Properties

Label 45.6.a.f.1.2
Level $45$
Weight $6$
Character 45.1
Self dual yes
Analytic conductor $7.217$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,6,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.21727189158\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.52080\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.52080 q^{2} +40.6040 q^{4} +25.0000 q^{5} +160.416 q^{7} +73.3128 q^{8} +O(q^{10})\) \(q+8.52080 q^{2} +40.6040 q^{4} +25.0000 q^{5} +160.416 q^{7} +73.3128 q^{8} +213.020 q^{10} +279.584 q^{11} -541.664 q^{13} +1366.87 q^{14} -674.644 q^{16} +777.334 q^{17} -2682.66 q^{19} +1015.10 q^{20} +2382.28 q^{22} -3694.48 q^{23} +625.000 q^{25} -4615.41 q^{26} +6513.53 q^{28} +8356.62 q^{29} -262.849 q^{31} -8094.51 q^{32} +6623.51 q^{34} +4010.40 q^{35} -14949.9 q^{37} -22858.4 q^{38} +1832.82 q^{40} -7988.28 q^{41} +5133.38 q^{43} +11352.2 q^{44} -31479.9 q^{46} +10567.8 q^{47} +8926.28 q^{49} +5325.50 q^{50} -21993.7 q^{52} +21069.4 q^{53} +6989.60 q^{55} +11760.5 q^{56} +71205.1 q^{58} +25699.6 q^{59} +8195.14 q^{61} -2239.68 q^{62} -47383.1 q^{64} -13541.6 q^{65} +51928.9 q^{67} +31562.9 q^{68} +34171.8 q^{70} +23689.2 q^{71} +20933.5 q^{73} -127385. q^{74} -108926. q^{76} +44849.7 q^{77} -39279.7 q^{79} -16866.1 q^{80} -68066.6 q^{82} +35911.1 q^{83} +19433.4 q^{85} +43740.5 q^{86} +20497.1 q^{88} -94074.7 q^{89} -86891.5 q^{91} -150011. q^{92} +90046.3 q^{94} -67066.4 q^{95} -12249.9 q^{97} +76059.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 21 q^{4} + 50 q^{5} + 80 q^{7} + 255 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{2} + 21 q^{4} + 50 q^{5} + 80 q^{7} + 255 q^{8} + 125 q^{10} + 800 q^{11} - 120 q^{13} + 1650 q^{14} - 687 q^{16} + 1940 q^{17} - 1512 q^{19} + 525 q^{20} + 550 q^{22} - 1320 q^{23} + 1250 q^{25} - 6100 q^{26} + 8090 q^{28} + 1300 q^{29} - 5824 q^{31} - 13865 q^{32} + 2530 q^{34} + 2000 q^{35} - 12560 q^{37} - 26980 q^{38} + 6375 q^{40} + 400 q^{41} + 25680 q^{43} + 1150 q^{44} - 39840 q^{46} + 18920 q^{47} - 1414 q^{49} + 3125 q^{50} - 30260 q^{52} + 49460 q^{53} + 20000 q^{55} - 2850 q^{56} + 96050 q^{58} + 63200 q^{59} - 49116 q^{61} + 17340 q^{62} - 26671 q^{64} - 3000 q^{65} + 6080 q^{67} + 8770 q^{68} + 41250 q^{70} + 65200 q^{71} + 97740 q^{73} - 135800 q^{74} - 131876 q^{76} + 3000 q^{77} - 46288 q^{79} - 17175 q^{80} - 97600 q^{82} - 57360 q^{83} + 48500 q^{85} - 28600 q^{86} + 115050 q^{88} - 87000 q^{89} - 120800 q^{91} - 196560 q^{92} + 60640 q^{94} - 37800 q^{95} + 10180 q^{97} + 112465 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.52080 1.50628 0.753139 0.657861i \(-0.228539\pi\)
0.753139 + 0.657861i \(0.228539\pi\)
\(3\) 0 0
\(4\) 40.6040 1.26887
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 160.416 1.23738 0.618689 0.785636i \(-0.287664\pi\)
0.618689 + 0.785636i \(0.287664\pi\)
\(8\) 73.3128 0.405000
\(9\) 0 0
\(10\) 213.020 0.673628
\(11\) 279.584 0.696676 0.348338 0.937369i \(-0.386746\pi\)
0.348338 + 0.937369i \(0.386746\pi\)
\(12\) 0 0
\(13\) −541.664 −0.888938 −0.444469 0.895794i \(-0.646608\pi\)
−0.444469 + 0.895794i \(0.646608\pi\)
\(14\) 1366.87 1.86384
\(15\) 0 0
\(16\) −674.644 −0.658832
\(17\) 777.334 0.652357 0.326179 0.945308i \(-0.394239\pi\)
0.326179 + 0.945308i \(0.394239\pi\)
\(18\) 0 0
\(19\) −2682.66 −1.70483 −0.852415 0.522867i \(-0.824863\pi\)
−0.852415 + 0.522867i \(0.824863\pi\)
\(20\) 1015.10 0.567458
\(21\) 0 0
\(22\) 2382.28 1.04939
\(23\) −3694.48 −1.45624 −0.728122 0.685448i \(-0.759606\pi\)
−0.728122 + 0.685448i \(0.759606\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −4615.41 −1.33899
\(27\) 0 0
\(28\) 6513.53 1.57008
\(29\) 8356.62 1.84517 0.922584 0.385797i \(-0.126074\pi\)
0.922584 + 0.385797i \(0.126074\pi\)
\(30\) 0 0
\(31\) −262.849 −0.0491250 −0.0245625 0.999698i \(-0.507819\pi\)
−0.0245625 + 0.999698i \(0.507819\pi\)
\(32\) −8094.51 −1.39738
\(33\) 0 0
\(34\) 6623.51 0.982632
\(35\) 4010.40 0.553372
\(36\) 0 0
\(37\) −14949.9 −1.79529 −0.897647 0.440716i \(-0.854725\pi\)
−0.897647 + 0.440716i \(0.854725\pi\)
\(38\) −22858.4 −2.56795
\(39\) 0 0
\(40\) 1832.82 0.181121
\(41\) −7988.28 −0.742154 −0.371077 0.928602i \(-0.621011\pi\)
−0.371077 + 0.928602i \(0.621011\pi\)
\(42\) 0 0
\(43\) 5133.38 0.423382 0.211691 0.977337i \(-0.432103\pi\)
0.211691 + 0.977337i \(0.432103\pi\)
\(44\) 11352.2 0.883994
\(45\) 0 0
\(46\) −31479.9 −2.19351
\(47\) 10567.8 0.697816 0.348908 0.937157i \(-0.386553\pi\)
0.348908 + 0.937157i \(0.386553\pi\)
\(48\) 0 0
\(49\) 8926.28 0.531105
\(50\) 5325.50 0.301256
\(51\) 0 0
\(52\) −21993.7 −1.12795
\(53\) 21069.4 1.03029 0.515147 0.857102i \(-0.327737\pi\)
0.515147 + 0.857102i \(0.327737\pi\)
\(54\) 0 0
\(55\) 6989.60 0.311563
\(56\) 11760.5 0.501138
\(57\) 0 0
\(58\) 71205.1 2.77934
\(59\) 25699.6 0.961162 0.480581 0.876950i \(-0.340426\pi\)
0.480581 + 0.876950i \(0.340426\pi\)
\(60\) 0 0
\(61\) 8195.14 0.281989 0.140994 0.990010i \(-0.454970\pi\)
0.140994 + 0.990010i \(0.454970\pi\)
\(62\) −2239.68 −0.0739959
\(63\) 0 0
\(64\) −47383.1 −1.44602
\(65\) −13541.6 −0.397545
\(66\) 0 0
\(67\) 51928.9 1.41326 0.706630 0.707584i \(-0.250215\pi\)
0.706630 + 0.707584i \(0.250215\pi\)
\(68\) 31562.9 0.827760
\(69\) 0 0
\(70\) 34171.8 0.833533
\(71\) 23689.2 0.557705 0.278853 0.960334i \(-0.410046\pi\)
0.278853 + 0.960334i \(0.410046\pi\)
\(72\) 0 0
\(73\) 20933.5 0.459764 0.229882 0.973219i \(-0.426166\pi\)
0.229882 + 0.973219i \(0.426166\pi\)
\(74\) −127385. −2.70421
\(75\) 0 0
\(76\) −108926. −2.16321
\(77\) 44849.7 0.862051
\(78\) 0 0
\(79\) −39279.7 −0.708110 −0.354055 0.935225i \(-0.615197\pi\)
−0.354055 + 0.935225i \(0.615197\pi\)
\(80\) −16866.1 −0.294639
\(81\) 0 0
\(82\) −68066.6 −1.11789
\(83\) 35911.1 0.572181 0.286091 0.958203i \(-0.407644\pi\)
0.286091 + 0.958203i \(0.407644\pi\)
\(84\) 0 0
\(85\) 19433.4 0.291743
\(86\) 43740.5 0.637731
\(87\) 0 0
\(88\) 20497.1 0.282154
\(89\) −94074.7 −1.25892 −0.629460 0.777033i \(-0.716724\pi\)
−0.629460 + 0.777033i \(0.716724\pi\)
\(90\) 0 0
\(91\) −86891.5 −1.09995
\(92\) −150011. −1.84779
\(93\) 0 0
\(94\) 90046.3 1.05111
\(95\) −67066.4 −0.762423
\(96\) 0 0
\(97\) −12249.9 −0.132191 −0.0660957 0.997813i \(-0.521054\pi\)
−0.0660957 + 0.997813i \(0.521054\pi\)
\(98\) 76059.0 0.799991
\(99\) 0 0
\(100\) 25377.5 0.253775
\(101\) −159360. −1.55445 −0.777223 0.629226i \(-0.783372\pi\)
−0.777223 + 0.629226i \(0.783372\pi\)
\(102\) 0 0
\(103\) 74393.5 0.690942 0.345471 0.938429i \(-0.387719\pi\)
0.345471 + 0.938429i \(0.387719\pi\)
\(104\) −39710.9 −0.360020
\(105\) 0 0
\(106\) 179528. 1.55191
\(107\) 170203. 1.43717 0.718585 0.695439i \(-0.244790\pi\)
0.718585 + 0.695439i \(0.244790\pi\)
\(108\) 0 0
\(109\) 54355.6 0.438206 0.219103 0.975702i \(-0.429687\pi\)
0.219103 + 0.975702i \(0.429687\pi\)
\(110\) 59557.0 0.469300
\(111\) 0 0
\(112\) −108224. −0.815224
\(113\) −9340.66 −0.0688148 −0.0344074 0.999408i \(-0.510954\pi\)
−0.0344074 + 0.999408i \(0.510954\pi\)
\(114\) 0 0
\(115\) −92362.0 −0.651252
\(116\) 339312. 2.34129
\(117\) 0 0
\(118\) 218981. 1.44778
\(119\) 124697. 0.807213
\(120\) 0 0
\(121\) −82883.8 −0.514643
\(122\) 69829.1 0.424753
\(123\) 0 0
\(124\) −10672.7 −0.0623334
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −22872.4 −0.125835 −0.0629176 0.998019i \(-0.520041\pi\)
−0.0629176 + 0.998019i \(0.520041\pi\)
\(128\) −144717. −0.780721
\(129\) 0 0
\(130\) −115385. −0.598814
\(131\) −345444. −1.75873 −0.879366 0.476146i \(-0.842033\pi\)
−0.879366 + 0.476146i \(0.842033\pi\)
\(132\) 0 0
\(133\) −430341. −2.10952
\(134\) 442475. 2.12876
\(135\) 0 0
\(136\) 56988.6 0.264205
\(137\) −170270. −0.775064 −0.387532 0.921856i \(-0.626672\pi\)
−0.387532 + 0.921856i \(0.626672\pi\)
\(138\) 0 0
\(139\) −268230. −1.17753 −0.588763 0.808305i \(-0.700385\pi\)
−0.588763 + 0.808305i \(0.700385\pi\)
\(140\) 162838. 0.702160
\(141\) 0 0
\(142\) 201851. 0.840060
\(143\) −151441. −0.619301
\(144\) 0 0
\(145\) 208916. 0.825184
\(146\) 178370. 0.692532
\(147\) 0 0
\(148\) −607027. −2.27800
\(149\) 293424. 1.08276 0.541378 0.840779i \(-0.317903\pi\)
0.541378 + 0.840779i \(0.317903\pi\)
\(150\) 0 0
\(151\) 365971. 1.30618 0.653091 0.757279i \(-0.273472\pi\)
0.653091 + 0.757279i \(0.273472\pi\)
\(152\) −196673. −0.690456
\(153\) 0 0
\(154\) 382156. 1.29849
\(155\) −6571.23 −0.0219694
\(156\) 0 0
\(157\) 503049. 1.62878 0.814388 0.580320i \(-0.197073\pi\)
0.814388 + 0.580320i \(0.197073\pi\)
\(158\) −334695. −1.06661
\(159\) 0 0
\(160\) −202363. −0.624929
\(161\) −592654. −1.80192
\(162\) 0 0
\(163\) 181660. 0.535538 0.267769 0.963483i \(-0.413714\pi\)
0.267769 + 0.963483i \(0.413714\pi\)
\(164\) −324356. −0.941700
\(165\) 0 0
\(166\) 305991. 0.861864
\(167\) 440148. 1.22126 0.610629 0.791917i \(-0.290917\pi\)
0.610629 + 0.791917i \(0.290917\pi\)
\(168\) 0 0
\(169\) −77893.3 −0.209789
\(170\) 165588. 0.439446
\(171\) 0 0
\(172\) 208436. 0.537218
\(173\) −552730. −1.40410 −0.702049 0.712129i \(-0.747731\pi\)
−0.702049 + 0.712129i \(0.747731\pi\)
\(174\) 0 0
\(175\) 100260. 0.247476
\(176\) −188620. −0.458992
\(177\) 0 0
\(178\) −801591. −1.89628
\(179\) 190220. 0.443735 0.221867 0.975077i \(-0.428785\pi\)
0.221867 + 0.975077i \(0.428785\pi\)
\(180\) 0 0
\(181\) 113139. 0.256694 0.128347 0.991729i \(-0.459033\pi\)
0.128347 + 0.991729i \(0.459033\pi\)
\(182\) −740385. −1.65683
\(183\) 0 0
\(184\) −270853. −0.589778
\(185\) −373749. −0.802880
\(186\) 0 0
\(187\) 217330. 0.454482
\(188\) 429096. 0.885441
\(189\) 0 0
\(190\) −571459. −1.14842
\(191\) 694078. 1.37665 0.688327 0.725401i \(-0.258346\pi\)
0.688327 + 0.725401i \(0.258346\pi\)
\(192\) 0 0
\(193\) −51802.2 −0.100105 −0.0500524 0.998747i \(-0.515939\pi\)
−0.0500524 + 0.998747i \(0.515939\pi\)
\(194\) −104379. −0.199117
\(195\) 0 0
\(196\) 362442. 0.673905
\(197\) 217963. 0.400145 0.200073 0.979781i \(-0.435882\pi\)
0.200073 + 0.979781i \(0.435882\pi\)
\(198\) 0 0
\(199\) −385135. −0.689414 −0.344707 0.938710i \(-0.612022\pi\)
−0.344707 + 0.938710i \(0.612022\pi\)
\(200\) 45820.5 0.0810000
\(201\) 0 0
\(202\) −1.35787e6 −2.34143
\(203\) 1.34054e6 2.28317
\(204\) 0 0
\(205\) −199707. −0.331901
\(206\) 633892. 1.04075
\(207\) 0 0
\(208\) 365430. 0.585661
\(209\) −750028. −1.18771
\(210\) 0 0
\(211\) 300290. 0.464339 0.232170 0.972675i \(-0.425418\pi\)
0.232170 + 0.972675i \(0.425418\pi\)
\(212\) 855500. 1.30732
\(213\) 0 0
\(214\) 1.45027e6 2.16478
\(215\) 128334. 0.189342
\(216\) 0 0
\(217\) −42165.2 −0.0607862
\(218\) 463153. 0.660060
\(219\) 0 0
\(220\) 283806. 0.395334
\(221\) −421054. −0.579905
\(222\) 0 0
\(223\) −409580. −0.551539 −0.275769 0.961224i \(-0.588933\pi\)
−0.275769 + 0.961224i \(0.588933\pi\)
\(224\) −1.29849e6 −1.72909
\(225\) 0 0
\(226\) −79589.9 −0.103654
\(227\) 386331. 0.497617 0.248808 0.968553i \(-0.419961\pi\)
0.248808 + 0.968553i \(0.419961\pi\)
\(228\) 0 0
\(229\) 360206. 0.453902 0.226951 0.973906i \(-0.427124\pi\)
0.226951 + 0.973906i \(0.427124\pi\)
\(230\) −786998. −0.980967
\(231\) 0 0
\(232\) 612647. 0.747293
\(233\) 376766. 0.454655 0.227327 0.973818i \(-0.427001\pi\)
0.227327 + 0.973818i \(0.427001\pi\)
\(234\) 0 0
\(235\) 264196. 0.312073
\(236\) 1.04351e6 1.21959
\(237\) 0 0
\(238\) 1.06252e6 1.21589
\(239\) 416917. 0.472123 0.236061 0.971738i \(-0.424143\pi\)
0.236061 + 0.971738i \(0.424143\pi\)
\(240\) 0 0
\(241\) −1.15082e6 −1.27634 −0.638168 0.769897i \(-0.720308\pi\)
−0.638168 + 0.769897i \(0.720308\pi\)
\(242\) −706236. −0.775196
\(243\) 0 0
\(244\) 332755. 0.357808
\(245\) 223157. 0.237517
\(246\) 0 0
\(247\) 1.45310e6 1.51549
\(248\) −19270.2 −0.0198956
\(249\) 0 0
\(250\) 133137. 0.134726
\(251\) 642245. 0.643452 0.321726 0.946833i \(-0.395737\pi\)
0.321726 + 0.946833i \(0.395737\pi\)
\(252\) 0 0
\(253\) −1.03292e6 −1.01453
\(254\) −194891. −0.189543
\(255\) 0 0
\(256\) 283152. 0.270034
\(257\) −126474. −0.119446 −0.0597228 0.998215i \(-0.519022\pi\)
−0.0597228 + 0.998215i \(0.519022\pi\)
\(258\) 0 0
\(259\) −2.39821e6 −2.22146
\(260\) −549843. −0.504435
\(261\) 0 0
\(262\) −2.94346e6 −2.64914
\(263\) 366879. 0.327064 0.163532 0.986538i \(-0.447711\pi\)
0.163532 + 0.986538i \(0.447711\pi\)
\(264\) 0 0
\(265\) 526734. 0.460762
\(266\) −3.66685e6 −3.17752
\(267\) 0 0
\(268\) 2.10852e6 1.79325
\(269\) −1.21165e6 −1.02093 −0.510465 0.859899i \(-0.670527\pi\)
−0.510465 + 0.859899i \(0.670527\pi\)
\(270\) 0 0
\(271\) −1.79322e6 −1.48324 −0.741619 0.670821i \(-0.765942\pi\)
−0.741619 + 0.670821i \(0.765942\pi\)
\(272\) −524424. −0.429794
\(273\) 0 0
\(274\) −1.45084e6 −1.16746
\(275\) 174740. 0.139335
\(276\) 0 0
\(277\) 1.46441e6 1.14674 0.573369 0.819297i \(-0.305636\pi\)
0.573369 + 0.819297i \(0.305636\pi\)
\(278\) −2.28554e6 −1.77368
\(279\) 0 0
\(280\) 294014. 0.224116
\(281\) 2.12044e6 1.60199 0.800997 0.598669i \(-0.204304\pi\)
0.800997 + 0.598669i \(0.204304\pi\)
\(282\) 0 0
\(283\) 454281. 0.337177 0.168589 0.985687i \(-0.446079\pi\)
0.168589 + 0.985687i \(0.446079\pi\)
\(284\) 961877. 0.707658
\(285\) 0 0
\(286\) −1.29039e6 −0.932840
\(287\) −1.28145e6 −0.918325
\(288\) 0 0
\(289\) −815608. −0.574430
\(290\) 1.78013e6 1.24296
\(291\) 0 0
\(292\) 849984. 0.583383
\(293\) −1.93287e6 −1.31533 −0.657664 0.753312i \(-0.728455\pi\)
−0.657664 + 0.753312i \(0.728455\pi\)
\(294\) 0 0
\(295\) 642490. 0.429845
\(296\) −1.09602e6 −0.727094
\(297\) 0 0
\(298\) 2.50021e6 1.63093
\(299\) 2.00117e6 1.29451
\(300\) 0 0
\(301\) 823476. 0.523883
\(302\) 3.11836e6 1.96747
\(303\) 0 0
\(304\) 1.80984e6 1.12320
\(305\) 204878. 0.126109
\(306\) 0 0
\(307\) 224205. 0.135768 0.0678842 0.997693i \(-0.478375\pi\)
0.0678842 + 0.997693i \(0.478375\pi\)
\(308\) 1.82108e6 1.09384
\(309\) 0 0
\(310\) −55992.1 −0.0330920
\(311\) −592091. −0.347126 −0.173563 0.984823i \(-0.555528\pi\)
−0.173563 + 0.984823i \(0.555528\pi\)
\(312\) 0 0
\(313\) 1.99079e6 1.14859 0.574295 0.818648i \(-0.305276\pi\)
0.574295 + 0.818648i \(0.305276\pi\)
\(314\) 4.28638e6 2.45339
\(315\) 0 0
\(316\) −1.59491e6 −0.898503
\(317\) −2.89884e6 −1.62023 −0.810113 0.586274i \(-0.800594\pi\)
−0.810113 + 0.586274i \(0.800594\pi\)
\(318\) 0 0
\(319\) 2.33638e6 1.28548
\(320\) −1.18458e6 −0.646679
\(321\) 0 0
\(322\) −5.04988e6 −2.71420
\(323\) −2.08532e6 −1.11216
\(324\) 0 0
\(325\) −338540. −0.177788
\(326\) 1.54789e6 0.806669
\(327\) 0 0
\(328\) −585644. −0.300572
\(329\) 1.69525e6 0.863462
\(330\) 0 0
\(331\) 416722. 0.209063 0.104531 0.994522i \(-0.466666\pi\)
0.104531 + 0.994522i \(0.466666\pi\)
\(332\) 1.45813e6 0.726026
\(333\) 0 0
\(334\) 3.75041e6 1.83955
\(335\) 1.29822e6 0.632029
\(336\) 0 0
\(337\) 212393. 0.101874 0.0509371 0.998702i \(-0.483779\pi\)
0.0509371 + 0.998702i \(0.483779\pi\)
\(338\) −663713. −0.316001
\(339\) 0 0
\(340\) 789072. 0.370185
\(341\) −73488.4 −0.0342242
\(342\) 0 0
\(343\) −1.26419e6 −0.580201
\(344\) 376343. 0.171470
\(345\) 0 0
\(346\) −4.70970e6 −2.11496
\(347\) 1.58972e6 0.708755 0.354377 0.935103i \(-0.384693\pi\)
0.354377 + 0.935103i \(0.384693\pi\)
\(348\) 0 0
\(349\) −3.98771e6 −1.75251 −0.876254 0.481850i \(-0.839965\pi\)
−0.876254 + 0.481850i \(0.839965\pi\)
\(350\) 854295. 0.372767
\(351\) 0 0
\(352\) −2.26310e6 −0.973524
\(353\) −585594. −0.250127 −0.125063 0.992149i \(-0.539913\pi\)
−0.125063 + 0.992149i \(0.539913\pi\)
\(354\) 0 0
\(355\) 592231. 0.249413
\(356\) −3.81981e6 −1.59741
\(357\) 0 0
\(358\) 1.62082e6 0.668388
\(359\) −4.28470e6 −1.75463 −0.877313 0.479918i \(-0.840666\pi\)
−0.877313 + 0.479918i \(0.840666\pi\)
\(360\) 0 0
\(361\) 4.72054e6 1.90644
\(362\) 964033. 0.386652
\(363\) 0 0
\(364\) −3.52814e6 −1.39570
\(365\) 523338. 0.205613
\(366\) 0 0
\(367\) −524307. −0.203198 −0.101599 0.994825i \(-0.532396\pi\)
−0.101599 + 0.994825i \(0.532396\pi\)
\(368\) 2.49246e6 0.959420
\(369\) 0 0
\(370\) −3.18464e6 −1.20936
\(371\) 3.37986e6 1.27486
\(372\) 0 0
\(373\) −1.16607e6 −0.433964 −0.216982 0.976176i \(-0.569621\pi\)
−0.216982 + 0.976176i \(0.569621\pi\)
\(374\) 1.85183e6 0.684576
\(375\) 0 0
\(376\) 774757. 0.282616
\(377\) −4.52648e6 −1.64024
\(378\) 0 0
\(379\) 2.48592e6 0.888973 0.444487 0.895786i \(-0.353386\pi\)
0.444487 + 0.895786i \(0.353386\pi\)
\(380\) −2.72316e6 −0.967419
\(381\) 0 0
\(382\) 5.91409e6 2.07362
\(383\) 1.52361e6 0.530732 0.265366 0.964148i \(-0.414507\pi\)
0.265366 + 0.964148i \(0.414507\pi\)
\(384\) 0 0
\(385\) 1.12124e6 0.385521
\(386\) −441396. −0.150786
\(387\) 0 0
\(388\) −497395. −0.167734
\(389\) −4.59972e6 −1.54120 −0.770598 0.637322i \(-0.780042\pi\)
−0.770598 + 0.637322i \(0.780042\pi\)
\(390\) 0 0
\(391\) −2.87185e6 −0.949991
\(392\) 654410. 0.215097
\(393\) 0 0
\(394\) 1.85722e6 0.602730
\(395\) −981993. −0.316677
\(396\) 0 0
\(397\) 3.54374e6 1.12846 0.564229 0.825618i \(-0.309173\pi\)
0.564229 + 0.825618i \(0.309173\pi\)
\(398\) −3.28165e6 −1.03845
\(399\) 0 0
\(400\) −421652. −0.131766
\(401\) −1.01833e6 −0.316248 −0.158124 0.987419i \(-0.550545\pi\)
−0.158124 + 0.987419i \(0.550545\pi\)
\(402\) 0 0
\(403\) 142376. 0.0436691
\(404\) −6.47064e6 −1.97240
\(405\) 0 0
\(406\) 1.14224e7 3.43909
\(407\) −4.17977e6 −1.25074
\(408\) 0 0
\(409\) −6.32925e6 −1.87087 −0.935436 0.353497i \(-0.884992\pi\)
−0.935436 + 0.353497i \(0.884992\pi\)
\(410\) −1.70166e6 −0.499936
\(411\) 0 0
\(412\) 3.02067e6 0.876719
\(413\) 4.12263e6 1.18932
\(414\) 0 0
\(415\) 897778. 0.255887
\(416\) 4.38451e6 1.24219
\(417\) 0 0
\(418\) −6.39083e6 −1.78903
\(419\) −2.41445e6 −0.671865 −0.335933 0.941886i \(-0.609051\pi\)
−0.335933 + 0.941886i \(0.609051\pi\)
\(420\) 0 0
\(421\) −3.96045e6 −1.08903 −0.544514 0.838752i \(-0.683286\pi\)
−0.544514 + 0.838752i \(0.683286\pi\)
\(422\) 2.55871e6 0.699424
\(423\) 0 0
\(424\) 1.54465e6 0.417269
\(425\) 485834. 0.130471
\(426\) 0 0
\(427\) 1.31463e6 0.348927
\(428\) 6.91093e6 1.82359
\(429\) 0 0
\(430\) 1.09351e6 0.285202
\(431\) 1.48955e6 0.386245 0.193123 0.981175i \(-0.438139\pi\)
0.193123 + 0.981175i \(0.438139\pi\)
\(432\) 0 0
\(433\) −5.66221e6 −1.45133 −0.725665 0.688049i \(-0.758468\pi\)
−0.725665 + 0.688049i \(0.758468\pi\)
\(434\) −359281. −0.0915609
\(435\) 0 0
\(436\) 2.20706e6 0.556028
\(437\) 9.91102e6 2.48265
\(438\) 0 0
\(439\) 8764.09 0.00217043 0.00108521 0.999999i \(-0.499655\pi\)
0.00108521 + 0.999999i \(0.499655\pi\)
\(440\) 512427. 0.126183
\(441\) 0 0
\(442\) −3.58772e6 −0.873499
\(443\) −962960. −0.233130 −0.116565 0.993183i \(-0.537188\pi\)
−0.116565 + 0.993183i \(0.537188\pi\)
\(444\) 0 0
\(445\) −2.35187e6 −0.563006
\(446\) −3.48994e6 −0.830771
\(447\) 0 0
\(448\) −7.60101e6 −1.78927
\(449\) 3.81934e6 0.894071 0.447035 0.894516i \(-0.352480\pi\)
0.447035 + 0.894516i \(0.352480\pi\)
\(450\) 0 0
\(451\) −2.23340e6 −0.517040
\(452\) −379268. −0.0873173
\(453\) 0 0
\(454\) 3.29185e6 0.749549
\(455\) −2.17229e6 −0.491914
\(456\) 0 0
\(457\) −2.28095e6 −0.510887 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(458\) 3.06924e6 0.683703
\(459\) 0 0
\(460\) −3.75027e6 −0.826357
\(461\) 2.56688e6 0.562539 0.281270 0.959629i \(-0.409245\pi\)
0.281270 + 0.959629i \(0.409245\pi\)
\(462\) 0 0
\(463\) −2.16948e6 −0.470330 −0.235165 0.971955i \(-0.575563\pi\)
−0.235165 + 0.971955i \(0.575563\pi\)
\(464\) −5.63774e6 −1.21565
\(465\) 0 0
\(466\) 3.21035e6 0.684837
\(467\) −1.84499e6 −0.391472 −0.195736 0.980657i \(-0.562710\pi\)
−0.195736 + 0.980657i \(0.562710\pi\)
\(468\) 0 0
\(469\) 8.33022e6 1.74874
\(470\) 2.25116e6 0.470069
\(471\) 0 0
\(472\) 1.88411e6 0.389271
\(473\) 1.43521e6 0.294960
\(474\) 0 0
\(475\) −1.67666e6 −0.340966
\(476\) 5.06319e6 1.02425
\(477\) 0 0
\(478\) 3.55247e6 0.711148
\(479\) 2.88467e6 0.574457 0.287229 0.957862i \(-0.407266\pi\)
0.287229 + 0.957862i \(0.407266\pi\)
\(480\) 0 0
\(481\) 8.09785e6 1.59590
\(482\) −9.80591e6 −1.92252
\(483\) 0 0
\(484\) −3.36541e6 −0.653017
\(485\) −306247. −0.0591178
\(486\) 0 0
\(487\) −3.37928e6 −0.645657 −0.322829 0.946457i \(-0.604634\pi\)
−0.322829 + 0.946457i \(0.604634\pi\)
\(488\) 600809. 0.114205
\(489\) 0 0
\(490\) 1.90147e6 0.357767
\(491\) 128325. 0.0240218 0.0120109 0.999928i \(-0.496177\pi\)
0.0120109 + 0.999928i \(0.496177\pi\)
\(492\) 0 0
\(493\) 6.49589e6 1.20371
\(494\) 1.23815e7 2.28275
\(495\) 0 0
\(496\) 177330. 0.0323651
\(497\) 3.80013e6 0.690093
\(498\) 0 0
\(499\) −2.15334e6 −0.387135 −0.193567 0.981087i \(-0.562006\pi\)
−0.193567 + 0.981087i \(0.562006\pi\)
\(500\) 634437. 0.113492
\(501\) 0 0
\(502\) 5.47244e6 0.969218
\(503\) −7.42765e6 −1.30898 −0.654488 0.756072i \(-0.727116\pi\)
−0.654488 + 0.756072i \(0.727116\pi\)
\(504\) 0 0
\(505\) −3.98400e6 −0.695169
\(506\) −8.80129e6 −1.52816
\(507\) 0 0
\(508\) −928710. −0.159669
\(509\) 8.01756e6 1.37166 0.685832 0.727760i \(-0.259439\pi\)
0.685832 + 0.727760i \(0.259439\pi\)
\(510\) 0 0
\(511\) 3.35807e6 0.568902
\(512\) 7.04364e6 1.18747
\(513\) 0 0
\(514\) −1.07766e6 −0.179918
\(515\) 1.85984e6 0.308999
\(516\) 0 0
\(517\) 2.95460e6 0.486152
\(518\) −2.04347e7 −3.34613
\(519\) 0 0
\(520\) −992773. −0.161006
\(521\) −2.24266e6 −0.361967 −0.180984 0.983486i \(-0.557928\pi\)
−0.180984 + 0.983486i \(0.557928\pi\)
\(522\) 0 0
\(523\) 7.70554e6 1.23182 0.615912 0.787815i \(-0.288787\pi\)
0.615912 + 0.787815i \(0.288787\pi\)
\(524\) −1.40264e7 −2.23161
\(525\) 0 0
\(526\) 3.12610e6 0.492650
\(527\) −204322. −0.0320470
\(528\) 0 0
\(529\) 7.21285e6 1.12064
\(530\) 4.48819e6 0.694036
\(531\) 0 0
\(532\) −1.74735e7 −2.67671
\(533\) 4.32696e6 0.659729
\(534\) 0 0
\(535\) 4.25508e6 0.642722
\(536\) 3.80705e6 0.572370
\(537\) 0 0
\(538\) −1.03242e7 −1.53780
\(539\) 2.49564e6 0.370008
\(540\) 0 0
\(541\) −7.64969e6 −1.12370 −0.561850 0.827239i \(-0.689910\pi\)
−0.561850 + 0.827239i \(0.689910\pi\)
\(542\) −1.52797e7 −2.23417
\(543\) 0 0
\(544\) −6.29214e6 −0.911594
\(545\) 1.35889e6 0.195972
\(546\) 0 0
\(547\) 2.76870e6 0.395647 0.197823 0.980238i \(-0.436613\pi\)
0.197823 + 0.980238i \(0.436613\pi\)
\(548\) −6.91366e6 −0.983459
\(549\) 0 0
\(550\) 1.48892e6 0.209878
\(551\) −2.24179e7 −3.14569
\(552\) 0 0
\(553\) −6.30110e6 −0.876200
\(554\) 1.24780e7 1.72731
\(555\) 0 0
\(556\) −1.08912e7 −1.49413
\(557\) 1.21255e6 0.165600 0.0828002 0.996566i \(-0.473614\pi\)
0.0828002 + 0.996566i \(0.473614\pi\)
\(558\) 0 0
\(559\) −2.78057e6 −0.376360
\(560\) −2.70559e6 −0.364579
\(561\) 0 0
\(562\) 1.80679e7 2.41305
\(563\) 6.55586e6 0.871683 0.435841 0.900024i \(-0.356451\pi\)
0.435841 + 0.900024i \(0.356451\pi\)
\(564\) 0 0
\(565\) −233517. −0.0307749
\(566\) 3.87083e6 0.507883
\(567\) 0 0
\(568\) 1.73672e6 0.225871
\(569\) 8.97209e6 1.16175 0.580875 0.813993i \(-0.302710\pi\)
0.580875 + 0.813993i \(0.302710\pi\)
\(570\) 0 0
\(571\) −5.46422e6 −0.701354 −0.350677 0.936496i \(-0.614049\pi\)
−0.350677 + 0.936496i \(0.614049\pi\)
\(572\) −6.14909e6 −0.785816
\(573\) 0 0
\(574\) −1.09190e7 −1.38325
\(575\) −2.30905e6 −0.291249
\(576\) 0 0
\(577\) −6.35363e6 −0.794478 −0.397239 0.917715i \(-0.630032\pi\)
−0.397239 + 0.917715i \(0.630032\pi\)
\(578\) −6.94963e6 −0.865251
\(579\) 0 0
\(580\) 8.48280e6 1.04705
\(581\) 5.76072e6 0.708005
\(582\) 0 0
\(583\) 5.89066e6 0.717781
\(584\) 1.53469e6 0.186204
\(585\) 0 0
\(586\) −1.64696e7 −1.98125
\(587\) 1.33705e7 1.60159 0.800795 0.598938i \(-0.204410\pi\)
0.800795 + 0.598938i \(0.204410\pi\)
\(588\) 0 0
\(589\) 705134. 0.0837497
\(590\) 5.47453e6 0.647466
\(591\) 0 0
\(592\) 1.00859e7 1.18280
\(593\) −1.42274e6 −0.166146 −0.0830728 0.996543i \(-0.526473\pi\)
−0.0830728 + 0.996543i \(0.526473\pi\)
\(594\) 0 0
\(595\) 3.11742e6 0.360997
\(596\) 1.19142e7 1.37388
\(597\) 0 0
\(598\) 1.70515e7 1.94989
\(599\) −5.91805e6 −0.673925 −0.336962 0.941518i \(-0.609399\pi\)
−0.336962 + 0.941518i \(0.609399\pi\)
\(600\) 0 0
\(601\) 1.48610e7 1.67827 0.839135 0.543924i \(-0.183062\pi\)
0.839135 + 0.543924i \(0.183062\pi\)
\(602\) 7.01667e6 0.789114
\(603\) 0 0
\(604\) 1.48599e7 1.65738
\(605\) −2.07209e6 −0.230155
\(606\) 0 0
\(607\) −1.16289e7 −1.28105 −0.640526 0.767937i \(-0.721283\pi\)
−0.640526 + 0.767937i \(0.721283\pi\)
\(608\) 2.17148e7 2.38230
\(609\) 0 0
\(610\) 1.74573e6 0.189956
\(611\) −5.72421e6 −0.620315
\(612\) 0 0
\(613\) −1.06616e6 −0.114596 −0.0572980 0.998357i \(-0.518249\pi\)
−0.0572980 + 0.998357i \(0.518249\pi\)
\(614\) 1.91040e6 0.204505
\(615\) 0 0
\(616\) 3.28806e6 0.349131
\(617\) 663411. 0.0701568 0.0350784 0.999385i \(-0.488832\pi\)
0.0350784 + 0.999385i \(0.488832\pi\)
\(618\) 0 0
\(619\) 2.53444e6 0.265861 0.132930 0.991125i \(-0.457561\pi\)
0.132930 + 0.991125i \(0.457561\pi\)
\(620\) −266818. −0.0278764
\(621\) 0 0
\(622\) −5.04508e6 −0.522868
\(623\) −1.50911e7 −1.55776
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.69631e7 1.73010
\(627\) 0 0
\(628\) 2.04258e7 2.06671
\(629\) −1.16211e7 −1.17117
\(630\) 0 0
\(631\) 102057. 0.0102040 0.00510199 0.999987i \(-0.498376\pi\)
0.00510199 + 0.999987i \(0.498376\pi\)
\(632\) −2.87971e6 −0.286785
\(633\) 0 0
\(634\) −2.47004e7 −2.44051
\(635\) −571809. −0.0562752
\(636\) 0 0
\(637\) −4.83504e6 −0.472119
\(638\) 1.99078e7 1.93630
\(639\) 0 0
\(640\) −3.61794e6 −0.349149
\(641\) −3.67995e6 −0.353750 −0.176875 0.984233i \(-0.556599\pi\)
−0.176875 + 0.984233i \(0.556599\pi\)
\(642\) 0 0
\(643\) 8.95581e6 0.854235 0.427118 0.904196i \(-0.359529\pi\)
0.427118 + 0.904196i \(0.359529\pi\)
\(644\) −2.40641e7 −2.28642
\(645\) 0 0
\(646\) −1.77686e7 −1.67522
\(647\) 1.36816e6 0.128492 0.0642458 0.997934i \(-0.479536\pi\)
0.0642458 + 0.997934i \(0.479536\pi\)
\(648\) 0 0
\(649\) 7.18520e6 0.669618
\(650\) −2.88463e6 −0.267798
\(651\) 0 0
\(652\) 7.37612e6 0.679530
\(653\) 3.23673e6 0.297046 0.148523 0.988909i \(-0.452548\pi\)
0.148523 + 0.988909i \(0.452548\pi\)
\(654\) 0 0
\(655\) −8.63611e6 −0.786529
\(656\) 5.38925e6 0.488955
\(657\) 0 0
\(658\) 1.44449e7 1.30061
\(659\) 5.17492e6 0.464184 0.232092 0.972694i \(-0.425443\pi\)
0.232092 + 0.972694i \(0.425443\pi\)
\(660\) 0 0
\(661\) −1.07060e7 −0.953064 −0.476532 0.879157i \(-0.658106\pi\)
−0.476532 + 0.879157i \(0.658106\pi\)
\(662\) 3.55080e6 0.314906
\(663\) 0 0
\(664\) 2.63275e6 0.231733
\(665\) −1.07585e7 −0.943405
\(666\) 0 0
\(667\) −3.08734e7 −2.68701
\(668\) 1.78717e7 1.54962
\(669\) 0 0
\(670\) 1.10619e7 0.952011
\(671\) 2.29123e6 0.196455
\(672\) 0 0
\(673\) −2.15653e7 −1.83535 −0.917673 0.397338i \(-0.869934\pi\)
−0.917673 + 0.397338i \(0.869934\pi\)
\(674\) 1.80975e6 0.153451
\(675\) 0 0
\(676\) −3.16278e6 −0.266196
\(677\) 6.09762e6 0.511315 0.255658 0.966767i \(-0.417708\pi\)
0.255658 + 0.966767i \(0.417708\pi\)
\(678\) 0 0
\(679\) −1.96508e6 −0.163571
\(680\) 1.42471e6 0.118156
\(681\) 0 0
\(682\) −626180. −0.0515511
\(683\) 2.04240e7 1.67528 0.837642 0.546220i \(-0.183934\pi\)
0.837642 + 0.546220i \(0.183934\pi\)
\(684\) 0 0
\(685\) −4.25676e6 −0.346619
\(686\) −1.07719e7 −0.873944
\(687\) 0 0
\(688\) −3.46320e6 −0.278937
\(689\) −1.14125e7 −0.915868
\(690\) 0 0
\(691\) −2.91819e6 −0.232497 −0.116249 0.993220i \(-0.537087\pi\)
−0.116249 + 0.993220i \(0.537087\pi\)
\(692\) −2.24430e7 −1.78162
\(693\) 0 0
\(694\) 1.35456e7 1.06758
\(695\) −6.70576e6 −0.526606
\(696\) 0 0
\(697\) −6.20957e6 −0.484150
\(698\) −3.39785e7 −2.63976
\(699\) 0 0
\(700\) 4.07095e6 0.314016
\(701\) −8.78394e6 −0.675141 −0.337570 0.941300i \(-0.609605\pi\)
−0.337570 + 0.941300i \(0.609605\pi\)
\(702\) 0 0
\(703\) 4.01056e7 3.06067
\(704\) −1.32476e7 −1.00741
\(705\) 0 0
\(706\) −4.98973e6 −0.376760
\(707\) −2.55639e7 −1.92344
\(708\) 0 0
\(709\) 1.66475e7 1.24375 0.621875 0.783116i \(-0.286371\pi\)
0.621875 + 0.783116i \(0.286371\pi\)
\(710\) 5.04628e6 0.375686
\(711\) 0 0
\(712\) −6.89688e6 −0.509862
\(713\) 971092. 0.0715379
\(714\) 0 0
\(715\) −3.78601e6 −0.276960
\(716\) 7.72368e6 0.563043
\(717\) 0 0
\(718\) −3.65091e7 −2.64296
\(719\) −2.55062e7 −1.84003 −0.920013 0.391888i \(-0.871822\pi\)
−0.920013 + 0.391888i \(0.871822\pi\)
\(720\) 0 0
\(721\) 1.19339e7 0.854957
\(722\) 4.02228e7 2.87163
\(723\) 0 0
\(724\) 4.59389e6 0.325712
\(725\) 5.22289e6 0.369033
\(726\) 0 0
\(727\) 1.36506e7 0.957890 0.478945 0.877845i \(-0.341019\pi\)
0.478945 + 0.877845i \(0.341019\pi\)
\(728\) −6.37026e6 −0.445481
\(729\) 0 0
\(730\) 4.45925e6 0.309710
\(731\) 3.99035e6 0.276196
\(732\) 0 0
\(733\) −1.38922e7 −0.955018 −0.477509 0.878627i \(-0.658460\pi\)
−0.477509 + 0.878627i \(0.658460\pi\)
\(734\) −4.46751e6 −0.306073
\(735\) 0 0
\(736\) 2.99050e7 2.03493
\(737\) 1.45185e7 0.984584
\(738\) 0 0
\(739\) 837888. 0.0564384 0.0282192 0.999602i \(-0.491016\pi\)
0.0282192 + 0.999602i \(0.491016\pi\)
\(740\) −1.51757e7 −1.01875
\(741\) 0 0
\(742\) 2.87991e7 1.92030
\(743\) −8.07258e6 −0.536464 −0.268232 0.963354i \(-0.586439\pi\)
−0.268232 + 0.963354i \(0.586439\pi\)
\(744\) 0 0
\(745\) 7.33561e6 0.484223
\(746\) −9.93588e6 −0.653671
\(747\) 0 0
\(748\) 8.82448e6 0.576680
\(749\) 2.73033e7 1.77832
\(750\) 0 0
\(751\) −1.74892e7 −1.13154 −0.565770 0.824563i \(-0.691421\pi\)
−0.565770 + 0.824563i \(0.691421\pi\)
\(752\) −7.12952e6 −0.459744
\(753\) 0 0
\(754\) −3.85692e7 −2.47066
\(755\) 9.14927e6 0.584143
\(756\) 0 0
\(757\) 2.19231e7 1.39047 0.695236 0.718781i \(-0.255300\pi\)
0.695236 + 0.718781i \(0.255300\pi\)
\(758\) 2.11820e7 1.33904
\(759\) 0 0
\(760\) −4.91683e6 −0.308781
\(761\) 1.18585e7 0.742278 0.371139 0.928577i \(-0.378967\pi\)
0.371139 + 0.928577i \(0.378967\pi\)
\(762\) 0 0
\(763\) 8.71951e6 0.542227
\(764\) 2.81823e7 1.74680
\(765\) 0 0
\(766\) 1.29823e7 0.799431
\(767\) −1.39206e7 −0.854413
\(768\) 0 0
\(769\) −2.94181e6 −0.179390 −0.0896950 0.995969i \(-0.528589\pi\)
−0.0896950 + 0.995969i \(0.528589\pi\)
\(770\) 9.55389e6 0.580702
\(771\) 0 0
\(772\) −2.10337e6 −0.127020
\(773\) −2.01745e7 −1.21438 −0.607188 0.794558i \(-0.707703\pi\)
−0.607188 + 0.794558i \(0.707703\pi\)
\(774\) 0 0
\(775\) −164281. −0.00982500
\(776\) −898074. −0.0535375
\(777\) 0 0
\(778\) −3.91933e7 −2.32147
\(779\) 2.14298e7 1.26525
\(780\) 0 0
\(781\) 6.62313e6 0.388540
\(782\) −2.44704e7 −1.43095
\(783\) 0 0
\(784\) −6.02206e6 −0.349909
\(785\) 1.25762e7 0.728411
\(786\) 0 0
\(787\) 8.17269e6 0.470358 0.235179 0.971952i \(-0.424432\pi\)
0.235179 + 0.971952i \(0.424432\pi\)
\(788\) 8.85018e6 0.507734
\(789\) 0 0
\(790\) −8.36737e6 −0.477003
\(791\) −1.49839e6 −0.0851499
\(792\) 0 0
\(793\) −4.43901e6 −0.250670
\(794\) 3.01955e7 1.69977
\(795\) 0 0
\(796\) −1.56380e7 −0.874779
\(797\) −1.66457e7 −0.928234 −0.464117 0.885774i \(-0.653628\pi\)
−0.464117 + 0.885774i \(0.653628\pi\)
\(798\) 0 0
\(799\) 8.21474e6 0.455226
\(800\) −5.05907e6 −0.279477
\(801\) 0 0
\(802\) −8.67699e6 −0.476358
\(803\) 5.85267e6 0.320306
\(804\) 0 0
\(805\) −1.48163e7 −0.805845
\(806\) 1.21316e6 0.0657778
\(807\) 0 0
\(808\) −1.16831e7 −0.629550
\(809\) −7.91242e6 −0.425048 −0.212524 0.977156i \(-0.568168\pi\)
−0.212524 + 0.977156i \(0.568168\pi\)
\(810\) 0 0
\(811\) −4.07133e6 −0.217362 −0.108681 0.994077i \(-0.534663\pi\)
−0.108681 + 0.994077i \(0.534663\pi\)
\(812\) 5.44311e7 2.89706
\(813\) 0 0
\(814\) −3.56149e7 −1.88396
\(815\) 4.54150e6 0.239500
\(816\) 0 0
\(817\) −1.37711e7 −0.721794
\(818\) −5.39302e7 −2.81805
\(819\) 0 0
\(820\) −8.10890e6 −0.421141
\(821\) −1.86139e7 −0.963782 −0.481891 0.876231i \(-0.660050\pi\)
−0.481891 + 0.876231i \(0.660050\pi\)
\(822\) 0 0
\(823\) −3.54074e6 −0.182220 −0.0911098 0.995841i \(-0.529041\pi\)
−0.0911098 + 0.995841i \(0.529041\pi\)
\(824\) 5.45400e6 0.279832
\(825\) 0 0
\(826\) 3.51281e7 1.79145
\(827\) 3.76580e7 1.91467 0.957335 0.288981i \(-0.0933164\pi\)
0.957335 + 0.288981i \(0.0933164\pi\)
\(828\) 0 0
\(829\) 1.16650e7 0.589518 0.294759 0.955572i \(-0.404761\pi\)
0.294759 + 0.955572i \(0.404761\pi\)
\(830\) 7.64978e6 0.385437
\(831\) 0 0
\(832\) 2.56657e7 1.28542
\(833\) 6.93870e6 0.346470
\(834\) 0 0
\(835\) 1.10037e7 0.546163
\(836\) −3.04541e7 −1.50706
\(837\) 0 0
\(838\) −2.05730e7 −1.01202
\(839\) 2.07091e7 1.01568 0.507839 0.861452i \(-0.330444\pi\)
0.507839 + 0.861452i \(0.330444\pi\)
\(840\) 0 0
\(841\) 4.93220e7 2.40464
\(842\) −3.37462e7 −1.64038
\(843\) 0 0
\(844\) 1.21930e7 0.589188
\(845\) −1.94733e6 −0.0938207
\(846\) 0 0
\(847\) −1.32959e7 −0.636808
\(848\) −1.42143e7 −0.678791
\(849\) 0 0
\(850\) 4.13969e6 0.196526
\(851\) 5.52323e7 2.61438
\(852\) 0 0
\(853\) −1.94473e7 −0.915137 −0.457569 0.889174i \(-0.651280\pi\)
−0.457569 + 0.889174i \(0.651280\pi\)
\(854\) 1.12017e7 0.525581
\(855\) 0 0
\(856\) 1.24781e7 0.582054
\(857\) −2.10458e7 −0.978843 −0.489421 0.872047i \(-0.662792\pi\)
−0.489421 + 0.872047i \(0.662792\pi\)
\(858\) 0 0
\(859\) 2.40179e7 1.11058 0.555292 0.831656i \(-0.312607\pi\)
0.555292 + 0.831656i \(0.312607\pi\)
\(860\) 5.21089e6 0.240251
\(861\) 0 0
\(862\) 1.26922e7 0.581793
\(863\) 5.25620e6 0.240240 0.120120 0.992759i \(-0.461672\pi\)
0.120120 + 0.992759i \(0.461672\pi\)
\(864\) 0 0
\(865\) −1.38182e7 −0.627932
\(866\) −4.82465e7 −2.18611
\(867\) 0 0
\(868\) −1.71208e6 −0.0771300
\(869\) −1.09820e7 −0.493323
\(870\) 0 0
\(871\) −2.81280e7 −1.25630
\(872\) 3.98497e6 0.177473
\(873\) 0 0
\(874\) 8.44498e7 3.73956
\(875\) 2.50650e6 0.110674
\(876\) 0 0
\(877\) −2.99490e6 −0.131487 −0.0657436 0.997837i \(-0.520942\pi\)
−0.0657436 + 0.997837i \(0.520942\pi\)
\(878\) 74677.0 0.00326927
\(879\) 0 0
\(880\) −4.71549e6 −0.205268
\(881\) 2.19714e7 0.953714 0.476857 0.878981i \(-0.341776\pi\)
0.476857 + 0.878981i \(0.341776\pi\)
\(882\) 0 0
\(883\) −1.05962e7 −0.457348 −0.228674 0.973503i \(-0.573439\pi\)
−0.228674 + 0.973503i \(0.573439\pi\)
\(884\) −1.70965e7 −0.735827
\(885\) 0 0
\(886\) −8.20519e6 −0.351159
\(887\) −1.57778e6 −0.0673343 −0.0336672 0.999433i \(-0.510719\pi\)
−0.0336672 + 0.999433i \(0.510719\pi\)
\(888\) 0 0
\(889\) −3.66909e6 −0.155706
\(890\) −2.00398e7 −0.848043
\(891\) 0 0
\(892\) −1.66306e7 −0.699834
\(893\) −2.83498e7 −1.18966
\(894\) 0 0
\(895\) 4.75550e6 0.198444
\(896\) −2.32150e7 −0.966047
\(897\) 0 0
\(898\) 3.25438e7 1.34672
\(899\) −2.19653e6 −0.0906438
\(900\) 0 0
\(901\) 1.63779e7 0.672121
\(902\) −1.90303e7 −0.778807
\(903\) 0 0
\(904\) −684790. −0.0278700
\(905\) 2.82847e6 0.114797
\(906\) 0 0
\(907\) −3.03048e7 −1.22319 −0.611594 0.791171i \(-0.709472\pi\)
−0.611594 + 0.791171i \(0.709472\pi\)
\(908\) 1.56866e7 0.631413
\(909\) 0 0
\(910\) −1.85096e7 −0.740959
\(911\) 1.14226e7 0.456005 0.228003 0.973661i \(-0.426781\pi\)
0.228003 + 0.973661i \(0.426781\pi\)
\(912\) 0 0
\(913\) 1.00402e7 0.398625
\(914\) −1.94355e7 −0.769538
\(915\) 0 0
\(916\) 1.46258e7 0.575945
\(917\) −5.54148e7 −2.17622
\(918\) 0 0
\(919\) −4.43959e7 −1.73402 −0.867010 0.498291i \(-0.833961\pi\)
−0.867010 + 0.498291i \(0.833961\pi\)
\(920\) −6.77132e6 −0.263757
\(921\) 0 0
\(922\) 2.18718e7 0.847340
\(923\) −1.28316e7 −0.495766
\(924\) 0 0
\(925\) −9.34372e6 −0.359059
\(926\) −1.84857e7 −0.708448
\(927\) 0 0
\(928\) −6.76428e7 −2.57841
\(929\) −2.73604e7 −1.04012 −0.520059 0.854130i \(-0.674090\pi\)
−0.520059 + 0.854130i \(0.674090\pi\)
\(930\) 0 0
\(931\) −2.39461e7 −0.905443
\(932\) 1.52982e7 0.576900
\(933\) 0 0
\(934\) −1.57208e7 −0.589666
\(935\) 5.43326e6 0.203250
\(936\) 0 0
\(937\) −1.23707e7 −0.460306 −0.230153 0.973154i \(-0.573923\pi\)
−0.230153 + 0.973154i \(0.573923\pi\)
\(938\) 7.09801e7 2.63408
\(939\) 0 0
\(940\) 1.07274e7 0.395981
\(941\) 1.77596e7 0.653822 0.326911 0.945055i \(-0.393992\pi\)
0.326911 + 0.945055i \(0.393992\pi\)
\(942\) 0 0
\(943\) 2.95126e7 1.08076
\(944\) −1.73381e7 −0.633244
\(945\) 0 0
\(946\) 1.22291e7 0.444292
\(947\) 4.50046e7 1.63073 0.815364 0.578949i \(-0.196537\pi\)
0.815364 + 0.578949i \(0.196537\pi\)
\(948\) 0 0
\(949\) −1.13389e7 −0.408701
\(950\) −1.42865e7 −0.513589
\(951\) 0 0
\(952\) 9.14188e6 0.326921
\(953\) 4.10110e7 1.46274 0.731372 0.681979i \(-0.238881\pi\)
0.731372 + 0.681979i \(0.238881\pi\)
\(954\) 0 0
\(955\) 1.73519e7 0.615658
\(956\) 1.69285e7 0.599065
\(957\) 0 0
\(958\) 2.45797e7 0.865293
\(959\) −2.73141e7 −0.959048
\(960\) 0 0
\(961\) −2.85601e7 −0.997587
\(962\) 6.90001e7 2.40388
\(963\) 0 0
\(964\) −4.67279e7 −1.61951
\(965\) −1.29505e6 −0.0447682
\(966\) 0 0
\(967\) 2.23360e7 0.768137 0.384069 0.923305i \(-0.374523\pi\)
0.384069 + 0.923305i \(0.374523\pi\)
\(968\) −6.07644e6 −0.208430
\(969\) 0 0
\(970\) −2.60947e6 −0.0890478
\(971\) 3.34728e7 1.13932 0.569658 0.821882i \(-0.307076\pi\)
0.569658 + 0.821882i \(0.307076\pi\)
\(972\) 0 0
\(973\) −4.30284e7 −1.45705
\(974\) −2.87942e7 −0.972539
\(975\) 0 0
\(976\) −5.52880e6 −0.185783
\(977\) −8.52076e6 −0.285589 −0.142795 0.989752i \(-0.545609\pi\)
−0.142795 + 0.989752i \(0.545609\pi\)
\(978\) 0 0
\(979\) −2.63018e7 −0.877058
\(980\) 9.06106e6 0.301380
\(981\) 0 0
\(982\) 1.09343e6 0.0361836
\(983\) 2.01155e7 0.663969 0.331985 0.943285i \(-0.392282\pi\)
0.331985 + 0.943285i \(0.392282\pi\)
\(984\) 0 0
\(985\) 5.44908e6 0.178950
\(986\) 5.53502e7 1.81312
\(987\) 0 0
\(988\) 5.90015e7 1.92296
\(989\) −1.89652e7 −0.616547
\(990\) 0 0
\(991\) 3.24195e7 1.04863 0.524315 0.851524i \(-0.324321\pi\)
0.524315 + 0.851524i \(0.324321\pi\)
\(992\) 2.12764e6 0.0686465
\(993\) 0 0
\(994\) 3.23801e7 1.03947
\(995\) −9.62836e6 −0.308315
\(996\) 0 0
\(997\) 4.47995e7 1.42737 0.713683 0.700469i \(-0.247026\pi\)
0.713683 + 0.700469i \(0.247026\pi\)
\(998\) −1.83482e7 −0.583133
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.6.a.f.1.2 yes 2
3.2 odd 2 45.6.a.d.1.1 2
4.3 odd 2 720.6.a.be.1.1 2
5.2 odd 4 225.6.b.k.199.4 4
5.3 odd 4 225.6.b.k.199.1 4
5.4 even 2 225.6.a.k.1.1 2
12.11 even 2 720.6.a.y.1.1 2
15.2 even 4 225.6.b.j.199.1 4
15.8 even 4 225.6.b.j.199.4 4
15.14 odd 2 225.6.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.6.a.d.1.1 2 3.2 odd 2
45.6.a.f.1.2 yes 2 1.1 even 1 trivial
225.6.a.k.1.1 2 5.4 even 2
225.6.a.r.1.2 2 15.14 odd 2
225.6.b.j.199.1 4 15.2 even 4
225.6.b.j.199.4 4 15.8 even 4
225.6.b.k.199.1 4 5.3 odd 4
225.6.b.k.199.4 4 5.2 odd 4
720.6.a.y.1.1 2 12.11 even 2
720.6.a.be.1.1 2 4.3 odd 2