428 0.840102i \(-0.317505\pi\)
\(774\) 0 0
\(775\) −5.49124e9 3.31640e9i −0.423755 0.255924i
\(776\) 1.81079e10 1.39108
\(777\) 0 0
\(778\) 2.41714e10i 1.84023i
\(779\) 3.65719e9 0.277183
\(780\)