Properties

Label 45.6.b.b.19.2
Level $45$
Weight $6$
Character 45.19
Analytic conductor $7.217$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,6,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.21727189158\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(0.500000 - 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 45.19
Dual form 45.6.b.b.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.63325i q^{2} -12.0000 q^{4} +(45.0000 + 33.1662i) q^{5} +59.6992i q^{7} +132.665i q^{8} +(-220.000 + 298.496i) q^{10} -252.000 q^{11} +119.398i q^{13} -396.000 q^{14} -1264.00 q^{16} -689.858i q^{17} -220.000 q^{19} +(-540.000 - 397.995i) q^{20} -1671.58i q^{22} +2434.40i q^{23} +(925.000 + 2984.96i) q^{25} -792.000 q^{26} -716.391i q^{28} +6930.00 q^{29} +6752.00 q^{31} -4139.15i q^{32} +4576.00 q^{34} +(-1980.00 + 2686.47i) q^{35} -13969.6i q^{37} -1459.31i q^{38} +(-4400.00 + 5969.92i) q^{40} +198.000 q^{41} +417.895i q^{43} +3024.00 q^{44} -16148.0 q^{46} -10540.2i q^{47} +13243.0 q^{49} +(-19800.0 + 6135.76i) q^{50} -1432.78i q^{52} -5823.99i q^{53} +(-11340.0 - 8357.89i) q^{55} -7920.00 q^{56} +45968.4i q^{58} +24660.0 q^{59} -5698.00 q^{61} +44787.7i q^{62} -12992.0 q^{64} +(-3960.00 + 5372.93i) q^{65} +43640.1i q^{67} +8278.30i q^{68} +(-17820.0 - 13133.8i) q^{70} -53352.0 q^{71} -70922.7i q^{73} +92664.0 q^{74} +2640.00 q^{76} -15044.2i q^{77} +51920.0 q^{79} +(-56880.0 - 41922.1i) q^{80} +1313.38i q^{82} -61841.8i q^{83} +(22880.0 - 31043.6i) q^{85} -2772.00 q^{86} -33431.6i q^{88} +9990.00 q^{89} -7128.00 q^{91} -29212.8i q^{92} +69916.0 q^{94} +(-9900.00 - 7296.57i) q^{95} +101250. i q^{97} +87844.1i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 24 q^{4} + 90 q^{5} - 440 q^{10} - 504 q^{11} - 792 q^{14} - 2528 q^{16} - 440 q^{19} - 1080 q^{20} + 1850 q^{25} - 1584 q^{26} + 13860 q^{29} + 13504 q^{31} + 9152 q^{34} - 3960 q^{35} - 8800 q^{40}+ \cdots - 19800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.63325i 1.17260i 0.810093 + 0.586302i \(0.199417\pi\)
−0.810093 + 0.586302i \(0.800583\pi\)
\(3\) 0 0
\(4\) −12.0000 −0.375000
\(5\) 45.0000 + 33.1662i 0.804984 + 0.593296i
\(6\) 0 0
\(7\) 59.6992i 0.460494i 0.973132 + 0.230247i \(0.0739534\pi\)
−0.973132 + 0.230247i \(0.926047\pi\)
\(8\) 132.665i 0.732877i
\(9\) 0 0
\(10\) −220.000 + 298.496i −0.695701 + 0.943928i
\(11\) −252.000 −0.627941 −0.313970 0.949433i \(-0.601659\pi\)
−0.313970 + 0.949433i \(0.601659\pi\)
\(12\) 0 0
\(13\) 119.398i 0.195948i 0.995189 + 0.0979739i \(0.0312362\pi\)
−0.995189 + 0.0979739i \(0.968764\pi\)
\(14\) −396.000 −0.539977
\(15\) 0 0
\(16\) −1264.00 −1.23438
\(17\) 689.858i 0.578945i −0.957186 0.289473i \(-0.906520\pi\)
0.957186 0.289473i \(-0.0934799\pi\)
\(18\) 0 0
\(19\) −220.000 −0.139810 −0.0699051 0.997554i \(-0.522270\pi\)
−0.0699051 + 0.997554i \(0.522270\pi\)
\(20\) −540.000 397.995i −0.301869 0.222486i
\(21\) 0 0
\(22\) 1671.58i 0.736326i
\(23\) 2434.40i 0.959561i 0.877388 + 0.479781i \(0.159284\pi\)
−0.877388 + 0.479781i \(0.840716\pi\)
\(24\) 0 0
\(25\) 925.000 + 2984.96i 0.296000 + 0.955188i
\(26\) −792.000 −0.229769
\(27\) 0 0
\(28\) 716.391i 0.172685i
\(29\) 6930.00 1.53016 0.765082 0.643932i \(-0.222698\pi\)
0.765082 + 0.643932i \(0.222698\pi\)
\(30\) 0 0
\(31\) 6752.00 1.26191 0.630955 0.775820i \(-0.282663\pi\)
0.630955 + 0.775820i \(0.282663\pi\)
\(32\) 4139.15i 0.714556i
\(33\) 0 0
\(34\) 4576.00 0.678873
\(35\) −1980.00 + 2686.47i −0.273209 + 0.370690i
\(36\) 0 0
\(37\) 13969.6i 1.67757i −0.544464 0.838785i \(-0.683267\pi\)
0.544464 0.838785i \(-0.316733\pi\)
\(38\) 1459.31i 0.163942i
\(39\) 0 0
\(40\) −4400.00 + 5969.92i −0.434813 + 0.589955i
\(41\) 198.000 0.0183952 0.00919762 0.999958i \(-0.497072\pi\)
0.00919762 + 0.999958i \(0.497072\pi\)
\(42\) 0 0
\(43\) 417.895i 0.0344664i 0.999851 + 0.0172332i \(0.00548577\pi\)
−0.999851 + 0.0172332i \(0.994514\pi\)
\(44\) 3024.00 0.235478
\(45\) 0 0
\(46\) −16148.0 −1.12519
\(47\) 10540.2i 0.695994i −0.937496 0.347997i \(-0.886862\pi\)
0.937496 0.347997i \(-0.113138\pi\)
\(48\) 0 0
\(49\) 13243.0 0.787945
\(50\) −19800.0 + 6135.76i −1.12006 + 0.347091i
\(51\) 0 0
\(52\) 1432.78i 0.0734804i
\(53\) 5823.99i 0.284794i −0.989810 0.142397i \(-0.954519\pi\)
0.989810 0.142397i \(-0.0454810\pi\)
\(54\) 0 0
\(55\) −11340.0 8357.89i −0.505483 0.372555i
\(56\) −7920.00 −0.337485
\(57\) 0 0
\(58\) 45968.4i 1.79428i
\(59\) 24660.0 0.922281 0.461140 0.887327i \(-0.347440\pi\)
0.461140 + 0.887327i \(0.347440\pi\)
\(60\) 0 0
\(61\) −5698.00 −0.196064 −0.0980320 0.995183i \(-0.531255\pi\)
−0.0980320 + 0.995183i \(0.531255\pi\)
\(62\) 44787.7i 1.47972i
\(63\) 0 0
\(64\) −12992.0 −0.396484
\(65\) −3960.00 + 5372.93i −0.116255 + 0.157735i
\(66\) 0 0
\(67\) 43640.1i 1.18768i 0.804583 + 0.593840i \(0.202389\pi\)
−0.804583 + 0.593840i \(0.797611\pi\)
\(68\) 8278.30i 0.217104i
\(69\) 0 0
\(70\) −17820.0 13133.8i −0.434673 0.320366i
\(71\) −53352.0 −1.25604 −0.628022 0.778196i \(-0.716135\pi\)
−0.628022 + 0.778196i \(0.716135\pi\)
\(72\) 0 0
\(73\) 70922.7i 1.55768i −0.627223 0.778840i \(-0.715808\pi\)
0.627223 0.778840i \(-0.284192\pi\)
\(74\) 92664.0 1.96712
\(75\) 0 0
\(76\) 2640.00 0.0524288
\(77\) 15044.2i 0.289163i
\(78\) 0 0
\(79\) 51920.0 0.935981 0.467990 0.883734i \(-0.344978\pi\)
0.467990 + 0.883734i \(0.344978\pi\)
\(80\) −56880.0 41922.1i −0.993653 0.732350i
\(81\) 0 0
\(82\) 1313.38i 0.0215703i
\(83\) 61841.8i 0.985342i −0.870216 0.492671i \(-0.836021\pi\)
0.870216 0.492671i \(-0.163979\pi\)
\(84\) 0 0
\(85\) 22880.0 31043.6i 0.343486 0.466042i
\(86\) −2772.00 −0.0404154
\(87\) 0 0
\(88\) 33431.6i 0.460204i
\(89\) 9990.00 0.133687 0.0668437 0.997763i \(-0.478707\pi\)
0.0668437 + 0.997763i \(0.478707\pi\)
\(90\) 0 0
\(91\) −7128.00 −0.0902328
\(92\) 29212.8i 0.359836i
\(93\) 0 0
\(94\) 69916.0 0.816125
\(95\) −9900.00 7296.57i −0.112545 0.0829488i
\(96\) 0 0
\(97\) 101250.i 1.09261i 0.837586 + 0.546305i \(0.183966\pi\)
−0.837586 + 0.546305i \(0.816034\pi\)
\(98\) 87844.1i 0.923948i
\(99\) 0 0
\(100\) −11100.0 35819.5i −0.111000 0.358195i
\(101\) 109098. 1.06418 0.532088 0.846689i \(-0.321408\pi\)
0.532088 + 0.846689i \(0.321408\pi\)
\(102\) 0 0
\(103\) 70624.2i 0.655935i −0.944689 0.327967i \(-0.893636\pi\)
0.944689 0.327967i \(-0.106364\pi\)
\(104\) −15840.0 −0.143606
\(105\) 0 0
\(106\) 38632.0 0.333951
\(107\) 97117.4i 0.820045i 0.912075 + 0.410022i \(0.134479\pi\)
−0.912075 + 0.410022i \(0.865521\pi\)
\(108\) 0 0
\(109\) −21010.0 −0.169379 −0.0846895 0.996407i \(-0.526990\pi\)
−0.0846895 + 0.996407i \(0.526990\pi\)
\(110\) 55440.0 75221.1i 0.436859 0.592731i
\(111\) 0 0
\(112\) 75459.8i 0.568422i
\(113\) 105018.i 0.773688i 0.922145 + 0.386844i \(0.126435\pi\)
−0.922145 + 0.386844i \(0.873565\pi\)
\(114\) 0 0
\(115\) −80740.0 + 109548.i −0.569304 + 0.772432i
\(116\) −83160.0 −0.573812
\(117\) 0 0
\(118\) 163576.i 1.08147i
\(119\) 41184.0 0.266601
\(120\) 0 0
\(121\) −97547.0 −0.605690
\(122\) 37796.3i 0.229905i
\(123\) 0 0
\(124\) −81024.0 −0.473216
\(125\) −57375.0 + 165002.i −0.328434 + 0.944527i
\(126\) 0 0
\(127\) 87220.6i 0.479855i 0.970791 + 0.239927i \(0.0771236\pi\)
−0.970791 + 0.239927i \(0.922876\pi\)
\(128\) 218632.i 1.17947i
\(129\) 0 0
\(130\) −35640.0 26267.7i −0.184961 0.136321i
\(131\) −192852. −0.981852 −0.490926 0.871201i \(-0.663341\pi\)
−0.490926 + 0.871201i \(0.663341\pi\)
\(132\) 0 0
\(133\) 13133.8i 0.0643817i
\(134\) −289476. −1.39268
\(135\) 0 0
\(136\) 91520.0 0.424296
\(137\) 143570.i 0.653525i −0.945106 0.326763i \(-0.894042\pi\)
0.945106 0.326763i \(-0.105958\pi\)
\(138\) 0 0
\(139\) −318340. −1.39751 −0.698754 0.715362i \(-0.746262\pi\)
−0.698754 + 0.715362i \(0.746262\pi\)
\(140\) 23760.0 32237.6i 0.102453 0.139009i
\(141\) 0 0
\(142\) 353897.i 1.47284i
\(143\) 30088.4i 0.123044i
\(144\) 0 0
\(145\) 311850. + 229842.i 1.23176 + 0.907841i
\(146\) 470448. 1.82654
\(147\) 0 0
\(148\) 167635.i 0.629088i
\(149\) −84150.0 −0.310519 −0.155260 0.987874i \(-0.549621\pi\)
−0.155260 + 0.987874i \(0.549621\pi\)
\(150\) 0 0
\(151\) −155848. −0.556236 −0.278118 0.960547i \(-0.589711\pi\)
−0.278118 + 0.960547i \(0.589711\pi\)
\(152\) 29186.3i 0.102464i
\(153\) 0 0
\(154\) 99792.0 0.339074
\(155\) 303840. + 223939.i 1.01582 + 0.748686i
\(156\) 0 0
\(157\) 356643.i 1.15474i −0.816482 0.577371i \(-0.804079\pi\)
0.816482 0.577371i \(-0.195921\pi\)
\(158\) 344398.i 1.09753i
\(159\) 0 0
\(160\) 137280. 186262.i 0.423943 0.575206i
\(161\) −145332. −0.441872
\(162\) 0 0
\(163\) 144890.i 0.427139i 0.976928 + 0.213570i \(0.0685090\pi\)
−0.976928 + 0.213570i \(0.931491\pi\)
\(164\) −2376.00 −0.00689822
\(165\) 0 0
\(166\) 410212. 1.15542
\(167\) 18102.1i 0.0502272i −0.999685 0.0251136i \(-0.992005\pi\)
0.999685 0.0251136i \(-0.00799474\pi\)
\(168\) 0 0
\(169\) 357037. 0.961604
\(170\) 205920. + 151769.i 0.546482 + 0.402773i
\(171\) 0 0
\(172\) 5014.74i 0.0129249i
\(173\) 492572.i 1.25128i −0.780112 0.625640i \(-0.784838\pi\)
0.780112 0.625640i \(-0.215162\pi\)
\(174\) 0 0
\(175\) −178200. + 55221.8i −0.439858 + 0.136306i
\(176\) 318528. 0.775115
\(177\) 0 0
\(178\) 66266.2i 0.156762i
\(179\) −444420. −1.03672 −0.518359 0.855163i \(-0.673457\pi\)
−0.518359 + 0.855163i \(0.673457\pi\)
\(180\) 0 0
\(181\) 156902. 0.355985 0.177993 0.984032i \(-0.443040\pi\)
0.177993 + 0.984032i \(0.443040\pi\)
\(182\) 47281.8i 0.105807i
\(183\) 0 0
\(184\) −322960. −0.703241
\(185\) 463320. 628633.i 0.995295 1.35042i
\(186\) 0 0
\(187\) 173844.i 0.363543i
\(188\) 126483.i 0.260998i
\(189\) 0 0
\(190\) 48400.0 65669.2i 0.0972661 0.131971i
\(191\) −332352. −0.659196 −0.329598 0.944121i \(-0.606913\pi\)
−0.329598 + 0.944121i \(0.606913\pi\)
\(192\) 0 0
\(193\) 786120.i 1.51913i −0.650430 0.759566i \(-0.725411\pi\)
0.650430 0.759566i \(-0.274589\pi\)
\(194\) −671616. −1.28120
\(195\) 0 0
\(196\) −158916. −0.295480
\(197\) 59606.4i 0.109428i 0.998502 + 0.0547138i \(0.0174247\pi\)
−0.998502 + 0.0547138i \(0.982575\pi\)
\(198\) 0 0
\(199\) −395800. −0.708505 −0.354253 0.935150i \(-0.615265\pi\)
−0.354253 + 0.935150i \(0.615265\pi\)
\(200\) −396000. + 122715.i −0.700036 + 0.216932i
\(201\) 0 0
\(202\) 723674.i 1.24786i
\(203\) 413716.i 0.704631i
\(204\) 0 0
\(205\) 8910.00 + 6566.92i 0.0148079 + 0.0109138i
\(206\) 468468. 0.769151
\(207\) 0 0
\(208\) 150920.i 0.241873i
\(209\) 55440.0 0.0877925
\(210\) 0 0
\(211\) −251548. −0.388969 −0.194484 0.980906i \(-0.562303\pi\)
−0.194484 + 0.980906i \(0.562303\pi\)
\(212\) 69887.9i 0.106798i
\(213\) 0 0
\(214\) −644204. −0.961588
\(215\) −13860.0 + 18805.3i −0.0204488 + 0.0277449i
\(216\) 0 0
\(217\) 403089.i 0.581101i
\(218\) 139365.i 0.198615i
\(219\) 0 0
\(220\) 136080. + 100295.i 0.189556 + 0.139708i
\(221\) 82368.0 0.113443
\(222\) 0 0
\(223\) 288765.i 0.388851i 0.980917 + 0.194425i \(0.0622842\pi\)
−0.980917 + 0.194425i \(0.937716\pi\)
\(224\) 247104. 0.329048
\(225\) 0 0
\(226\) −696608. −0.907230
\(227\) 1.16414e6i 1.49948i 0.661731 + 0.749741i \(0.269822\pi\)
−0.661731 + 0.749741i \(0.730178\pi\)
\(228\) 0 0
\(229\) 547670. 0.690129 0.345064 0.938579i \(-0.387857\pi\)
0.345064 + 0.938579i \(0.387857\pi\)
\(230\) −726660. 535569.i −0.905757 0.667568i
\(231\) 0 0
\(232\) 919368.i 1.12142i
\(233\) 48104.3i 0.0580489i 0.999579 + 0.0290245i \(0.00924007\pi\)
−0.999579 + 0.0290245i \(0.990760\pi\)
\(234\) 0 0
\(235\) 349580. 474311.i 0.412930 0.560264i
\(236\) −295920. −0.345855
\(237\) 0 0
\(238\) 273184.i 0.312617i
\(239\) 1.00584e6 1.13903 0.569514 0.821982i \(-0.307132\pi\)
0.569514 + 0.821982i \(0.307132\pi\)
\(240\) 0 0
\(241\) 895202. 0.992838 0.496419 0.868083i \(-0.334648\pi\)
0.496419 + 0.868083i \(0.334648\pi\)
\(242\) 647054.i 0.710235i
\(243\) 0 0
\(244\) 68376.0 0.0735240
\(245\) 595935. + 439221.i 0.634284 + 0.467485i
\(246\) 0 0
\(247\) 26267.7i 0.0273955i
\(248\) 895754.i 0.924825i
\(249\) 0 0
\(250\) −1.09450e6 380583.i −1.10756 0.385123i
\(251\) −558252. −0.559301 −0.279651 0.960102i \(-0.590219\pi\)
−0.279651 + 0.960102i \(0.590219\pi\)
\(252\) 0 0
\(253\) 613469.i 0.602548i
\(254\) −578556. −0.562680
\(255\) 0 0
\(256\) 1.03450e6 0.986572
\(257\) 787924.i 0.744135i −0.928206 0.372067i \(-0.878649\pi\)
0.928206 0.372067i \(-0.121351\pi\)
\(258\) 0 0
\(259\) 833976. 0.772510
\(260\) 47520.0 64475.2i 0.0435956 0.0591506i
\(261\) 0 0
\(262\) 1.27924e6i 1.15132i
\(263\) 1.63173e6i 1.45465i −0.686291 0.727327i \(-0.740762\pi\)
0.686291 0.727327i \(-0.259238\pi\)
\(264\) 0 0
\(265\) 193160. 262080.i 0.168967 0.229255i
\(266\) 87120.0 0.0754942
\(267\) 0 0
\(268\) 523682.i 0.445380i
\(269\) 1.73637e6 1.46306 0.731529 0.681810i \(-0.238807\pi\)
0.731529 + 0.681810i \(0.238807\pi\)
\(270\) 0 0
\(271\) −1.72005e6 −1.42271 −0.711357 0.702831i \(-0.751919\pi\)
−0.711357 + 0.702831i \(0.751919\pi\)
\(272\) 871980.i 0.714635i
\(273\) 0 0
\(274\) 952336. 0.766326
\(275\) −233100. 752211.i −0.185871 0.599802i
\(276\) 0 0
\(277\) 1.27243e6i 0.996402i −0.867062 0.498201i \(-0.833994\pi\)
0.867062 0.498201i \(-0.166006\pi\)
\(278\) 2.11163e6i 1.63872i
\(279\) 0 0
\(280\) −356400. 262677.i −0.271671 0.200229i
\(281\) −1.46500e6 −1.10681 −0.553404 0.832913i \(-0.686671\pi\)
−0.553404 + 0.832913i \(0.686671\pi\)
\(282\) 0 0
\(283\) 1.65051e6i 1.22504i 0.790455 + 0.612521i \(0.209844\pi\)
−0.790455 + 0.612521i \(0.790156\pi\)
\(284\) 640224. 0.471016
\(285\) 0 0
\(286\) 199584. 0.144281
\(287\) 11820.5i 0.00847089i
\(288\) 0 0
\(289\) 943953. 0.664823
\(290\) −1.52460e6 + 2.06858e6i −1.06454 + 1.44437i
\(291\) 0 0
\(292\) 851072.i 0.584130i
\(293\) 2.38772e6i 1.62485i 0.583064 + 0.812426i \(0.301854\pi\)
−0.583064 + 0.812426i \(0.698146\pi\)
\(294\) 0 0
\(295\) 1.10970e6 + 817880.i 0.742422 + 0.547185i
\(296\) 1.85328e6 1.22945
\(297\) 0 0
\(298\) 558188.i 0.364116i
\(299\) −290664. −0.188024
\(300\) 0 0
\(301\) −24948.0 −0.0158716
\(302\) 1.03378e6i 0.652244i
\(303\) 0 0
\(304\) 278080. 0.172578
\(305\) −256410. 188981.i −0.157828 0.116324i
\(306\) 0 0
\(307\) 928264.i 0.562115i −0.959691 0.281058i \(-0.909315\pi\)
0.959691 0.281058i \(-0.0906852\pi\)
\(308\) 180531.i 0.108436i
\(309\) 0 0
\(310\) −1.48544e6 + 2.01545e6i −0.877912 + 1.19115i
\(311\) −568152. −0.333092 −0.166546 0.986034i \(-0.553261\pi\)
−0.166546 + 0.986034i \(0.553261\pi\)
\(312\) 0 0
\(313\) 1.72244e6i 0.993766i 0.867818 + 0.496883i \(0.165522\pi\)
−0.867818 + 0.496883i \(0.834478\pi\)
\(314\) 2.36570e6 1.35405
\(315\) 0 0
\(316\) −623040. −0.350993
\(317\) 131643.i 0.0735785i 0.999323 + 0.0367893i \(0.0117130\pi\)
−0.999323 + 0.0367893i \(0.988287\pi\)
\(318\) 0 0
\(319\) −1.74636e6 −0.960853
\(320\) −584640. 430896.i −0.319164 0.235233i
\(321\) 0 0
\(322\) 964023.i 0.518141i
\(323\) 151769.i 0.0809424i
\(324\) 0 0
\(325\) −356400. + 110444.i −0.187167 + 0.0580006i
\(326\) −961092. −0.500865
\(327\) 0 0
\(328\) 26267.7i 0.0134815i
\(329\) 629244. 0.320501
\(330\) 0 0
\(331\) −1.58055e6 −0.792935 −0.396468 0.918049i \(-0.629764\pi\)
−0.396468 + 0.918049i \(0.629764\pi\)
\(332\) 742101.i 0.369503i
\(333\) 0 0
\(334\) 120076. 0.0588966
\(335\) −1.44738e6 + 1.96381e6i −0.704645 + 0.956063i
\(336\) 0 0
\(337\) 1.22885e6i 0.589419i −0.955587 0.294709i \(-0.904777\pi\)
0.955587 0.294709i \(-0.0952228\pi\)
\(338\) 2.36832e6i 1.12758i
\(339\) 0 0
\(340\) −274560. + 372523.i −0.128807 + 0.174766i
\(341\) −1.70150e6 −0.792405
\(342\) 0 0
\(343\) 1.79396e6i 0.823338i
\(344\) −55440.0 −0.0252596
\(345\) 0 0
\(346\) 3.26735e6 1.46726
\(347\) 3.84224e6i 1.71301i −0.516137 0.856506i \(-0.672630\pi\)
0.516137 0.856506i \(-0.327370\pi\)
\(348\) 0 0
\(349\) −1.59445e6 −0.700725 −0.350362 0.936614i \(-0.613942\pi\)
−0.350362 + 0.936614i \(0.613942\pi\)
\(350\) −366300. 1.18205e6i −0.159833 0.515779i
\(351\) 0 0
\(352\) 1.04307e6i 0.448699i
\(353\) 295365.i 0.126160i −0.998008 0.0630802i \(-0.979908\pi\)
0.998008 0.0630802i \(-0.0200924\pi\)
\(354\) 0 0
\(355\) −2.40084e6 1.76949e6i −1.01110 0.745206i
\(356\) −119880. −0.0501328
\(357\) 0 0
\(358\) 2.94795e6i 1.21566i
\(359\) −1.10484e6 −0.452442 −0.226221 0.974076i \(-0.572637\pi\)
−0.226221 + 0.974076i \(0.572637\pi\)
\(360\) 0 0
\(361\) −2.42770e6 −0.980453
\(362\) 1.04077e6i 0.417430i
\(363\) 0 0
\(364\) 85536.0 0.0338373
\(365\) 2.35224e6 3.19152e6i 0.924165 1.25391i
\(366\) 0 0
\(367\) 1.83760e6i 0.712174i 0.934453 + 0.356087i \(0.115889\pi\)
−0.934453 + 0.356087i \(0.884111\pi\)
\(368\) 3.07708e6i 1.18446i
\(369\) 0 0
\(370\) 4.16988e6 + 3.07332e6i 1.58350 + 1.16709i
\(371\) 347688. 0.131146
\(372\) 0 0
\(373\) 2.93350e6i 1.09173i −0.837874 0.545864i \(-0.816202\pi\)
0.837874 0.545864i \(-0.183798\pi\)
\(374\) −1.15315e6 −0.426292
\(375\) 0 0
\(376\) 1.39832e6 0.510078
\(377\) 827432.i 0.299832i
\(378\) 0 0
\(379\) 5.09342e6 1.82143 0.910713 0.413040i \(-0.135533\pi\)
0.910713 + 0.413040i \(0.135533\pi\)
\(380\) 118800. + 87558.9i 0.0422044 + 0.0311058i
\(381\) 0 0
\(382\) 2.20457e6i 0.772976i
\(383\) 3.17485e6i 1.10593i 0.833205 + 0.552964i \(0.186503\pi\)
−0.833205 + 0.552964i \(0.813497\pi\)
\(384\) 0 0
\(385\) 498960. 676989.i 0.171559 0.232772i
\(386\) 5.21453e6 1.78134
\(387\) 0 0
\(388\) 1.21500e6i 0.409729i
\(389\) −1.79991e6 −0.603083 −0.301541 0.953453i \(-0.597501\pi\)
−0.301541 + 0.953453i \(0.597501\pi\)
\(390\) 0 0
\(391\) 1.67939e6 0.555533
\(392\) 1.75688e6i 0.577467i
\(393\) 0 0
\(394\) −395384. −0.128315
\(395\) 2.33640e6 + 1.72199e6i 0.753450 + 0.555314i
\(396\) 0 0
\(397\) 4.90405e6i 1.56163i 0.624760 + 0.780817i \(0.285197\pi\)
−0.624760 + 0.780817i \(0.714803\pi\)
\(398\) 2.62544e6i 0.830796i
\(399\) 0 0
\(400\) −1.16920e6 3.77299e6i −0.365375 1.17906i
\(401\) 642798. 0.199624 0.0998122 0.995006i \(-0.468176\pi\)
0.0998122 + 0.995006i \(0.468176\pi\)
\(402\) 0 0
\(403\) 806179.i 0.247268i
\(404\) −1.30918e6 −0.399066
\(405\) 0 0
\(406\) −2.74428e6 −0.826254
\(407\) 3.52035e6i 1.05341i
\(408\) 0 0
\(409\) −2.05711e6 −0.608064 −0.304032 0.952662i \(-0.598333\pi\)
−0.304032 + 0.952662i \(0.598333\pi\)
\(410\) −43560.0 + 59102.3i −0.0127976 + 0.0173638i
\(411\) 0 0
\(412\) 847490.i 0.245975i
\(413\) 1.47218e6i 0.424704i
\(414\) 0 0
\(415\) 2.05106e6 2.78288e6i 0.584599 0.793185i
\(416\) 494208. 0.140016
\(417\) 0 0
\(418\) 367747.i 0.102946i
\(419\) 2.93742e6 0.817393 0.408697 0.912670i \(-0.365983\pi\)
0.408697 + 0.912670i \(0.365983\pi\)
\(420\) 0 0
\(421\) 2.71770e6 0.747303 0.373651 0.927569i \(-0.378106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(422\) 1.66858e6i 0.456106i
\(423\) 0 0
\(424\) 772640. 0.208719
\(425\) 2.05920e6 638119.i 0.553001 0.171368i
\(426\) 0 0
\(427\) 340166.i 0.0902862i
\(428\) 1.16541e6i 0.307517i
\(429\) 0 0
\(430\) −124740. 91936.8i −0.0325338 0.0239783i
\(431\) −4.99435e6 −1.29505 −0.647524 0.762045i \(-0.724196\pi\)
−0.647524 + 0.762045i \(0.724196\pi\)
\(432\) 0 0
\(433\) 2.08183e6i 0.533612i 0.963750 + 0.266806i \(0.0859684\pi\)
−0.963750 + 0.266806i \(0.914032\pi\)
\(434\) −2.67379e6 −0.681402
\(435\) 0 0
\(436\) 252120. 0.0635172
\(437\) 535569.i 0.134156i
\(438\) 0 0
\(439\) −4.70404e6 −1.16496 −0.582478 0.812846i \(-0.697917\pi\)
−0.582478 + 0.812846i \(0.697917\pi\)
\(440\) 1.10880e6 1.50442e6i 0.273037 0.370457i
\(441\) 0 0
\(442\) 546368.i 0.133024i
\(443\) 5.70103e6i 1.38021i −0.723711 0.690103i \(-0.757565\pi\)
0.723711 0.690103i \(-0.242435\pi\)
\(444\) 0 0
\(445\) 449550. + 331331.i 0.107616 + 0.0793162i
\(446\) −1.91545e6 −0.455968
\(447\) 0 0
\(448\) 775613.i 0.182579i
\(449\) −6.20325e6 −1.45212 −0.726062 0.687630i \(-0.758651\pi\)
−0.726062 + 0.687630i \(0.758651\pi\)
\(450\) 0 0
\(451\) −49896.0 −0.0115511
\(452\) 1.26021e6i 0.290133i
\(453\) 0 0
\(454\) −7.72204e6 −1.75830
\(455\) −320760. 236409.i −0.0726360 0.0535347i
\(456\) 0 0
\(457\) 2.15371e6i 0.482388i 0.970477 + 0.241194i \(0.0775391\pi\)
−0.970477 + 0.241194i \(0.922461\pi\)
\(458\) 3.63283e6i 0.809248i
\(459\) 0 0
\(460\) 968880. 1.31458e6i 0.213489 0.289662i
\(461\) 3.85130e6 0.844024 0.422012 0.906590i \(-0.361324\pi\)
0.422012 + 0.906590i \(0.361324\pi\)
\(462\) 0 0
\(463\) 2.08213e6i 0.451394i 0.974198 + 0.225697i \(0.0724659\pi\)
−0.974198 + 0.225697i \(0.927534\pi\)
\(464\) −8.75952e6 −1.88880
\(465\) 0 0
\(466\) −319088. −0.0680684
\(467\) 1.30822e6i 0.277579i 0.990322 + 0.138790i \(0.0443212\pi\)
−0.990322 + 0.138790i \(0.955679\pi\)
\(468\) 0 0
\(469\) −2.60528e6 −0.546919
\(470\) 3.14622e6 + 2.31885e6i 0.656968 + 0.484204i
\(471\) 0 0
\(472\) 3.27152e6i 0.675919i
\(473\) 105309.i 0.0216429i
\(474\) 0 0
\(475\) −203500. 656692.i −0.0413838 0.133545i
\(476\) −494208. −0.0999752
\(477\) 0 0
\(478\) 6.67199e6i 1.33563i
\(479\) 6.76368e6 1.34693 0.673464 0.739220i \(-0.264806\pi\)
0.673464 + 0.739220i \(0.264806\pi\)
\(480\) 0 0
\(481\) 1.66795e6 0.328716
\(482\) 5.93810e6i 1.16421i
\(483\) 0 0
\(484\) 1.17056e6 0.227134
\(485\) −3.35808e6 + 4.55625e6i −0.648241 + 0.879534i
\(486\) 0 0
\(487\) 6.67193e6i 1.27476i −0.770549 0.637381i \(-0.780018\pi\)
0.770549 0.637381i \(-0.219982\pi\)
\(488\) 755925.i 0.143691i
\(489\) 0 0
\(490\) −2.91346e6 + 3.95299e6i −0.548175 + 0.743764i
\(491\) 6.87575e6 1.28711 0.643556 0.765399i \(-0.277458\pi\)
0.643556 + 0.765399i \(0.277458\pi\)
\(492\) 0 0
\(493\) 4.78072e6i 0.885881i
\(494\) 174240. 0.0321241
\(495\) 0 0
\(496\) −8.53453e6 −1.55767
\(497\) 3.18507e6i 0.578400i
\(498\) 0 0
\(499\) 6.94010e6 1.24771 0.623856 0.781539i \(-0.285565\pi\)
0.623856 + 0.781539i \(0.285565\pi\)
\(500\) 688500. 1.98002e6i 0.123163 0.354198i
\(501\) 0 0
\(502\) 3.70302e6i 0.655839i
\(503\) 921007.i 0.162309i 0.996702 + 0.0811546i \(0.0258607\pi\)
−0.996702 + 0.0811546i \(0.974139\pi\)
\(504\) 0 0
\(505\) 4.90941e6 + 3.61837e6i 0.856645 + 0.631371i
\(506\) 4.06930e6 0.706550
\(507\) 0 0
\(508\) 1.04665e6i 0.179946i
\(509\) −4.97979e6 −0.851955 −0.425977 0.904734i \(-0.640070\pi\)
−0.425977 + 0.904734i \(0.640070\pi\)
\(510\) 0 0
\(511\) 4.23403e6 0.717302
\(512\) 134151.i 0.0226161i
\(513\) 0 0
\(514\) 5.22650e6 0.872575
\(515\) 2.34234e6 3.17809e6i 0.389163 0.528017i
\(516\) 0 0
\(517\) 2.65614e6i 0.437043i
\(518\) 5.53197e6i 0.905848i
\(519\) 0 0
\(520\) −712800. 525353.i −0.115600 0.0852007i
\(521\) 147798. 0.0238547 0.0119274 0.999929i \(-0.496203\pi\)
0.0119274 + 0.999929i \(0.496203\pi\)
\(522\) 0 0
\(523\) 1.23884e7i 1.98043i −0.139543 0.990216i \(-0.544563\pi\)
0.139543 0.990216i \(-0.455437\pi\)
\(524\) 2.31422e6 0.368194
\(525\) 0 0
\(526\) 1.08237e7 1.70573
\(527\) 4.65792e6i 0.730576i
\(528\) 0 0
\(529\) 510027. 0.0792417
\(530\) 1.73844e6 + 1.28128e6i 0.268825 + 0.198132i
\(531\) 0 0
\(532\) 157606.i 0.0241431i
\(533\) 23640.9i 0.00360451i
\(534\) 0 0
\(535\) −3.22102e6 + 4.37028e6i −0.486529 + 0.660123i
\(536\) −5.78952e6 −0.870423
\(537\) 0 0
\(538\) 1.15178e7i 1.71559i
\(539\) −3.33724e6 −0.494783
\(540\) 0 0
\(541\) −9.99810e6 −1.46867 −0.734335 0.678787i \(-0.762506\pi\)
−0.734335 + 0.678787i \(0.762506\pi\)
\(542\) 1.14095e7i 1.66828i
\(543\) 0 0
\(544\) −2.85542e6 −0.413688
\(545\) −945450. 696823.i −0.136348 0.100492i
\(546\) 0 0
\(547\) 1.18580e7i 1.69451i −0.531189 0.847253i \(-0.678255\pi\)
0.531189 0.847253i \(-0.321745\pi\)
\(548\) 1.72284e6i 0.245072i
\(549\) 0 0
\(550\) 4.98960e6 1.54621e6i 0.703330 0.217953i
\(551\) −1.52460e6 −0.213933
\(552\) 0 0
\(553\) 3.09958e6i 0.431013i
\(554\) 8.44034e6 1.16838
\(555\) 0 0
\(556\) 3.82008e6 0.524065
\(557\) 904550.i 0.123536i 0.998091 + 0.0617681i \(0.0196739\pi\)
−0.998091 + 0.0617681i \(0.980326\pi\)
\(558\) 0 0
\(559\) −49896.0 −0.00675361
\(560\) 2.50272e6 3.39569e6i 0.337242 0.457571i
\(561\) 0 0
\(562\) 9.71772e6i 1.29785i
\(563\) 8.68719e6i 1.15507i −0.816366 0.577535i \(-0.804015\pi\)
0.816366 0.577535i \(-0.195985\pi\)
\(564\) 0 0
\(565\) −3.48304e6 + 4.72579e6i −0.459026 + 0.622807i
\(566\) −1.09482e7 −1.43649
\(567\) 0 0
\(568\) 7.07794e6i 0.920526i
\(569\) 2.27007e6 0.293940 0.146970 0.989141i \(-0.453048\pi\)
0.146970 + 0.989141i \(0.453048\pi\)
\(570\) 0 0
\(571\) 1.43807e7 1.84582 0.922908 0.385021i \(-0.125806\pi\)
0.922908 + 0.385021i \(0.125806\pi\)
\(572\) 361061.i 0.0461414i
\(573\) 0 0
\(574\) −78408.0 −0.00993300
\(575\) −7.26660e6 + 2.25182e6i −0.916562 + 0.284030i
\(576\) 0 0
\(577\) 5.63943e6i 0.705173i −0.935779 0.352586i \(-0.885302\pi\)
0.935779 0.352586i \(-0.114698\pi\)
\(578\) 6.26148e6i 0.779574i
\(579\) 0 0
\(580\) −3.74220e6 2.75811e6i −0.461910 0.340440i
\(581\) 3.69191e6 0.453744
\(582\) 0 0
\(583\) 1.46765e6i 0.178834i
\(584\) 9.40896e6 1.14159
\(585\) 0 0
\(586\) −1.58383e7 −1.90531
\(587\) 1.28473e6i 0.153893i 0.997035 + 0.0769464i \(0.0245170\pi\)
−0.997035 + 0.0769464i \(0.975483\pi\)
\(588\) 0 0
\(589\) −1.48544e6 −0.176428
\(590\) −5.42520e6 + 7.36092e6i −0.641632 + 0.870566i
\(591\) 0 0
\(592\) 1.76576e7i 2.07075i
\(593\) 7.00943e6i 0.818552i 0.912411 + 0.409276i \(0.134219\pi\)
−0.912411 + 0.409276i \(0.865781\pi\)
\(594\) 0 0
\(595\) 1.85328e6 + 1.36592e6i 0.214609 + 0.158173i
\(596\) 1.00980e6 0.116445
\(597\) 0 0
\(598\) 1.92805e6i 0.220478i
\(599\) 8.80020e6 1.00213 0.501067 0.865409i \(-0.332941\pi\)
0.501067 + 0.865409i \(0.332941\pi\)
\(600\) 0 0
\(601\) −1.07670e7 −1.21593 −0.607965 0.793964i \(-0.708014\pi\)
−0.607965 + 0.793964i \(0.708014\pi\)
\(602\) 165486.i 0.0186110i
\(603\) 0 0
\(604\) 1.87018e6 0.208588
\(605\) −4.38962e6 3.23527e6i −0.487571 0.359353i
\(606\) 0 0
\(607\) 1.51219e7i 1.66584i 0.553391 + 0.832921i \(0.313333\pi\)
−0.553391 + 0.832921i \(0.686667\pi\)
\(608\) 910613.i 0.0999021i
\(609\) 0 0
\(610\) 1.25356e6 1.70083e6i 0.136402 0.185070i
\(611\) 1.25849e6 0.136379
\(612\) 0 0
\(613\) 8.31622e6i 0.893871i 0.894566 + 0.446936i \(0.147485\pi\)
−0.894566 + 0.446936i \(0.852515\pi\)
\(614\) 6.15740e6 0.659139
\(615\) 0 0
\(616\) 1.99584e6 0.211921
\(617\) 1.21083e7i 1.28047i 0.768178 + 0.640237i \(0.221164\pi\)
−0.768178 + 0.640237i \(0.778836\pi\)
\(618\) 0 0
\(619\) 9.73238e6 1.02092 0.510461 0.859901i \(-0.329475\pi\)
0.510461 + 0.859901i \(0.329475\pi\)
\(620\) −3.64608e6 2.68726e6i −0.380932 0.280757i
\(621\) 0 0
\(622\) 3.76869e6i 0.390584i
\(623\) 596395.i 0.0615622i
\(624\) 0 0
\(625\) −8.05437e6 + 5.52218e6i −0.824768 + 0.565471i
\(626\) −1.14254e7 −1.16529
\(627\) 0 0
\(628\) 4.27972e6i 0.433028i
\(629\) −9.63706e6 −0.971220
\(630\) 0 0
\(631\) −8.60145e6 −0.859999 −0.430000 0.902829i \(-0.641486\pi\)
−0.430000 + 0.902829i \(0.641486\pi\)
\(632\) 6.88797e6i 0.685959i
\(633\) 0 0
\(634\) −873224. −0.0862785
\(635\) −2.89278e6 + 3.92493e6i −0.284696 + 0.386276i
\(636\) 0 0
\(637\) 1.58119e6i 0.154396i
\(638\) 1.15840e7i 1.12670i
\(639\) 0 0
\(640\) 7.25120e6 9.83844e6i 0.699777 0.949459i
\(641\) 6.42440e6 0.617572 0.308786 0.951132i \(-0.400077\pi\)
0.308786 + 0.951132i \(0.400077\pi\)
\(642\) 0 0
\(643\) 3.64721e6i 0.347883i −0.984756 0.173941i \(-0.944350\pi\)
0.984756 0.173941i \(-0.0556503\pi\)
\(644\) 1.74398e6 0.165702
\(645\) 0 0
\(646\) −1.00672e6 −0.0949134
\(647\) 3.78036e6i 0.355036i 0.984118 + 0.177518i \(0.0568068\pi\)
−0.984118 + 0.177518i \(0.943193\pi\)
\(648\) 0 0
\(649\) −6.21432e6 −0.579138
\(650\) −732600. 2.36409e6i −0.0680117 0.219473i
\(651\) 0 0
\(652\) 1.73868e6i 0.160177i
\(653\) 1.66957e7i 1.53223i −0.642706 0.766113i \(-0.722188\pi\)
0.642706 0.766113i \(-0.277812\pi\)
\(654\) 0 0
\(655\) −8.67834e6 6.39618e6i −0.790375 0.582529i
\(656\) −250272. −0.0227066
\(657\) 0 0
\(658\) 4.17393e6i 0.375821i
\(659\) 1.22166e6 0.109581 0.0547907 0.998498i \(-0.482551\pi\)
0.0547907 + 0.998498i \(0.482551\pi\)
\(660\) 0 0
\(661\) 1.62789e7 1.44918 0.724589 0.689182i \(-0.242030\pi\)
0.724589 + 0.689182i \(0.242030\pi\)
\(662\) 1.04842e7i 0.929799i
\(663\) 0 0
\(664\) 8.20424e6 0.722135
\(665\) 435600. 591023.i 0.0381974 0.0518263i
\(666\) 0 0
\(667\) 1.68704e7i 1.46829i
\(668\) 217226.i 0.0188352i
\(669\) 0 0
\(670\) −1.30264e7 9.60083e6i −1.12108 0.826270i
\(671\) 1.43590e6 0.123117
\(672\) 0 0
\(673\) 1.43928e7i 1.22492i −0.790503 0.612459i \(-0.790181\pi\)
0.790503 0.612459i \(-0.209819\pi\)
\(674\) 8.15126e6 0.691155
\(675\) 0 0
\(676\) −4.28444e6 −0.360602
\(677\) 2.62429e6i 0.220059i 0.993928 + 0.110030i \(0.0350946\pi\)
−0.993928 + 0.110030i \(0.964905\pi\)
\(678\) 0 0
\(679\) −6.04454e6 −0.503140
\(680\) 4.11840e6 + 3.03538e6i 0.341552 + 0.251733i
\(681\) 0 0
\(682\) 1.12865e7i 0.929177i
\(683\) 1.03039e7i 0.845184i 0.906320 + 0.422592i \(0.138880\pi\)
−0.906320 + 0.422592i \(0.861120\pi\)
\(684\) 0 0
\(685\) 4.76168e6 6.46065e6i 0.387734 0.526078i
\(686\) −1.18998e7 −0.965449
\(687\) 0 0
\(688\) 528219.i 0.0425444i
\(689\) 695376. 0.0558048
\(690\) 0 0
\(691\) 4.50285e6 0.358751 0.179375 0.983781i \(-0.442592\pi\)
0.179375 + 0.983781i \(0.442592\pi\)
\(692\) 5.91086e6i 0.469230i
\(693\) 0 0
\(694\) 2.54865e7 2.00868
\(695\) −1.43253e7 1.05581e7i −1.12497 0.829136i
\(696\) 0 0
\(697\) 136592.i 0.0106498i
\(698\) 1.05764e7i 0.821672i
\(699\) 0 0
\(700\) 2.13840e6 662662.i 0.164947 0.0511148i
\(701\) 4.88090e6 0.375150 0.187575 0.982250i \(-0.439937\pi\)
0.187575 + 0.982250i \(0.439937\pi\)
\(702\) 0 0
\(703\) 3.07332e6i 0.234541i
\(704\) 3.27398e6 0.248969
\(705\) 0 0
\(706\) 1.95923e6 0.147936
\(707\) 6.51307e6i 0.490046i
\(708\) 0 0
\(709\) −9.96961e6 −0.744839 −0.372420 0.928064i \(-0.621472\pi\)
−0.372420 + 0.928064i \(0.621472\pi\)
\(710\) 1.17374e7 1.59254e7i 0.873831 1.18561i
\(711\) 0 0
\(712\) 1.32532e6i 0.0979765i
\(713\) 1.64371e7i 1.21088i
\(714\) 0 0
\(715\) 997920. 1.35398e6i 0.0730013 0.0990482i
\(716\) 5.33304e6 0.388770
\(717\) 0 0
\(718\) 7.32868e6i 0.530536i
\(719\) 1.19167e7 0.859675 0.429838 0.902906i \(-0.358571\pi\)
0.429838 + 0.902906i \(0.358571\pi\)
\(720\) 0 0
\(721\) 4.21621e6 0.302054
\(722\) 1.61035e7i 1.14968i
\(723\) 0 0
\(724\) −1.88282e6 −0.133494
\(725\) 6.41025e6 + 2.06858e7i 0.452929 + 1.46160i
\(726\) 0 0
\(727\) 1.38269e6i 0.0970264i 0.998823 + 0.0485132i \(0.0154483\pi\)
−0.998823 + 0.0485132i \(0.984552\pi\)
\(728\) 945636.i 0.0661296i
\(729\) 0 0
\(730\) 2.11702e7 + 1.56030e7i 1.47034 + 1.08368i
\(731\) 288288. 0.0199541
\(732\) 0 0
\(733\) 6.09661e6i 0.419110i 0.977797 + 0.209555i \(0.0672016\pi\)
−0.977797 + 0.209555i \(0.932798\pi\)
\(734\) −1.21893e7 −0.835099
\(735\) 0 0
\(736\) 1.00764e7 0.685660
\(737\) 1.09973e7i 0.745793i
\(738\) 0 0
\(739\) 6.16946e6 0.415562 0.207781 0.978175i \(-0.433376\pi\)
0.207781 + 0.978175i \(0.433376\pi\)
\(740\) −5.55984e6 + 7.54360e6i −0.373236 + 0.506406i
\(741\) 0 0
\(742\) 2.30630e6i 0.153782i
\(743\) 1.57574e7i 1.04716i −0.851978 0.523578i \(-0.824597\pi\)
0.851978 0.523578i \(-0.175403\pi\)
\(744\) 0 0
\(745\) −3.78675e6 2.79094e6i −0.249963 0.184230i
\(746\) 1.94586e7 1.28016
\(747\) 0 0
\(748\) 2.08613e6i 0.136329i
\(749\) −5.79784e6 −0.377626
\(750\) 0 0
\(751\) −1.51816e7 −0.982243 −0.491122 0.871091i \(-0.663413\pi\)
−0.491122 + 0.871091i \(0.663413\pi\)
\(752\) 1.33229e7i 0.859118i
\(753\) 0 0
\(754\) −5.48856e6 −0.351585
\(755\) −7.01316e6 5.16889e6i −0.447761 0.330012i
\(756\) 0 0
\(757\) 652274.i 0.0413705i 0.999786 + 0.0206852i \(0.00658478\pi\)
−0.999786 + 0.0206852i \(0.993415\pi\)
\(758\) 3.37859e7i 2.13581i
\(759\) 0 0
\(760\) 968000. 1.31338e6i 0.0607913 0.0824817i
\(761\) −4.51420e6 −0.282566 −0.141283 0.989969i \(-0.545123\pi\)
−0.141283 + 0.989969i \(0.545123\pi\)
\(762\) 0 0
\(763\) 1.25428e6i 0.0779980i
\(764\) 3.98822e6 0.247199
\(765\) 0 0
\(766\) −2.10596e7 −1.29681
\(767\) 2.94437e6i 0.180719i
\(768\) 0 0
\(769\) −1.20799e7 −0.736625 −0.368312 0.929702i \(-0.620064\pi\)
−0.368312 + 0.929702i \(0.620064\pi\)
\(770\) 4.49064e6 + 3.30973e6i 0.272949 + 0.201171i
\(771\) 0 0
\(772\) 9.43344e6i 0.569674i
\(773\) 1.04245e7i 0.627492i −0.949507 0.313746i \(-0.898416\pi\)
0.949507 0.313746i \(-0.101584\pi\)
\(774\) 0 0
\(775\) 6.24560e6 + 2.01545e7i 0.373525 + 1.20536i
\(776\) −1.34323e7 −0.800750
\(777\) 0 0
\(778\) 1.19393e7i 0.707177i
\(779\) −43560.0 −0.00257184
\(780\) 0 0
\(781\) 1.34447e7 0.788721
\(782\) 1.11398e7i 0.651421i
\(783\) 0 0
\(784\) −1.67392e7 −0.972620
\(785\) 1.18285e7 1.60489e7i 0.685104 0.929549i
\(786\) 0 0
\(787\) 3.45366e7i 1.98766i −0.110913 0.993830i \(-0.535378\pi\)
0.110913 0.993830i \(-0.464622\pi\)
\(788\) 715277.i 0.0410354i
\(789\) 0 0
\(790\) −1.14224e7 + 1.54979e7i −0.651163 + 0.883498i
\(791\) −6.26947e6 −0.356279
\(792\) 0 0
\(793\) 680333.i 0.0384183i
\(794\) −3.25298e7 −1.83118
\(795\) 0 0
\(796\) 4.74960e6 0.265689
\(797\) 2.09287e7i 1.16707i −0.812089 0.583533i \(-0.801670\pi\)
0.812089 0.583533i \(-0.198330\pi\)
\(798\) 0 0
\(799\) −7.27126e6 −0.402942
\(800\) 1.23552e7 3.82871e6i 0.682535 0.211508i
\(801\) 0 0
\(802\) 4.26384e6i 0.234080i
\(803\) 1.78725e7i 0.978131i
\(804\) 0 0
\(805\) −6.53994e6 4.82012e6i −0.355700 0.262161i
\(806\) −5.34758e6 −0.289948
\(807\) 0 0
\(808\) 1.44735e7i 0.779910i
\(809\) −2.48797e7 −1.33651 −0.668257 0.743930i \(-0.732959\pi\)
−0.668257 + 0.743930i \(0.732959\pi\)
\(810\) 0 0
\(811\) −3.95415e6 −0.211106 −0.105553 0.994414i \(-0.533661\pi\)
−0.105553 + 0.994414i \(0.533661\pi\)
\(812\) 4.96459e6i 0.264237i
\(813\) 0 0
\(814\) −2.33513e7 −1.23524
\(815\) −4.80546e6 + 6.52005e6i −0.253420 + 0.343841i
\(816\) 0 0
\(817\) 91936.8i 0.00481875i
\(818\) 1.36453e7i 0.713018i
\(819\) 0 0
\(820\) −106920. 78803.0i −0.00555296 0.00409268i
\(821\) 3.43550e6 0.177882 0.0889410 0.996037i \(-0.471652\pi\)
0.0889410 + 0.996037i \(0.471652\pi\)
\(822\) 0 0
\(823\) 3.94833e6i 0.203195i 0.994826 + 0.101598i \(0.0323954\pi\)
−0.994826 + 0.101598i \(0.967605\pi\)
\(824\) 9.36936e6 0.480720
\(825\) 0 0
\(826\) −9.76536e6 −0.498010
\(827\) 3.38176e7i 1.71941i −0.510791 0.859705i \(-0.670647\pi\)
0.510791 0.859705i \(-0.329353\pi\)
\(828\) 0 0
\(829\) 1.52015e7 0.768244 0.384122 0.923282i \(-0.374504\pi\)
0.384122 + 0.923282i \(0.374504\pi\)
\(830\) 1.84595e7 + 1.36052e7i 0.930091 + 0.685503i
\(831\) 0 0
\(832\) 1.55123e6i 0.0776903i
\(833\) 9.13579e6i 0.456177i
\(834\) 0 0
\(835\) 600380. 814596.i 0.0297996 0.0404321i
\(836\) −665280. −0.0329222
\(837\) 0 0
\(838\) 1.94846e7i 0.958478i
\(839\) −2.89012e7 −1.41746 −0.708729 0.705481i \(-0.750731\pi\)
−0.708729 + 0.705481i \(0.750731\pi\)
\(840\) 0 0
\(841\) 2.75138e7 1.34140
\(842\) 1.80272e7i 0.876290i
\(843\) 0 0
\(844\) 3.01858e6 0.145863
\(845\) 1.60667e7 + 1.18416e7i 0.774077 + 0.570516i
\(846\) 0 0
\(847\) 5.82348e6i 0.278917i
\(848\) 7.36153e6i 0.351543i
\(849\) 0 0
\(850\) 4.23280e6 + 1.36592e7i 0.200946 + 0.648452i
\(851\) 3.40077e7 1.60973
\(852\) 0 0
\(853\) 2.02107e7i 0.951062i 0.879699 + 0.475531i \(0.157744\pi\)
−0.879699 + 0.475531i \(0.842256\pi\)
\(854\) 2.25641e6 0.105870
\(855\) 0 0
\(856\) −1.28841e7 −0.600992
\(857\) 1.70522e7i 0.793101i 0.918013 + 0.396550i \(0.129793\pi\)
−0.918013 + 0.396550i \(0.870207\pi\)
\(858\) 0 0
\(859\) 1.95505e7 0.904015 0.452008 0.892014i \(-0.350708\pi\)
0.452008 + 0.892014i \(0.350708\pi\)
\(860\) 166320. 225663.i 0.00766829 0.0104043i
\(861\) 0 0
\(862\) 3.31288e7i 1.51858i
\(863\) 2.70896e7i 1.23816i 0.785330 + 0.619078i \(0.212493\pi\)
−0.785330 + 0.619078i \(0.787507\pi\)
\(864\) 0 0
\(865\) 1.63368e7 2.21657e7i 0.742379 1.00726i
\(866\) −1.38093e7 −0.625716
\(867\) 0 0
\(868\) 4.83707e6i 0.217913i
\(869\) −1.30838e7 −0.587741
\(870\) 0 0
\(871\) −5.21057e6 −0.232723
\(872\) 2.78729e6i 0.124134i
\(873\) 0 0
\(874\) 3.55256e6 0.157312
\(875\) −9.85050e6 3.42524e6i −0.434949 0.151242i
\(876\) 0 0
\(877\) 1.98285e6i 0.0870545i −0.999052 0.0435272i \(-0.986140\pi\)
0.999052 0.0435272i \(-0.0138595\pi\)
\(878\) 3.12031e7i 1.36603i
\(879\) 0 0
\(880\) 1.43338e7 + 1.05644e7i 0.623955 + 0.459872i
\(881\) 4.22840e7 1.83542 0.917712 0.397247i \(-0.130034\pi\)
0.917712 + 0.397247i \(0.130034\pi\)
\(882\) 0 0
\(883\) 134502.i 0.00580535i −0.999996 0.00290267i \(-0.999076\pi\)
0.999996 0.00290267i \(-0.000923951\pi\)
\(884\) −988416. −0.0425411
\(885\) 0 0
\(886\) 3.78164e7 1.61844
\(887\) 3.87668e6i 0.165444i 0.996573 + 0.0827219i \(0.0263613\pi\)
−0.996573 + 0.0827219i \(0.973639\pi\)
\(888\) 0 0
\(889\) −5.20700e6 −0.220970
\(890\) −2.19780e6 + 2.98198e6i −0.0930065 + 0.126191i
\(891\) 0 0
\(892\) 3.46518e6i 0.145819i
\(893\) 2.31885e6i 0.0973070i
\(894\) 0 0
\(895\) −1.99989e7 1.47397e7i −0.834543 0.615081i
\(896\) 1.30522e7 0.543141
\(897\) 0 0
\(898\) 4.11477e7i 1.70277i
\(899\) 4.67914e7 1.93093
\(900\) 0 0
\(901\) −4.01773e6 −0.164880
\(902\) 330973.i 0.0135449i
\(903\) 0 0
\(904\) −1.39322e7 −0.567019
\(905\) 7.06059e6 + 5.20385e6i 0.286563 + 0.211205i
\(906\) 0 0
\(907\) 2.87363e7i 1.15988i 0.814660 + 0.579939i \(0.196924\pi\)
−0.814660 + 0.579939i \(0.803076\pi\)
\(908\) 1.39697e7i 0.562306i
\(909\) 0 0
\(910\) 1.56816e6 2.12768e6i 0.0627750 0.0851732i
\(911\) −1.87675e6 −0.0749223 −0.0374611 0.999298i \(-0.511927\pi\)
−0.0374611 + 0.999298i \(0.511927\pi\)
\(912\) 0 0
\(913\) 1.55841e7i 0.618736i
\(914\) −1.42861e7 −0.565650
\(915\) 0 0
\(916\) −6.57204e6 −0.258798
\(917\) 1.15131e7i 0.452137i
\(918\) 0 0
\(919\) −6.76852e6 −0.264366 −0.132183 0.991225i \(-0.542199\pi\)
−0.132183 + 0.991225i \(0.542199\pi\)
\(920\) −1.45332e7 1.07114e7i −0.566098 0.417230i
\(921\) 0 0
\(922\) 2.55466e7i 0.989706i
\(923\) 6.37015e6i 0.246119i
\(924\) 0 0
\(925\) 4.16988e7 1.29219e7i 1.60239 0.496560i
\(926\) −1.38113e7 −0.529306
\(927\) 0 0
\(928\) 2.86843e7i 1.09339i
\(929\) −1.15356e7 −0.438530 −0.219265 0.975665i \(-0.570366\pi\)
−0.219265 + 0.975665i \(0.570366\pi\)
\(930\) 0 0
\(931\) −2.91346e6 −0.110163
\(932\) 577252.i 0.0217684i
\(933\) 0 0
\(934\) −8.67772e6 −0.325491
\(935\) −5.76576e6 + 7.82299e6i −0.215689 + 0.292647i
\(936\) 0 0
\(937\) 3.92632e7i 1.46096i −0.682936 0.730478i \(-0.739297\pi\)
0.682936 0.730478i \(-0.260703\pi\)
\(938\) 1.72815e7i 0.641319i
\(939\) 0 0
\(940\) −4.19496e6 + 5.69173e6i −0.154849 + 0.210099i
\(941\) −2.94919e7 −1.08575 −0.542874 0.839814i \(-0.682664\pi\)
−0.542874 + 0.839814i \(0.682664\pi\)
\(942\) 0 0
\(943\) 482012.i 0.0176514i
\(944\) −3.11702e7 −1.13844
\(945\) 0 0
\(946\) 698544. 0.0253785
\(947\) 2.09628e7i 0.759581i 0.925072 + 0.379791i \(0.124004\pi\)
−0.925072 + 0.379791i \(0.875996\pi\)
\(948\) 0 0
\(949\) 8.46806e6 0.305224
\(950\) 4.35600e6 1.34987e6i 0.156595 0.0485268i
\(951\) 0 0
\(952\) 5.46368e6i 0.195386i
\(953\) 1.64122e7i 0.585375i −0.956208 0.292687i \(-0.905451\pi\)
0.956208 0.292687i \(-0.0945495\pi\)
\(954\) 0 0
\(955\) −1.49558e7 1.10229e7i −0.530643 0.391099i
\(956\) −1.20701e7 −0.427135
\(957\) 0 0
\(958\) 4.48652e7i 1.57941i
\(959\) 8.57102e6 0.300944
\(960\) 0 0
\(961\) 1.69604e7 0.592416
\(962\) 1.10639e7i 0.385454i
\(963\) 0 0
\(964\) −1.07424e7 −0.372314
\(965\) 2.60726e7 3.53754e7i 0.901295 1.22288i
\(966\) 0 0
\(967\) 4.71911e7i 1.62291i 0.584416 + 0.811454i \(0.301324\pi\)
−0.584416 + 0.811454i \(0.698676\pi\)
\(968\) 1.29411e7i 0.443897i
\(969\) 0 0
\(970\) −3.02227e7 2.22750e7i −1.03135 0.760130i
\(971\) −3.84771e7 −1.30965 −0.654823 0.755783i \(-0.727257\pi\)
−0.654823 + 0.755783i \(0.727257\pi\)
\(972\) 0 0
\(973\) 1.90047e7i 0.643544i
\(974\) 4.42566e7 1.49479
\(975\) 0 0
\(976\) 7.20227e6 0.242016
\(977\) 2.70184e7i 0.905572i 0.891619 + 0.452786i \(0.149570\pi\)
−0.891619 + 0.452786i \(0.850430\pi\)
\(978\) 0 0
\(979\) −2.51748e6 −0.0839478
\(980\) −7.15122e6 5.27065e6i −0.237856 0.175307i
\(981\) 0 0
\(982\) 4.56086e7i 1.50927i
\(983\) 2.88475e7i 0.952192i 0.879393 + 0.476096i \(0.157949\pi\)
−0.879393 + 0.476096i \(0.842051\pi\)
\(984\) 0 0
\(985\) −1.97692e6 + 2.68229e6i −0.0649230 + 0.0880876i
\(986\) 3.17117e7 1.03879
\(987\) 0 0
\(988\) 315212.i 0.0102733i
\(989\) −1.01732e6 −0.0330726
\(990\) 0 0
\(991\) −5.21596e7 −1.68714 −0.843569 0.537021i \(-0.819550\pi\)
−0.843569 + 0.537021i \(0.819550\pi\)
\(992\) 2.79475e7i 0.901704i
\(993\) 0 0
\(994\) 2.11274e7 0.678235
\(995\) −1.78110e7 1.31272e7i −0.570336 0.420353i
\(996\) 0 0
\(997\) 9.78148e6i 0.311650i 0.987785 + 0.155825i \(0.0498036\pi\)
−0.987785 + 0.155825i \(0.950196\pi\)
\(998\) 4.60354e7i 1.46307i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.6.b.b.19.2 2
3.2 odd 2 5.6.b.a.4.1 2
4.3 odd 2 720.6.f.f.289.2 2
5.2 odd 4 225.6.a.n.1.1 2
5.3 odd 4 225.6.a.n.1.2 2
5.4 even 2 inner 45.6.b.b.19.1 2
12.11 even 2 80.6.c.a.49.1 2
15.2 even 4 25.6.a.c.1.2 2
15.8 even 4 25.6.a.c.1.1 2
15.14 odd 2 5.6.b.a.4.2 yes 2
20.19 odd 2 720.6.f.f.289.1 2
21.20 even 2 245.6.b.a.99.1 2
24.5 odd 2 320.6.c.f.129.1 2
24.11 even 2 320.6.c.g.129.2 2
60.23 odd 4 400.6.a.t.1.2 2
60.47 odd 4 400.6.a.t.1.1 2
60.59 even 2 80.6.c.a.49.2 2
105.104 even 2 245.6.b.a.99.2 2
120.29 odd 2 320.6.c.f.129.2 2
120.59 even 2 320.6.c.g.129.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.6.b.a.4.1 2 3.2 odd 2
5.6.b.a.4.2 yes 2 15.14 odd 2
25.6.a.c.1.1 2 15.8 even 4
25.6.a.c.1.2 2 15.2 even 4
45.6.b.b.19.1 2 5.4 even 2 inner
45.6.b.b.19.2 2 1.1 even 1 trivial
80.6.c.a.49.1 2 12.11 even 2
80.6.c.a.49.2 2 60.59 even 2
225.6.a.n.1.1 2 5.2 odd 4
225.6.a.n.1.2 2 5.3 odd 4
245.6.b.a.99.1 2 21.20 even 2
245.6.b.a.99.2 2 105.104 even 2
320.6.c.f.129.1 2 24.5 odd 2
320.6.c.f.129.2 2 120.29 odd 2
320.6.c.g.129.1 2 120.59 even 2
320.6.c.g.129.2 2 24.11 even 2
400.6.a.t.1.1 2 60.47 odd 4
400.6.a.t.1.2 2 60.23 odd 4
720.6.f.f.289.1 2 20.19 odd 2
720.6.f.f.289.2 2 4.3 odd 2