Properties

Label 45.8.a.f
Level $45$
Weight $8$
Character orbit 45.a
Self dual yes
Analytic conductor $14.057$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,8,Mod(1,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0573261468\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 14 q^{2} + 68 q^{4} - 125 q^{5} - 1644 q^{7} - 840 q^{8} - 1750 q^{10} - 172 q^{11} + 3862 q^{13} - 23016 q^{14} - 20464 q^{16} + 12254 q^{17} - 25940 q^{19} - 8500 q^{20} - 2408 q^{22} - 12972 q^{23}+ \cdots + 26308702 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
14.0000 0 68.0000 −125.000 0 −1644.00 −840.000 0 −1750.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.8.a.f 1
3.b odd 2 1 5.8.a.a 1
5.b even 2 1 225.8.a.b 1
5.c odd 4 2 225.8.b.b 2
12.b even 2 1 80.8.a.d 1
15.d odd 2 1 25.8.a.a 1
15.e even 4 2 25.8.b.a 2
21.c even 2 1 245.8.a.a 1
24.f even 2 1 320.8.a.a 1
24.h odd 2 1 320.8.a.h 1
33.d even 2 1 605.8.a.c 1
60.h even 2 1 400.8.a.e 1
60.l odd 4 2 400.8.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.8.a.a 1 3.b odd 2 1
25.8.a.a 1 15.d odd 2 1
25.8.b.a 2 15.e even 4 2
45.8.a.f 1 1.a even 1 1 trivial
80.8.a.d 1 12.b even 2 1
225.8.a.b 1 5.b even 2 1
225.8.b.b 2 5.c odd 4 2
245.8.a.a 1 21.c even 2 1
320.8.a.a 1 24.f even 2 1
320.8.a.h 1 24.h odd 2 1
400.8.a.e 1 60.h even 2 1
400.8.c.e 2 60.l odd 4 2
605.8.a.c 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 14 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(45))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 14 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 125 \) Copy content Toggle raw display
$7$ \( T + 1644 \) Copy content Toggle raw display
$11$ \( T + 172 \) Copy content Toggle raw display
$13$ \( T - 3862 \) Copy content Toggle raw display
$17$ \( T - 12254 \) Copy content Toggle raw display
$19$ \( T + 25940 \) Copy content Toggle raw display
$23$ \( T + 12972 \) Copy content Toggle raw display
$29$ \( T - 81610 \) Copy content Toggle raw display
$31$ \( T + 156888 \) Copy content Toggle raw display
$37$ \( T - 110126 \) Copy content Toggle raw display
$41$ \( T + 467882 \) Copy content Toggle raw display
$43$ \( T + 499208 \) Copy content Toggle raw display
$47$ \( T - 396884 \) Copy content Toggle raw display
$53$ \( T - 1280498 \) Copy content Toggle raw display
$59$ \( T - 1337420 \) Copy content Toggle raw display
$61$ \( T + 923978 \) Copy content Toggle raw display
$67$ \( T + 797304 \) Copy content Toggle raw display
$71$ \( T + 5103392 \) Copy content Toggle raw display
$73$ \( T + 4267478 \) Copy content Toggle raw display
$79$ \( T + 960 \) Copy content Toggle raw display
$83$ \( T + 6140832 \) Copy content Toggle raw display
$89$ \( T + 2010570 \) Copy content Toggle raw display
$97$ \( T + 4881934 \) Copy content Toggle raw display
show more
show less