Properties

Label 45.8.a.g.1.1
Level $45$
Weight $8$
Character 45.1
Self dual yes
Analytic conductor $14.057$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,8,Mod(1,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0573261468\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 45.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.0000 q^{2} +356.000 q^{4} +125.000 q^{5} -420.000 q^{7} +5016.00 q^{8} +2750.00 q^{10} +2944.00 q^{11} -11006.0 q^{13} -9240.00 q^{14} +64784.0 q^{16} +16546.0 q^{17} -25364.0 q^{19} +44500.0 q^{20} +64768.0 q^{22} +5880.00 q^{23} +15625.0 q^{25} -242132. q^{26} -149520. q^{28} -163042. q^{29} -201600. q^{31} +783200. q^{32} +364012. q^{34} -52500.0 q^{35} +120530. q^{37} -558008. q^{38} +627000. q^{40} +115910. q^{41} -19148.0 q^{43} +1.04806e6 q^{44} +129360. q^{46} -841016. q^{47} -647143. q^{49} +343750. q^{50} -3.91814e6 q^{52} -501890. q^{53} +368000. q^{55} -2.10672e6 q^{56} -3.58692e6 q^{58} +1.58618e6 q^{59} -372962. q^{61} -4.43520e6 q^{62} +8.93805e6 q^{64} -1.37575e6 q^{65} +4.56104e6 q^{67} +5.89038e6 q^{68} -1.15500e6 q^{70} -1.51283e6 q^{71} -1.52291e6 q^{73} +2.65166e6 q^{74} -9.02958e6 q^{76} -1.23648e6 q^{77} +4.23192e6 q^{79} +8.09800e6 q^{80} +2.55002e6 q^{82} +1.85420e6 q^{83} +2.06825e6 q^{85} -421256. q^{86} +1.47671e7 q^{88} +6.88817e6 q^{89} +4.62252e6 q^{91} +2.09328e6 q^{92} -1.85024e7 q^{94} -3.17050e6 q^{95} +3.70003e6 q^{97} -1.42371e7 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.0000 1.94454 0.972272 0.233854i \(-0.0751336\pi\)
0.972272 + 0.233854i \(0.0751336\pi\)
\(3\) 0 0
\(4\) 356.000 2.78125
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) −420.000 −0.462814 −0.231407 0.972857i \(-0.574333\pi\)
−0.231407 + 0.972857i \(0.574333\pi\)
\(8\) 5016.00 3.46372
\(9\) 0 0
\(10\) 2750.00 0.869626
\(11\) 2944.00 0.666904 0.333452 0.942767i \(-0.391786\pi\)
0.333452 + 0.942767i \(0.391786\pi\)
\(12\) 0 0
\(13\) −11006.0 −1.38940 −0.694701 0.719299i \(-0.744463\pi\)
−0.694701 + 0.719299i \(0.744463\pi\)
\(14\) −9240.00 −0.899961
\(15\) 0 0
\(16\) 64784.0 3.95410
\(17\) 16546.0 0.816811 0.408406 0.912801i \(-0.366085\pi\)
0.408406 + 0.912801i \(0.366085\pi\)
\(18\) 0 0
\(19\) −25364.0 −0.848360 −0.424180 0.905578i \(-0.639438\pi\)
−0.424180 + 0.905578i \(0.639438\pi\)
\(20\) 44500.0 1.24381
\(21\) 0 0
\(22\) 64768.0 1.29682
\(23\) 5880.00 0.100770 0.0503848 0.998730i \(-0.483955\pi\)
0.0503848 + 0.998730i \(0.483955\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) −242132. −2.70175
\(27\) 0 0
\(28\) −149520. −1.28720
\(29\) −163042. −1.24139 −0.620693 0.784054i \(-0.713148\pi\)
−0.620693 + 0.784054i \(0.713148\pi\)
\(30\) 0 0
\(31\) −201600. −1.21542 −0.607708 0.794161i \(-0.707911\pi\)
−0.607708 + 0.794161i \(0.707911\pi\)
\(32\) 783200. 4.22520
\(33\) 0 0
\(34\) 364012. 1.58833
\(35\) −52500.0 −0.206977
\(36\) 0 0
\(37\) 120530. 0.391191 0.195596 0.980685i \(-0.437336\pi\)
0.195596 + 0.980685i \(0.437336\pi\)
\(38\) −558008. −1.64967
\(39\) 0 0
\(40\) 627000. 1.54902
\(41\) 115910. 0.262650 0.131325 0.991339i \(-0.458077\pi\)
0.131325 + 0.991339i \(0.458077\pi\)
\(42\) 0 0
\(43\) −19148.0 −0.0367269 −0.0183634 0.999831i \(-0.505846\pi\)
−0.0183634 + 0.999831i \(0.505846\pi\)
\(44\) 1.04806e6 1.85483
\(45\) 0 0
\(46\) 129360. 0.195951
\(47\) −841016. −1.18158 −0.590788 0.806827i \(-0.701183\pi\)
−0.590788 + 0.806827i \(0.701183\pi\)
\(48\) 0 0
\(49\) −647143. −0.785804
\(50\) 343750. 0.388909
\(51\) 0 0
\(52\) −3.91814e6 −3.86427
\(53\) −501890. −0.463066 −0.231533 0.972827i \(-0.574374\pi\)
−0.231533 + 0.972827i \(0.574374\pi\)
\(54\) 0 0
\(55\) 368000. 0.298249
\(56\) −2.10672e6 −1.60306
\(57\) 0 0
\(58\) −3.58692e6 −2.41393
\(59\) 1.58618e6 1.00547 0.502735 0.864440i \(-0.332327\pi\)
0.502735 + 0.864440i \(0.332327\pi\)
\(60\) 0 0
\(61\) −372962. −0.210383 −0.105191 0.994452i \(-0.533546\pi\)
−0.105191 + 0.994452i \(0.533546\pi\)
\(62\) −4.43520e6 −2.36343
\(63\) 0 0
\(64\) 8.93805e6 4.26199
\(65\) −1.37575e6 −0.621359
\(66\) 0 0
\(67\) 4.56104e6 1.85269 0.926344 0.376678i \(-0.122934\pi\)
0.926344 + 0.376678i \(0.122934\pi\)
\(68\) 5.89038e6 2.27176
\(69\) 0 0
\(70\) −1.15500e6 −0.402475
\(71\) −1.51283e6 −0.501633 −0.250817 0.968035i \(-0.580699\pi\)
−0.250817 + 0.968035i \(0.580699\pi\)
\(72\) 0 0
\(73\) −1.52291e6 −0.458189 −0.229094 0.973404i \(-0.573576\pi\)
−0.229094 + 0.973404i \(0.573576\pi\)
\(74\) 2.65166e6 0.760688
\(75\) 0 0
\(76\) −9.02958e6 −2.35950
\(77\) −1.23648e6 −0.308652
\(78\) 0 0
\(79\) 4.23192e6 0.965701 0.482850 0.875703i \(-0.339601\pi\)
0.482850 + 0.875703i \(0.339601\pi\)
\(80\) 8.09800e6 1.76833
\(81\) 0 0
\(82\) 2.55002e6 0.510734
\(83\) 1.85420e6 0.355946 0.177973 0.984035i \(-0.443046\pi\)
0.177973 + 0.984035i \(0.443046\pi\)
\(84\) 0 0
\(85\) 2.06825e6 0.365289
\(86\) −421256. −0.0714170
\(87\) 0 0
\(88\) 1.47671e7 2.30997
\(89\) 6.88817e6 1.03571 0.517856 0.855468i \(-0.326730\pi\)
0.517856 + 0.855468i \(0.326730\pi\)
\(90\) 0 0
\(91\) 4.62252e6 0.643034
\(92\) 2.09328e6 0.280266
\(93\) 0 0
\(94\) −1.85024e7 −2.29763
\(95\) −3.17050e6 −0.379398
\(96\) 0 0
\(97\) 3.70003e6 0.411628 0.205814 0.978591i \(-0.434016\pi\)
0.205814 + 0.978591i \(0.434016\pi\)
\(98\) −1.42371e7 −1.52803
\(99\) 0 0
\(100\) 5.56250e6 0.556250
\(101\) 1.80025e7 1.73863 0.869314 0.494259i \(-0.164561\pi\)
0.869314 + 0.494259i \(0.164561\pi\)
\(102\) 0 0
\(103\) −5.37207e6 −0.484408 −0.242204 0.970225i \(-0.577870\pi\)
−0.242204 + 0.970225i \(0.577870\pi\)
\(104\) −5.52061e7 −4.81250
\(105\) 0 0
\(106\) −1.10416e7 −0.900452
\(107\) 1.15398e7 0.910655 0.455327 0.890324i \(-0.349522\pi\)
0.455327 + 0.890324i \(0.349522\pi\)
\(108\) 0 0
\(109\) −1.57179e6 −0.116253 −0.0581263 0.998309i \(-0.518513\pi\)
−0.0581263 + 0.998309i \(0.518513\pi\)
\(110\) 8.09600e6 0.579957
\(111\) 0 0
\(112\) −2.72093e7 −1.83001
\(113\) 2.52050e7 1.64328 0.821640 0.570007i \(-0.193060\pi\)
0.821640 + 0.570007i \(0.193060\pi\)
\(114\) 0 0
\(115\) 735000. 0.0450656
\(116\) −5.80430e7 −3.45260
\(117\) 0 0
\(118\) 3.48959e7 1.95518
\(119\) −6.94932e6 −0.378031
\(120\) 0 0
\(121\) −1.08200e7 −0.555239
\(122\) −8.20516e6 −0.409098
\(123\) 0 0
\(124\) −7.17696e7 −3.38037
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 3.94080e7 1.70715 0.853574 0.520971i \(-0.174430\pi\)
0.853574 + 0.520971i \(0.174430\pi\)
\(128\) 9.63875e7 4.06243
\(129\) 0 0
\(130\) −3.02665e7 −1.20826
\(131\) −1.41082e7 −0.548305 −0.274153 0.961686i \(-0.588397\pi\)
−0.274153 + 0.961686i \(0.588397\pi\)
\(132\) 0 0
\(133\) 1.06529e7 0.392633
\(134\) 1.00343e8 3.60263
\(135\) 0 0
\(136\) 8.29947e7 2.82920
\(137\) 8.00512e6 0.265978 0.132989 0.991118i \(-0.457542\pi\)
0.132989 + 0.991118i \(0.457542\pi\)
\(138\) 0 0
\(139\) 4.60716e7 1.45506 0.727532 0.686074i \(-0.240667\pi\)
0.727532 + 0.686074i \(0.240667\pi\)
\(140\) −1.86900e7 −0.575654
\(141\) 0 0
\(142\) −3.32823e7 −0.975448
\(143\) −3.24017e7 −0.926598
\(144\) 0 0
\(145\) −2.03802e7 −0.555164
\(146\) −3.35040e7 −0.890968
\(147\) 0 0
\(148\) 4.29087e7 1.08800
\(149\) −7.23525e7 −1.79185 −0.895925 0.444206i \(-0.853486\pi\)
−0.895925 + 0.444206i \(0.853486\pi\)
\(150\) 0 0
\(151\) −3.70062e7 −0.874692 −0.437346 0.899293i \(-0.644082\pi\)
−0.437346 + 0.899293i \(0.644082\pi\)
\(152\) −1.27226e8 −2.93848
\(153\) 0 0
\(154\) −2.72026e7 −0.600188
\(155\) −2.52000e7 −0.543550
\(156\) 0 0
\(157\) −7.85080e7 −1.61907 −0.809534 0.587073i \(-0.800280\pi\)
−0.809534 + 0.587073i \(0.800280\pi\)
\(158\) 9.31022e7 1.87785
\(159\) 0 0
\(160\) 9.79000e7 1.88957
\(161\) −2.46960e6 −0.0466376
\(162\) 0 0
\(163\) −4.68184e7 −0.846759 −0.423380 0.905952i \(-0.639156\pi\)
−0.423380 + 0.905952i \(0.639156\pi\)
\(164\) 4.12640e7 0.730495
\(165\) 0 0
\(166\) 4.07925e7 0.692153
\(167\) 2.50043e7 0.415438 0.207719 0.978188i \(-0.433396\pi\)
0.207719 + 0.978188i \(0.433396\pi\)
\(168\) 0 0
\(169\) 5.83835e7 0.930437
\(170\) 4.55015e7 0.710321
\(171\) 0 0
\(172\) −6.81669e6 −0.102147
\(173\) −5.30671e7 −0.779227 −0.389613 0.920979i \(-0.627391\pi\)
−0.389613 + 0.920979i \(0.627391\pi\)
\(174\) 0 0
\(175\) −6.56250e6 −0.0925627
\(176\) 1.90724e8 2.63701
\(177\) 0 0
\(178\) 1.51540e8 2.01399
\(179\) −4.22054e7 −0.550025 −0.275012 0.961441i \(-0.588682\pi\)
−0.275012 + 0.961441i \(0.588682\pi\)
\(180\) 0 0
\(181\) −1.00020e8 −1.25376 −0.626879 0.779116i \(-0.715668\pi\)
−0.626879 + 0.779116i \(0.715668\pi\)
\(182\) 1.01695e8 1.25041
\(183\) 0 0
\(184\) 2.94941e7 0.349038
\(185\) 1.50662e7 0.174946
\(186\) 0 0
\(187\) 4.87114e7 0.544735
\(188\) −2.99402e8 −3.28626
\(189\) 0 0
\(190\) −6.97510e7 −0.737756
\(191\) −6.17610e7 −0.641354 −0.320677 0.947189i \(-0.603910\pi\)
−0.320677 + 0.947189i \(0.603910\pi\)
\(192\) 0 0
\(193\) −7.67419e7 −0.768390 −0.384195 0.923252i \(-0.625521\pi\)
−0.384195 + 0.923252i \(0.625521\pi\)
\(194\) 8.14007e7 0.800428
\(195\) 0 0
\(196\) −2.30383e8 −2.18552
\(197\) 1.81032e8 1.68703 0.843516 0.537105i \(-0.180482\pi\)
0.843516 + 0.537105i \(0.180482\pi\)
\(198\) 0 0
\(199\) 6.16084e7 0.554185 0.277092 0.960843i \(-0.410629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(200\) 7.83750e7 0.692744
\(201\) 0 0
\(202\) 3.96054e8 3.38084
\(203\) 6.84776e7 0.574530
\(204\) 0 0
\(205\) 1.44888e7 0.117461
\(206\) −1.18185e8 −0.941952
\(207\) 0 0
\(208\) −7.13013e8 −5.49383
\(209\) −7.46716e7 −0.565775
\(210\) 0 0
\(211\) −1.69917e8 −1.24523 −0.622613 0.782530i \(-0.713929\pi\)
−0.622613 + 0.782530i \(0.713929\pi\)
\(212\) −1.78673e8 −1.28790
\(213\) 0 0
\(214\) 2.53875e8 1.77081
\(215\) −2.39350e6 −0.0164248
\(216\) 0 0
\(217\) 8.46720e7 0.562511
\(218\) −3.45795e7 −0.226058
\(219\) 0 0
\(220\) 1.31008e8 0.829504
\(221\) −1.82105e8 −1.13488
\(222\) 0 0
\(223\) 1.48129e8 0.894484 0.447242 0.894413i \(-0.352406\pi\)
0.447242 + 0.894413i \(0.352406\pi\)
\(224\) −3.28944e8 −1.95548
\(225\) 0 0
\(226\) 5.54509e8 3.19543
\(227\) 3.96127e7 0.224773 0.112387 0.993665i \(-0.464151\pi\)
0.112387 + 0.993665i \(0.464151\pi\)
\(228\) 0 0
\(229\) −3.71816e7 −0.204599 −0.102300 0.994754i \(-0.532620\pi\)
−0.102300 + 0.994754i \(0.532620\pi\)
\(230\) 1.61700e7 0.0876320
\(231\) 0 0
\(232\) −8.17819e8 −4.29981
\(233\) 1.79591e8 0.930122 0.465061 0.885279i \(-0.346032\pi\)
0.465061 + 0.885279i \(0.346032\pi\)
\(234\) 0 0
\(235\) −1.05127e8 −0.528417
\(236\) 5.64679e8 2.79646
\(237\) 0 0
\(238\) −1.52885e8 −0.735099
\(239\) 3.73328e8 1.76888 0.884439 0.466655i \(-0.154541\pi\)
0.884439 + 0.466655i \(0.154541\pi\)
\(240\) 0 0
\(241\) −2.57022e8 −1.18280 −0.591398 0.806380i \(-0.701424\pi\)
−0.591398 + 0.806380i \(0.701424\pi\)
\(242\) −2.38041e8 −1.07969
\(243\) 0 0
\(244\) −1.32774e8 −0.585127
\(245\) −8.08929e7 −0.351422
\(246\) 0 0
\(247\) 2.79156e8 1.17871
\(248\) −1.01123e9 −4.20986
\(249\) 0 0
\(250\) 4.29688e7 0.173925
\(251\) 1.27344e8 0.508302 0.254151 0.967165i \(-0.418204\pi\)
0.254151 + 0.967165i \(0.418204\pi\)
\(252\) 0 0
\(253\) 1.73107e7 0.0672037
\(254\) 8.66976e8 3.31963
\(255\) 0 0
\(256\) 9.76454e8 3.63757
\(257\) −1.30682e8 −0.480230 −0.240115 0.970744i \(-0.577185\pi\)
−0.240115 + 0.970744i \(0.577185\pi\)
\(258\) 0 0
\(259\) −5.06226e7 −0.181049
\(260\) −4.89767e8 −1.72816
\(261\) 0 0
\(262\) −3.10381e8 −1.06620
\(263\) 2.67747e8 0.907568 0.453784 0.891112i \(-0.350074\pi\)
0.453784 + 0.891112i \(0.350074\pi\)
\(264\) 0 0
\(265\) −6.27363e7 −0.207089
\(266\) 2.34363e8 0.763491
\(267\) 0 0
\(268\) 1.62373e9 5.15279
\(269\) −1.49432e8 −0.468070 −0.234035 0.972228i \(-0.575193\pi\)
−0.234035 + 0.972228i \(0.575193\pi\)
\(270\) 0 0
\(271\) −1.53185e8 −0.467545 −0.233773 0.972291i \(-0.575107\pi\)
−0.233773 + 0.972291i \(0.575107\pi\)
\(272\) 1.07192e9 3.22976
\(273\) 0 0
\(274\) 1.76113e8 0.517206
\(275\) 4.60000e7 0.133381
\(276\) 0 0
\(277\) 6.54462e8 1.85014 0.925072 0.379792i \(-0.124004\pi\)
0.925072 + 0.379792i \(0.124004\pi\)
\(278\) 1.01358e9 2.82943
\(279\) 0 0
\(280\) −2.63340e8 −0.716908
\(281\) −5.51493e8 −1.48275 −0.741375 0.671091i \(-0.765826\pi\)
−0.741375 + 0.671091i \(0.765826\pi\)
\(282\) 0 0
\(283\) −2.10200e8 −0.551291 −0.275646 0.961259i \(-0.588892\pi\)
−0.275646 + 0.961259i \(0.588892\pi\)
\(284\) −5.38568e8 −1.39517
\(285\) 0 0
\(286\) −7.12837e8 −1.80181
\(287\) −4.86822e7 −0.121558
\(288\) 0 0
\(289\) −1.36569e8 −0.332819
\(290\) −4.48366e8 −1.07954
\(291\) 0 0
\(292\) −5.42156e8 −1.27434
\(293\) −5.42402e8 −1.25975 −0.629875 0.776697i \(-0.716894\pi\)
−0.629875 + 0.776697i \(0.716894\pi\)
\(294\) 0 0
\(295\) 1.98272e8 0.449660
\(296\) 6.04578e8 1.35498
\(297\) 0 0
\(298\) −1.59175e9 −3.48433
\(299\) −6.47153e7 −0.140010
\(300\) 0 0
\(301\) 8.04216e6 0.0169977
\(302\) −8.14137e8 −1.70088
\(303\) 0 0
\(304\) −1.64318e9 −3.35450
\(305\) −4.66202e7 −0.0940860
\(306\) 0 0
\(307\) 9.26477e8 1.82747 0.913736 0.406310i \(-0.133185\pi\)
0.913736 + 0.406310i \(0.133185\pi\)
\(308\) −4.40187e8 −0.858439
\(309\) 0 0
\(310\) −5.54400e8 −1.05696
\(311\) 2.12976e8 0.401485 0.200743 0.979644i \(-0.435665\pi\)
0.200743 + 0.979644i \(0.435665\pi\)
\(312\) 0 0
\(313\) 3.63896e8 0.670768 0.335384 0.942081i \(-0.391134\pi\)
0.335384 + 0.942081i \(0.391134\pi\)
\(314\) −1.72718e9 −3.14835
\(315\) 0 0
\(316\) 1.50656e9 2.68586
\(317\) 3.17049e8 0.559009 0.279505 0.960144i \(-0.409830\pi\)
0.279505 + 0.960144i \(0.409830\pi\)
\(318\) 0 0
\(319\) −4.79996e8 −0.827885
\(320\) 1.11726e9 1.90602
\(321\) 0 0
\(322\) −5.43312e7 −0.0906888
\(323\) −4.19673e8 −0.692950
\(324\) 0 0
\(325\) −1.71969e8 −0.277880
\(326\) −1.03001e9 −1.64656
\(327\) 0 0
\(328\) 5.81405e8 0.909746
\(329\) 3.53227e8 0.546850
\(330\) 0 0
\(331\) 2.24556e8 0.340351 0.170176 0.985414i \(-0.445566\pi\)
0.170176 + 0.985414i \(0.445566\pi\)
\(332\) 6.60097e8 0.989975
\(333\) 0 0
\(334\) 5.50094e8 0.807838
\(335\) 5.70130e8 0.828548
\(336\) 0 0
\(337\) −1.23886e9 −1.76327 −0.881633 0.471935i \(-0.843556\pi\)
−0.881633 + 0.471935i \(0.843556\pi\)
\(338\) 1.28444e9 1.80927
\(339\) 0 0
\(340\) 7.36297e8 1.01596
\(341\) −5.93510e8 −0.810565
\(342\) 0 0
\(343\) 6.17688e8 0.826494
\(344\) −9.60464e7 −0.127212
\(345\) 0 0
\(346\) −1.16748e9 −1.51524
\(347\) 5.83643e8 0.749884 0.374942 0.927048i \(-0.377663\pi\)
0.374942 + 0.927048i \(0.377663\pi\)
\(348\) 0 0
\(349\) −4.69471e8 −0.591180 −0.295590 0.955315i \(-0.595516\pi\)
−0.295590 + 0.955315i \(0.595516\pi\)
\(350\) −1.44375e8 −0.179992
\(351\) 0 0
\(352\) 2.30574e9 2.81781
\(353\) −6.18559e7 −0.0748461 −0.0374231 0.999300i \(-0.511915\pi\)
−0.0374231 + 0.999300i \(0.511915\pi\)
\(354\) 0 0
\(355\) −1.89104e8 −0.224337
\(356\) 2.45219e9 2.88057
\(357\) 0 0
\(358\) −9.28519e8 −1.06955
\(359\) 1.23537e7 0.0140918 0.00704592 0.999975i \(-0.497757\pi\)
0.00704592 + 0.999975i \(0.497757\pi\)
\(360\) 0 0
\(361\) −2.50539e8 −0.280285
\(362\) −2.20045e9 −2.43799
\(363\) 0 0
\(364\) 1.64562e9 1.78844
\(365\) −1.90364e8 −0.204908
\(366\) 0 0
\(367\) −1.25514e7 −0.0132544 −0.00662721 0.999978i \(-0.502110\pi\)
−0.00662721 + 0.999978i \(0.502110\pi\)
\(368\) 3.80930e8 0.398454
\(369\) 0 0
\(370\) 3.31458e8 0.340190
\(371\) 2.10794e8 0.214313
\(372\) 0 0
\(373\) −5.65994e8 −0.564717 −0.282359 0.959309i \(-0.591117\pi\)
−0.282359 + 0.959309i \(0.591117\pi\)
\(374\) 1.07165e9 1.05926
\(375\) 0 0
\(376\) −4.21854e9 −4.09265
\(377\) 1.79444e9 1.72478
\(378\) 0 0
\(379\) 1.77776e9 1.67740 0.838698 0.544597i \(-0.183317\pi\)
0.838698 + 0.544597i \(0.183317\pi\)
\(380\) −1.12870e9 −1.05520
\(381\) 0 0
\(382\) −1.35874e9 −1.24714
\(383\) −1.18195e9 −1.07498 −0.537492 0.843269i \(-0.680628\pi\)
−0.537492 + 0.843269i \(0.680628\pi\)
\(384\) 0 0
\(385\) −1.54560e8 −0.138034
\(386\) −1.68832e9 −1.49417
\(387\) 0 0
\(388\) 1.31721e9 1.14484
\(389\) −6.02482e8 −0.518944 −0.259472 0.965751i \(-0.583549\pi\)
−0.259472 + 0.965751i \(0.583549\pi\)
\(390\) 0 0
\(391\) 9.72905e7 0.0823098
\(392\) −3.24607e9 −2.72180
\(393\) 0 0
\(394\) 3.98270e9 3.28051
\(395\) 5.28990e8 0.431875
\(396\) 0 0
\(397\) −1.86765e8 −0.149806 −0.0749029 0.997191i \(-0.523865\pi\)
−0.0749029 + 0.997191i \(0.523865\pi\)
\(398\) 1.35539e9 1.07764
\(399\) 0 0
\(400\) 1.01225e9 0.790820
\(401\) 9.96333e8 0.771613 0.385806 0.922580i \(-0.373923\pi\)
0.385806 + 0.922580i \(0.373923\pi\)
\(402\) 0 0
\(403\) 2.21881e9 1.68870
\(404\) 6.40887e9 4.83556
\(405\) 0 0
\(406\) 1.50651e9 1.11720
\(407\) 3.54840e8 0.260887
\(408\) 0 0
\(409\) −2.38644e9 −1.72472 −0.862362 0.506293i \(-0.831015\pi\)
−0.862362 + 0.506293i \(0.831015\pi\)
\(410\) 3.18752e8 0.228407
\(411\) 0 0
\(412\) −1.91246e9 −1.34726
\(413\) −6.66194e8 −0.465345
\(414\) 0 0
\(415\) 2.31775e8 0.159184
\(416\) −8.61990e9 −5.87051
\(417\) 0 0
\(418\) −1.64278e9 −1.10017
\(419\) −2.59644e9 −1.72437 −0.862183 0.506597i \(-0.830903\pi\)
−0.862183 + 0.506597i \(0.830903\pi\)
\(420\) 0 0
\(421\) 2.83850e9 1.85396 0.926981 0.375108i \(-0.122394\pi\)
0.926981 + 0.375108i \(0.122394\pi\)
\(422\) −3.73817e9 −2.42139
\(423\) 0 0
\(424\) −2.51748e9 −1.60393
\(425\) 2.58531e8 0.163362
\(426\) 0 0
\(427\) 1.56644e8 0.0973680
\(428\) 4.10816e9 2.53276
\(429\) 0 0
\(430\) −5.26570e7 −0.0319386
\(431\) 1.52808e9 0.919342 0.459671 0.888089i \(-0.347967\pi\)
0.459671 + 0.888089i \(0.347967\pi\)
\(432\) 0 0
\(433\) −2.66061e9 −1.57498 −0.787488 0.616330i \(-0.788619\pi\)
−0.787488 + 0.616330i \(0.788619\pi\)
\(434\) 1.86278e9 1.09383
\(435\) 0 0
\(436\) −5.59559e8 −0.323328
\(437\) −1.49140e8 −0.0854890
\(438\) 0 0
\(439\) 2.29222e9 1.29310 0.646549 0.762873i \(-0.276212\pi\)
0.646549 + 0.762873i \(0.276212\pi\)
\(440\) 1.84589e9 1.03305
\(441\) 0 0
\(442\) −4.00632e9 −2.20682
\(443\) 9.34043e8 0.510451 0.255225 0.966882i \(-0.417850\pi\)
0.255225 + 0.966882i \(0.417850\pi\)
\(444\) 0 0
\(445\) 8.61022e8 0.463185
\(446\) 3.25884e9 1.73936
\(447\) 0 0
\(448\) −3.75398e9 −1.97251
\(449\) 8.85012e7 0.0461410 0.0230705 0.999734i \(-0.492656\pi\)
0.0230705 + 0.999734i \(0.492656\pi\)
\(450\) 0 0
\(451\) 3.41239e8 0.175162
\(452\) 8.97296e9 4.57037
\(453\) 0 0
\(454\) 8.71480e8 0.437081
\(455\) 5.77815e8 0.287574
\(456\) 0 0
\(457\) −1.21064e9 −0.593347 −0.296674 0.954979i \(-0.595877\pi\)
−0.296674 + 0.954979i \(0.595877\pi\)
\(458\) −8.17995e8 −0.397852
\(459\) 0 0
\(460\) 2.61660e8 0.125339
\(461\) −8.57428e8 −0.407610 −0.203805 0.979012i \(-0.565331\pi\)
−0.203805 + 0.979012i \(0.565331\pi\)
\(462\) 0 0
\(463\) −1.94662e9 −0.911481 −0.455741 0.890113i \(-0.650625\pi\)
−0.455741 + 0.890113i \(0.650625\pi\)
\(464\) −1.05625e10 −4.90856
\(465\) 0 0
\(466\) 3.95101e9 1.80866
\(467\) 9.59955e8 0.436156 0.218078 0.975931i \(-0.430021\pi\)
0.218078 + 0.975931i \(0.430021\pi\)
\(468\) 0 0
\(469\) −1.91564e9 −0.857450
\(470\) −2.31279e9 −1.02753
\(471\) 0 0
\(472\) 7.95626e9 3.48267
\(473\) −5.63717e7 −0.0244933
\(474\) 0 0
\(475\) −3.96312e8 −0.169672
\(476\) −2.47396e9 −1.05140
\(477\) 0 0
\(478\) 8.21322e9 3.43966
\(479\) −3.03579e8 −0.126211 −0.0631054 0.998007i \(-0.520100\pi\)
−0.0631054 + 0.998007i \(0.520100\pi\)
\(480\) 0 0
\(481\) −1.32655e9 −0.543522
\(482\) −5.65447e9 −2.30000
\(483\) 0 0
\(484\) −3.85193e9 −1.54426
\(485\) 4.62504e8 0.184086
\(486\) 0 0
\(487\) 4.36059e8 0.171078 0.0855389 0.996335i \(-0.472739\pi\)
0.0855389 + 0.996335i \(0.472739\pi\)
\(488\) −1.87078e9 −0.728707
\(489\) 0 0
\(490\) −1.77964e9 −0.683355
\(491\) −8.34813e8 −0.318276 −0.159138 0.987256i \(-0.550872\pi\)
−0.159138 + 0.987256i \(0.550872\pi\)
\(492\) 0 0
\(493\) −2.69769e9 −1.01398
\(494\) 6.14144e9 2.29206
\(495\) 0 0
\(496\) −1.30605e10 −4.80587
\(497\) 6.35389e8 0.232163
\(498\) 0 0
\(499\) −4.50230e9 −1.62212 −0.811059 0.584964i \(-0.801109\pi\)
−0.811059 + 0.584964i \(0.801109\pi\)
\(500\) 6.95312e8 0.248763
\(501\) 0 0
\(502\) 2.80158e9 0.988416
\(503\) −2.41700e9 −0.846815 −0.423407 0.905939i \(-0.639166\pi\)
−0.423407 + 0.905939i \(0.639166\pi\)
\(504\) 0 0
\(505\) 2.25031e9 0.777538
\(506\) 3.80836e8 0.130681
\(507\) 0 0
\(508\) 1.40292e10 4.74801
\(509\) −3.51209e9 −1.18047 −0.590233 0.807233i \(-0.700964\pi\)
−0.590233 + 0.807233i \(0.700964\pi\)
\(510\) 0 0
\(511\) 6.39622e8 0.212056
\(512\) 9.14439e9 3.01099
\(513\) 0 0
\(514\) −2.87500e9 −0.933829
\(515\) −6.71508e8 −0.216634
\(516\) 0 0
\(517\) −2.47595e9 −0.787998
\(518\) −1.11370e9 −0.352057
\(519\) 0 0
\(520\) −6.90076e9 −2.15221
\(521\) −9.90013e8 −0.306697 −0.153348 0.988172i \(-0.549006\pi\)
−0.153348 + 0.988172i \(0.549006\pi\)
\(522\) 0 0
\(523\) 4.45926e8 0.136303 0.0681517 0.997675i \(-0.478290\pi\)
0.0681517 + 0.997675i \(0.478290\pi\)
\(524\) −5.02252e9 −1.52497
\(525\) 0 0
\(526\) 5.89043e9 1.76481
\(527\) −3.33567e9 −0.992765
\(528\) 0 0
\(529\) −3.37025e9 −0.989845
\(530\) −1.38020e9 −0.402694
\(531\) 0 0
\(532\) 3.79243e9 1.09201
\(533\) −1.27571e9 −0.364926
\(534\) 0 0
\(535\) 1.44247e9 0.407257
\(536\) 2.28782e10 6.41719
\(537\) 0 0
\(538\) −3.28751e9 −0.910183
\(539\) −1.90519e9 −0.524056
\(540\) 0 0
\(541\) 2.84753e9 0.773175 0.386588 0.922253i \(-0.373654\pi\)
0.386588 + 0.922253i \(0.373654\pi\)
\(542\) −3.37007e9 −0.909162
\(543\) 0 0
\(544\) 1.29588e10 3.45120
\(545\) −1.96474e8 −0.0519898
\(546\) 0 0
\(547\) 4.34116e9 1.13410 0.567048 0.823684i \(-0.308085\pi\)
0.567048 + 0.823684i \(0.308085\pi\)
\(548\) 2.84982e9 0.739752
\(549\) 0 0
\(550\) 1.01200e9 0.259365
\(551\) 4.13540e9 1.05314
\(552\) 0 0
\(553\) −1.77741e9 −0.446940
\(554\) 1.43982e10 3.59769
\(555\) 0 0
\(556\) 1.64015e10 4.04690
\(557\) −3.00124e9 −0.735880 −0.367940 0.929849i \(-0.619937\pi\)
−0.367940 + 0.929849i \(0.619937\pi\)
\(558\) 0 0
\(559\) 2.10743e8 0.0510284
\(560\) −3.40116e9 −0.818406
\(561\) 0 0
\(562\) −1.21328e10 −2.88327
\(563\) 7.43886e9 1.75682 0.878409 0.477909i \(-0.158605\pi\)
0.878409 + 0.477909i \(0.158605\pi\)
\(564\) 0 0
\(565\) 3.15062e9 0.734897
\(566\) −4.62441e9 −1.07201
\(567\) 0 0
\(568\) −7.58837e9 −1.73752
\(569\) 7.20171e8 0.163886 0.0819431 0.996637i \(-0.473887\pi\)
0.0819431 + 0.996637i \(0.473887\pi\)
\(570\) 0 0
\(571\) −2.30186e9 −0.517431 −0.258716 0.965954i \(-0.583299\pi\)
−0.258716 + 0.965954i \(0.583299\pi\)
\(572\) −1.15350e10 −2.57710
\(573\) 0 0
\(574\) −1.07101e9 −0.236375
\(575\) 9.18750e7 0.0201539
\(576\) 0 0
\(577\) −7.37257e9 −1.59773 −0.798865 0.601511i \(-0.794566\pi\)
−0.798865 + 0.601511i \(0.794566\pi\)
\(578\) −3.00451e9 −0.647181
\(579\) 0 0
\(580\) −7.25537e9 −1.54405
\(581\) −7.78766e8 −0.164737
\(582\) 0 0
\(583\) −1.47756e9 −0.308821
\(584\) −7.63892e9 −1.58704
\(585\) 0 0
\(586\) −1.19328e10 −2.44964
\(587\) −7.36500e8 −0.150293 −0.0751467 0.997172i \(-0.523942\pi\)
−0.0751467 + 0.997172i \(0.523942\pi\)
\(588\) 0 0
\(589\) 5.11338e9 1.03111
\(590\) 4.36198e9 0.874384
\(591\) 0 0
\(592\) 7.80842e9 1.54681
\(593\) 5.08539e9 1.00146 0.500729 0.865604i \(-0.333065\pi\)
0.500729 + 0.865604i \(0.333065\pi\)
\(594\) 0 0
\(595\) −8.68665e8 −0.169061
\(596\) −2.57575e10 −4.98358
\(597\) 0 0
\(598\) −1.42374e9 −0.272255
\(599\) −4.86023e9 −0.923980 −0.461990 0.886885i \(-0.652864\pi\)
−0.461990 + 0.886885i \(0.652864\pi\)
\(600\) 0 0
\(601\) 6.78466e9 1.27488 0.637438 0.770502i \(-0.279994\pi\)
0.637438 + 0.770502i \(0.279994\pi\)
\(602\) 1.76928e8 0.0330528
\(603\) 0 0
\(604\) −1.31742e10 −2.43274
\(605\) −1.35250e9 −0.248310
\(606\) 0 0
\(607\) 2.85250e9 0.517685 0.258842 0.965920i \(-0.416659\pi\)
0.258842 + 0.965920i \(0.416659\pi\)
\(608\) −1.98651e10 −3.58449
\(609\) 0 0
\(610\) −1.02565e9 −0.182954
\(611\) 9.25622e9 1.64168
\(612\) 0 0
\(613\) 7.75467e9 1.35973 0.679864 0.733339i \(-0.262039\pi\)
0.679864 + 0.733339i \(0.262039\pi\)
\(614\) 2.03825e10 3.55360
\(615\) 0 0
\(616\) −6.20218e9 −1.06908
\(617\) 6.34097e9 1.08682 0.543410 0.839468i \(-0.317133\pi\)
0.543410 + 0.839468i \(0.317133\pi\)
\(618\) 0 0
\(619\) 3.19831e9 0.542005 0.271003 0.962579i \(-0.412645\pi\)
0.271003 + 0.962579i \(0.412645\pi\)
\(620\) −8.97120e9 −1.51175
\(621\) 0 0
\(622\) 4.68548e9 0.780706
\(623\) −2.89303e9 −0.479342
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 8.00572e9 1.30434
\(627\) 0 0
\(628\) −2.79488e10 −4.50303
\(629\) 1.99429e9 0.319529
\(630\) 0 0
\(631\) −3.79459e9 −0.601260 −0.300630 0.953741i \(-0.597197\pi\)
−0.300630 + 0.953741i \(0.597197\pi\)
\(632\) 2.12273e10 3.34492
\(633\) 0 0
\(634\) 6.97508e9 1.08702
\(635\) 4.92600e9 0.763460
\(636\) 0 0
\(637\) 7.12246e9 1.09180
\(638\) −1.05599e10 −1.60986
\(639\) 0 0
\(640\) 1.20484e10 1.81677
\(641\) −6.77964e9 −1.01672 −0.508362 0.861143i \(-0.669749\pi\)
−0.508362 + 0.861143i \(0.669749\pi\)
\(642\) 0 0
\(643\) −1.13203e9 −0.167927 −0.0839635 0.996469i \(-0.526758\pi\)
−0.0839635 + 0.996469i \(0.526758\pi\)
\(644\) −8.79178e8 −0.129711
\(645\) 0 0
\(646\) −9.23280e9 −1.34747
\(647\) 5.54265e9 0.804549 0.402274 0.915519i \(-0.368220\pi\)
0.402274 + 0.915519i \(0.368220\pi\)
\(648\) 0 0
\(649\) 4.66970e9 0.670552
\(650\) −3.78331e9 −0.540350
\(651\) 0 0
\(652\) −1.66674e10 −2.35505
\(653\) −9.41765e9 −1.32357 −0.661784 0.749695i \(-0.730200\pi\)
−0.661784 + 0.749695i \(0.730200\pi\)
\(654\) 0 0
\(655\) −1.76353e9 −0.245210
\(656\) 7.50911e9 1.03854
\(657\) 0 0
\(658\) 7.77099e9 1.06337
\(659\) −7.46390e9 −1.01594 −0.507969 0.861376i \(-0.669603\pi\)
−0.507969 + 0.861376i \(0.669603\pi\)
\(660\) 0 0
\(661\) 5.58309e9 0.751917 0.375958 0.926637i \(-0.377314\pi\)
0.375958 + 0.926637i \(0.377314\pi\)
\(662\) 4.94024e9 0.661828
\(663\) 0 0
\(664\) 9.30069e9 1.23290
\(665\) 1.33161e9 0.175591
\(666\) 0 0
\(667\) −9.58687e8 −0.125094
\(668\) 8.90152e9 1.15544
\(669\) 0 0
\(670\) 1.25429e10 1.61115
\(671\) −1.09800e9 −0.140305
\(672\) 0 0
\(673\) 3.39933e9 0.429873 0.214936 0.976628i \(-0.431046\pi\)
0.214936 + 0.976628i \(0.431046\pi\)
\(674\) −2.72549e10 −3.42875
\(675\) 0 0
\(676\) 2.07845e10 2.58778
\(677\) 1.38930e10 1.72082 0.860409 0.509604i \(-0.170208\pi\)
0.860409 + 0.509604i \(0.170208\pi\)
\(678\) 0 0
\(679\) −1.55401e9 −0.190507
\(680\) 1.03743e10 1.26526
\(681\) 0 0
\(682\) −1.30572e10 −1.57618
\(683\) 7.22576e9 0.867782 0.433891 0.900965i \(-0.357140\pi\)
0.433891 + 0.900965i \(0.357140\pi\)
\(684\) 0 0
\(685\) 1.00064e9 0.118949
\(686\) 1.35891e10 1.60715
\(687\) 0 0
\(688\) −1.24048e9 −0.145222
\(689\) 5.52380e9 0.643385
\(690\) 0 0
\(691\) −5.83386e9 −0.672641 −0.336320 0.941748i \(-0.609182\pi\)
−0.336320 + 0.941748i \(0.609182\pi\)
\(692\) −1.88919e10 −2.16722
\(693\) 0 0
\(694\) 1.28401e10 1.45818
\(695\) 5.75896e9 0.650724
\(696\) 0 0
\(697\) 1.91785e9 0.214536
\(698\) −1.03284e10 −1.14958
\(699\) 0 0
\(700\) −2.33625e9 −0.257440
\(701\) −4.37486e9 −0.479680 −0.239840 0.970812i \(-0.577095\pi\)
−0.239840 + 0.970812i \(0.577095\pi\)
\(702\) 0 0
\(703\) −3.05712e9 −0.331871
\(704\) 2.63136e10 2.84234
\(705\) 0 0
\(706\) −1.36083e9 −0.145542
\(707\) −7.56103e9 −0.804661
\(708\) 0 0
\(709\) −3.54685e9 −0.373750 −0.186875 0.982384i \(-0.559836\pi\)
−0.186875 + 0.982384i \(0.559836\pi\)
\(710\) −4.16029e9 −0.436234
\(711\) 0 0
\(712\) 3.45511e10 3.58742
\(713\) −1.18541e9 −0.122477
\(714\) 0 0
\(715\) −4.05021e9 −0.414387
\(716\) −1.50251e10 −1.52976
\(717\) 0 0
\(718\) 2.71782e8 0.0274022
\(719\) 1.06545e10 1.06901 0.534507 0.845164i \(-0.320497\pi\)
0.534507 + 0.845164i \(0.320497\pi\)
\(720\) 0 0
\(721\) 2.25627e9 0.224191
\(722\) −5.51186e9 −0.545027
\(723\) 0 0
\(724\) −3.56073e10 −3.48702
\(725\) −2.54753e9 −0.248277
\(726\) 0 0
\(727\) −9.21169e9 −0.889138 −0.444569 0.895745i \(-0.646643\pi\)
−0.444569 + 0.895745i \(0.646643\pi\)
\(728\) 2.31866e10 2.22729
\(729\) 0 0
\(730\) −4.18800e9 −0.398453
\(731\) −3.16823e8 −0.0299989
\(732\) 0 0
\(733\) −5.81770e8 −0.0545616 −0.0272808 0.999628i \(-0.508685\pi\)
−0.0272808 + 0.999628i \(0.508685\pi\)
\(734\) −2.76131e8 −0.0257738
\(735\) 0 0
\(736\) 4.60522e9 0.425773
\(737\) 1.34277e10 1.23557
\(738\) 0 0
\(739\) 1.43208e8 0.0130531 0.00652654 0.999979i \(-0.497923\pi\)
0.00652654 + 0.999979i \(0.497923\pi\)
\(740\) 5.36358e9 0.486569
\(741\) 0 0
\(742\) 4.63746e9 0.416742
\(743\) −1.76012e10 −1.57428 −0.787139 0.616775i \(-0.788439\pi\)
−0.787139 + 0.616775i \(0.788439\pi\)
\(744\) 0 0
\(745\) −9.04406e9 −0.801340
\(746\) −1.24519e10 −1.09812
\(747\) 0 0
\(748\) 1.73413e10 1.51504
\(749\) −4.84670e9 −0.421463
\(750\) 0 0
\(751\) −2.10398e10 −1.81260 −0.906299 0.422636i \(-0.861105\pi\)
−0.906299 + 0.422636i \(0.861105\pi\)
\(752\) −5.44844e10 −4.67207
\(753\) 0 0
\(754\) 3.94777e10 3.35391
\(755\) −4.62578e9 −0.391174
\(756\) 0 0
\(757\) −3.91015e9 −0.327610 −0.163805 0.986493i \(-0.552377\pi\)
−0.163805 + 0.986493i \(0.552377\pi\)
\(758\) 3.91107e10 3.26177
\(759\) 0 0
\(760\) −1.59032e10 −1.31413
\(761\) −1.20242e10 −0.989032 −0.494516 0.869169i \(-0.664655\pi\)
−0.494516 + 0.869169i \(0.664655\pi\)
\(762\) 0 0
\(763\) 6.60153e8 0.0538033
\(764\) −2.19869e10 −1.78377
\(765\) 0 0
\(766\) −2.60028e10 −2.09035
\(767\) −1.74575e10 −1.39700
\(768\) 0 0
\(769\) 1.18948e10 0.943223 0.471611 0.881807i \(-0.343673\pi\)
0.471611 + 0.881807i \(0.343673\pi\)
\(770\) −3.40032e9 −0.268412
\(771\) 0 0
\(772\) −2.73201e10 −2.13709
\(773\) 7.77614e9 0.605531 0.302765 0.953065i \(-0.402090\pi\)
0.302765 + 0.953065i \(0.402090\pi\)
\(774\) 0 0
\(775\) −3.15000e9 −0.243083
\(776\) 1.85594e10 1.42576
\(777\) 0 0
\(778\) −1.32546e10 −1.00911
\(779\) −2.93994e9 −0.222822
\(780\) 0 0
\(781\) −4.45378e9 −0.334541
\(782\) 2.14039e9 0.160055
\(783\) 0 0
\(784\) −4.19245e10 −3.10715
\(785\) −9.81350e9 −0.724069
\(786\) 0 0
\(787\) 2.44365e10 1.78701 0.893507 0.449050i \(-0.148237\pi\)
0.893507 + 0.449050i \(0.148237\pi\)
\(788\) 6.44473e10 4.69206
\(789\) 0 0
\(790\) 1.16378e10 0.839799
\(791\) −1.05861e10 −0.760532
\(792\) 0 0
\(793\) 4.10482e9 0.292306
\(794\) −4.10883e9 −0.291304
\(795\) 0 0
\(796\) 2.19326e10 1.54133
\(797\) 2.26970e9 0.158805 0.0794024 0.996843i \(-0.474699\pi\)
0.0794024 + 0.996843i \(0.474699\pi\)
\(798\) 0 0
\(799\) −1.39155e10 −0.965125
\(800\) 1.22375e10 0.845041
\(801\) 0 0
\(802\) 2.19193e10 1.50043
\(803\) −4.48345e9 −0.305568
\(804\) 0 0
\(805\) −3.08700e8 −0.0208570
\(806\) 4.88138e10 3.28375
\(807\) 0 0
\(808\) 9.03003e10 6.02212
\(809\) 1.63200e10 1.08368 0.541838 0.840483i \(-0.317729\pi\)
0.541838 + 0.840483i \(0.317729\pi\)
\(810\) 0 0
\(811\) 6.99393e9 0.460414 0.230207 0.973142i \(-0.426060\pi\)
0.230207 + 0.973142i \(0.426060\pi\)
\(812\) 2.43780e10 1.59791
\(813\) 0 0
\(814\) 7.80649e9 0.507306
\(815\) −5.85230e9 −0.378682
\(816\) 0 0
\(817\) 4.85670e8 0.0311576
\(818\) −5.25017e10 −3.35380
\(819\) 0 0
\(820\) 5.15800e9 0.326687
\(821\) −4.00949e9 −0.252865 −0.126432 0.991975i \(-0.540353\pi\)
−0.126432 + 0.991975i \(0.540353\pi\)
\(822\) 0 0
\(823\) 1.88572e10 1.17917 0.589586 0.807706i \(-0.299291\pi\)
0.589586 + 0.807706i \(0.299291\pi\)
\(824\) −2.69463e10 −1.67785
\(825\) 0 0
\(826\) −1.46563e10 −0.904885
\(827\) −1.66386e10 −1.02293 −0.511466 0.859304i \(-0.670897\pi\)
−0.511466 + 0.859304i \(0.670897\pi\)
\(828\) 0 0
\(829\) −1.37224e10 −0.836547 −0.418274 0.908321i \(-0.637365\pi\)
−0.418274 + 0.908321i \(0.637365\pi\)
\(830\) 5.09906e9 0.309540
\(831\) 0 0
\(832\) −9.83722e10 −5.92162
\(833\) −1.07076e10 −0.641853
\(834\) 0 0
\(835\) 3.12554e9 0.185790
\(836\) −2.65831e10 −1.57356
\(837\) 0 0
\(838\) −5.71217e10 −3.35311
\(839\) 6.56954e8 0.0384033 0.0192016 0.999816i \(-0.493888\pi\)
0.0192016 + 0.999816i \(0.493888\pi\)
\(840\) 0 0
\(841\) 9.33282e9 0.541037
\(842\) 6.24469e10 3.60511
\(843\) 0 0
\(844\) −6.04904e10 −3.46328
\(845\) 7.29794e9 0.416104
\(846\) 0 0
\(847\) 4.54441e9 0.256972
\(848\) −3.25144e10 −1.83101
\(849\) 0 0
\(850\) 5.68769e9 0.317665
\(851\) 7.08716e8 0.0394202
\(852\) 0 0
\(853\) −8.70997e9 −0.480502 −0.240251 0.970711i \(-0.577230\pi\)
−0.240251 + 0.970711i \(0.577230\pi\)
\(854\) 3.44617e9 0.189336
\(855\) 0 0
\(856\) 5.78835e10 3.15425
\(857\) −1.93825e9 −0.105190 −0.0525952 0.998616i \(-0.516749\pi\)
−0.0525952 + 0.998616i \(0.516749\pi\)
\(858\) 0 0
\(859\) −7.95332e8 −0.0428127 −0.0214063 0.999771i \(-0.506814\pi\)
−0.0214063 + 0.999771i \(0.506814\pi\)
\(860\) −8.52086e8 −0.0456813
\(861\) 0 0
\(862\) 3.36179e10 1.78770
\(863\) −2.24172e9 −0.118725 −0.0593626 0.998236i \(-0.518907\pi\)
−0.0593626 + 0.998236i \(0.518907\pi\)
\(864\) 0 0
\(865\) −6.63338e9 −0.348481
\(866\) −5.85335e10 −3.06261
\(867\) 0 0
\(868\) 3.01432e10 1.56448
\(869\) 1.24588e10 0.644030
\(870\) 0 0
\(871\) −5.01989e10 −2.57413
\(872\) −7.88412e9 −0.402666
\(873\) 0 0
\(874\) −3.28109e9 −0.166237
\(875\) −8.20312e8 −0.0413953
\(876\) 0 0
\(877\) 1.99169e10 0.997062 0.498531 0.866872i \(-0.333873\pi\)
0.498531 + 0.866872i \(0.333873\pi\)
\(878\) 5.04289e10 2.51449
\(879\) 0 0
\(880\) 2.38405e10 1.17931
\(881\) 2.76906e10 1.36432 0.682161 0.731202i \(-0.261040\pi\)
0.682161 + 0.731202i \(0.261040\pi\)
\(882\) 0 0
\(883\) −1.65616e10 −0.809544 −0.404772 0.914418i \(-0.632649\pi\)
−0.404772 + 0.914418i \(0.632649\pi\)
\(884\) −6.48295e10 −3.15638
\(885\) 0 0
\(886\) 2.05489e10 0.992593
\(887\) −6.69904e9 −0.322314 −0.161157 0.986929i \(-0.551523\pi\)
−0.161157 + 0.986929i \(0.551523\pi\)
\(888\) 0 0
\(889\) −1.65514e10 −0.790092
\(890\) 1.89425e10 0.900683
\(891\) 0 0
\(892\) 5.27339e10 2.48778
\(893\) 2.13315e10 1.00240
\(894\) 0 0
\(895\) −5.27568e9 −0.245979
\(896\) −4.04827e10 −1.88015
\(897\) 0 0
\(898\) 1.94703e9 0.0897232
\(899\) 3.28693e10 1.50880
\(900\) 0 0
\(901\) −8.30427e9 −0.378238
\(902\) 7.50726e9 0.340611
\(903\) 0 0
\(904\) 1.26428e11 5.69186
\(905\) −1.25026e10 −0.560698
\(906\) 0 0
\(907\) 3.87814e9 0.172583 0.0862916 0.996270i \(-0.472498\pi\)
0.0862916 + 0.996270i \(0.472498\pi\)
\(908\) 1.41021e10 0.625150
\(909\) 0 0
\(910\) 1.27119e10 0.559199
\(911\) 7.15870e9 0.313704 0.156852 0.987622i \(-0.449865\pi\)
0.156852 + 0.987622i \(0.449865\pi\)
\(912\) 0 0
\(913\) 5.45878e9 0.237382
\(914\) −2.66341e10 −1.15379
\(915\) 0 0
\(916\) −1.32366e10 −0.569041
\(917\) 5.92545e9 0.253763
\(918\) 0 0
\(919\) 2.54160e10 1.08020 0.540098 0.841602i \(-0.318387\pi\)
0.540098 + 0.841602i \(0.318387\pi\)
\(920\) 3.68676e9 0.156094
\(921\) 0 0
\(922\) −1.88634e10 −0.792615
\(923\) 1.66502e10 0.696970
\(924\) 0 0
\(925\) 1.88328e9 0.0782382
\(926\) −4.28256e10 −1.77241
\(927\) 0 0
\(928\) −1.27694e11 −5.24511
\(929\) 2.34566e10 0.959865 0.479932 0.877306i \(-0.340661\pi\)
0.479932 + 0.877306i \(0.340661\pi\)
\(930\) 0 0
\(931\) 1.64141e10 0.666644
\(932\) 6.39345e10 2.58690
\(933\) 0 0
\(934\) 2.11190e10 0.848124
\(935\) 6.08893e9 0.243613
\(936\) 0 0
\(937\) 9.30070e9 0.369341 0.184670 0.982801i \(-0.440878\pi\)
0.184670 + 0.982801i \(0.440878\pi\)
\(938\) −4.21440e10 −1.66735
\(939\) 0 0
\(940\) −3.74252e10 −1.46966
\(941\) 1.13117e10 0.442553 0.221276 0.975211i \(-0.428978\pi\)
0.221276 + 0.975211i \(0.428978\pi\)
\(942\) 0 0
\(943\) 6.81551e8 0.0264672
\(944\) 1.02759e11 3.97573
\(945\) 0 0
\(946\) −1.24018e9 −0.0476283
\(947\) −4.46270e9 −0.170755 −0.0853774 0.996349i \(-0.527210\pi\)
−0.0853774 + 0.996349i \(0.527210\pi\)
\(948\) 0 0
\(949\) 1.67611e10 0.636608
\(950\) −8.71888e9 −0.329935
\(951\) 0 0
\(952\) −3.48578e10 −1.30939
\(953\) −1.90872e10 −0.714359 −0.357179 0.934036i \(-0.616261\pi\)
−0.357179 + 0.934036i \(0.616261\pi\)
\(954\) 0 0
\(955\) −7.72013e9 −0.286822
\(956\) 1.32905e11 4.91969
\(957\) 0 0
\(958\) −6.67873e9 −0.245423
\(959\) −3.36215e9 −0.123098
\(960\) 0 0
\(961\) 1.31299e10 0.477234
\(962\) −2.91842e10 −1.05690
\(963\) 0 0
\(964\) −9.14997e10 −3.28965
\(965\) −9.59274e9 −0.343635
\(966\) 0 0
\(967\) −1.34102e10 −0.476916 −0.238458 0.971153i \(-0.576642\pi\)
−0.238458 + 0.971153i \(0.576642\pi\)
\(968\) −5.42733e10 −1.92319
\(969\) 0 0
\(970\) 1.01751e10 0.357962
\(971\) −4.64191e10 −1.62716 −0.813579 0.581455i \(-0.802484\pi\)
−0.813579 + 0.581455i \(0.802484\pi\)
\(972\) 0 0
\(973\) −1.93501e10 −0.673423
\(974\) 9.59329e9 0.332668
\(975\) 0 0
\(976\) −2.41620e10 −0.831875
\(977\) −3.92972e10 −1.34813 −0.674064 0.738673i \(-0.735453\pi\)
−0.674064 + 0.738673i \(0.735453\pi\)
\(978\) 0 0
\(979\) 2.02788e10 0.690721
\(980\) −2.87979e10 −0.977393
\(981\) 0 0
\(982\) −1.83659e10 −0.618902
\(983\) 3.69370e10 1.24029 0.620146 0.784486i \(-0.287073\pi\)
0.620146 + 0.784486i \(0.287073\pi\)
\(984\) 0 0
\(985\) 2.26290e10 0.754463
\(986\) −5.93492e10 −1.97172
\(987\) 0 0
\(988\) 9.93796e10 3.27829
\(989\) −1.12590e8 −0.00370095
\(990\) 0 0
\(991\) −1.02868e10 −0.335753 −0.167877 0.985808i \(-0.553691\pi\)
−0.167877 + 0.985808i \(0.553691\pi\)
\(992\) −1.57893e11 −5.13538
\(993\) 0 0
\(994\) 1.39786e10 0.451451
\(995\) 7.70106e9 0.247839
\(996\) 0 0
\(997\) −3.24439e10 −1.03681 −0.518407 0.855134i \(-0.673475\pi\)
−0.518407 + 0.855134i \(0.673475\pi\)
\(998\) −9.90506e10 −3.15428
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.8.a.g.1.1 1
3.2 odd 2 15.8.a.a.1.1 1
5.2 odd 4 225.8.b.a.199.2 2
5.3 odd 4 225.8.b.a.199.1 2
5.4 even 2 225.8.a.a.1.1 1
12.11 even 2 240.8.a.c.1.1 1
15.2 even 4 75.8.b.a.49.1 2
15.8 even 4 75.8.b.a.49.2 2
15.14 odd 2 75.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.8.a.a.1.1 1 3.2 odd 2
45.8.a.g.1.1 1 1.1 even 1 trivial
75.8.a.c.1.1 1 15.14 odd 2
75.8.b.a.49.1 2 15.2 even 4
75.8.b.a.49.2 2 15.8 even 4
225.8.a.a.1.1 1 5.4 even 2
225.8.b.a.199.1 2 5.3 odd 4
225.8.b.a.199.2 2 5.2 odd 4
240.8.a.c.1.1 1 12.11 even 2