Properties

Label 45.8.a
Level $45$
Weight $8$
Character orbit 45.a
Rep. character $\chi_{45}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $9$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(45))\).

Total New Old
Modular forms 46 11 35
Cusp forms 38 11 27
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(13\)\(2\)\(11\)\(11\)\(2\)\(9\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(11\)\(2\)\(9\)\(9\)\(2\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(11\)\(3\)\(8\)\(9\)\(3\)\(6\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(11\)\(4\)\(7\)\(9\)\(4\)\(5\)\(2\)\(0\)\(2\)
Plus space\(+\)\(24\)\(6\)\(18\)\(20\)\(6\)\(14\)\(4\)\(0\)\(4\)
Minus space\(-\)\(22\)\(5\)\(17\)\(18\)\(5\)\(13\)\(4\)\(0\)\(4\)

Trace form

\( 11 q + 22 q^{2} + 368 q^{4} + 125 q^{5} + 40 q^{7} + 156 q^{8} + 2250 q^{10} - 1916 q^{11} - 14006 q^{13} - 9564 q^{14} + 11012 q^{16} + 71626 q^{17} - 52028 q^{19} + 44500 q^{20} + 221688 q^{22} - 58920 q^{23}+ \cdots + 60062534 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
45.8.a.a 45.a 1.a $1$ $14.057$ \(\Q\) None 45.8.a.a \(-10\) \(0\) \(-125\) \(-1170\) $+$ $+$ $\mathrm{SU}(2)$ \(q-10q^{2}-28q^{4}-5^{3}q^{5}-1170q^{7}+\cdots\)
45.8.a.b 45.a 1.a $1$ $14.057$ \(\Q\) None 45.8.a.b \(-5\) \(0\) \(125\) \(930\) $+$ $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-103q^{4}+5^{3}q^{5}+930q^{7}+\cdots\)
45.8.a.c 45.a 1.a $1$ $14.057$ \(\Q\) None 45.8.a.b \(5\) \(0\) \(-125\) \(930\) $+$ $+$ $\mathrm{SU}(2)$ \(q+5q^{2}-103q^{4}-5^{3}q^{5}+930q^{7}+\cdots\)
45.8.a.d 45.a 1.a $1$ $14.057$ \(\Q\) None 45.8.a.a \(10\) \(0\) \(125\) \(-1170\) $+$ $-$ $\mathrm{SU}(2)$ \(q+10q^{2}-28q^{4}+5^{3}q^{5}-1170q^{7}+\cdots\)
45.8.a.e 45.a 1.a $1$ $14.057$ \(\Q\) None 15.8.a.b \(13\) \(0\) \(125\) \(1380\) $-$ $-$ $\mathrm{SU}(2)$ \(q+13q^{2}+41q^{4}+5^{3}q^{5}+1380q^{7}+\cdots\)
45.8.a.f 45.a 1.a $1$ $14.057$ \(\Q\) None 5.8.a.a \(14\) \(0\) \(-125\) \(-1644\) $-$ $+$ $\mathrm{SU}(2)$ \(q+14q^{2}+68q^{4}-5^{3}q^{5}-1644q^{7}+\cdots\)
45.8.a.g 45.a 1.a $1$ $14.057$ \(\Q\) None 15.8.a.a \(22\) \(0\) \(125\) \(-420\) $-$ $-$ $\mathrm{SU}(2)$ \(q+22q^{2}+356q^{4}+5^{3}q^{5}-420q^{7}+\cdots\)
45.8.a.h 45.a 1.a $2$ $14.057$ \(\Q(\sqrt{19}) \) None 5.8.a.b \(-20\) \(0\) \(250\) \(-100\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-10+\beta )q^{2}+(48-20\beta )q^{4}+5^{3}q^{5}+\cdots\)
45.8.a.i 45.a 1.a $2$ $14.057$ \(\Q(\sqrt{601}) \) None 15.8.a.c \(-7\) \(0\) \(-250\) \(1304\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{2}+(31+7\beta )q^{4}-5^{3}q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)