Properties

Label 45.6.a.f.1.1
Level $45$
Weight $6$
Character 45.1
Self dual yes
Analytic conductor $7.217$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,6,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.21727189158\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.52080\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.52080 q^{2} -19.6040 q^{4} +25.0000 q^{5} -80.4159 q^{7} +181.687 q^{8} +O(q^{10})\) \(q-3.52080 q^{2} -19.6040 q^{4} +25.0000 q^{5} -80.4159 q^{7} +181.687 q^{8} -88.0199 q^{10} +520.416 q^{11} +421.664 q^{13} +283.128 q^{14} -12.3561 q^{16} +1162.67 q^{17} +1170.66 q^{19} -490.100 q^{20} -1832.28 q^{22} +2374.48 q^{23} +625.000 q^{25} -1484.59 q^{26} +1576.47 q^{28} -7056.62 q^{29} -5561.15 q^{31} -5770.49 q^{32} -4093.51 q^{34} -2010.40 q^{35} +2389.95 q^{37} -4121.64 q^{38} +4542.18 q^{40} +8388.28 q^{41} +20546.6 q^{43} -10202.2 q^{44} -8360.07 q^{46} +8352.17 q^{47} -10340.3 q^{49} -2200.50 q^{50} -8266.29 q^{52} +28390.6 q^{53} +13010.4 q^{55} -14610.5 q^{56} +24844.9 q^{58} +37500.4 q^{59} -57311.1 q^{61} +19579.7 q^{62} +20712.1 q^{64} +10541.6 q^{65} -45848.9 q^{67} -22792.9 q^{68} +7078.21 q^{70} +41510.8 q^{71} +76806.5 q^{73} -8414.52 q^{74} -22949.5 q^{76} -41849.7 q^{77} -7008.26 q^{79} -308.904 q^{80} -29533.4 q^{82} -93271.1 q^{83} +29066.6 q^{85} -72340.5 q^{86} +94552.9 q^{88} +7074.70 q^{89} -33908.5 q^{91} -46549.3 q^{92} -29406.3 q^{94} +29266.4 q^{95} +22429.9 q^{97} +36406.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 21 q^{4} + 50 q^{5} + 80 q^{7} + 255 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{2} + 21 q^{4} + 50 q^{5} + 80 q^{7} + 255 q^{8} + 125 q^{10} + 800 q^{11} - 120 q^{13} + 1650 q^{14} - 687 q^{16} + 1940 q^{17} - 1512 q^{19} + 525 q^{20} + 550 q^{22} - 1320 q^{23} + 1250 q^{25} - 6100 q^{26} + 8090 q^{28} + 1300 q^{29} - 5824 q^{31} - 13865 q^{32} + 2530 q^{34} + 2000 q^{35} - 12560 q^{37} - 26980 q^{38} + 6375 q^{40} + 400 q^{41} + 25680 q^{43} + 1150 q^{44} - 39840 q^{46} + 18920 q^{47} - 1414 q^{49} + 3125 q^{50} - 30260 q^{52} + 49460 q^{53} + 20000 q^{55} - 2850 q^{56} + 96050 q^{58} + 63200 q^{59} - 49116 q^{61} + 17340 q^{62} - 26671 q^{64} - 3000 q^{65} + 6080 q^{67} + 8770 q^{68} + 41250 q^{70} + 65200 q^{71} + 97740 q^{73} - 135800 q^{74} - 131876 q^{76} + 3000 q^{77} - 46288 q^{79} - 17175 q^{80} - 97600 q^{82} - 57360 q^{83} + 48500 q^{85} - 28600 q^{86} + 115050 q^{88} - 87000 q^{89} - 120800 q^{91} - 196560 q^{92} + 60640 q^{94} - 37800 q^{95} + 10180 q^{97} + 112465 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.52080 −0.622395 −0.311197 0.950345i \(-0.600730\pi\)
−0.311197 + 0.950345i \(0.600730\pi\)
\(3\) 0 0
\(4\) −19.6040 −0.612625
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −80.4159 −0.620293 −0.310147 0.950689i \(-0.600378\pi\)
−0.310147 + 0.950689i \(0.600378\pi\)
\(8\) 181.687 1.00369
\(9\) 0 0
\(10\) −88.0199 −0.278343
\(11\) 520.416 1.29679 0.648394 0.761305i \(-0.275441\pi\)
0.648394 + 0.761305i \(0.275441\pi\)
\(12\) 0 0
\(13\) 421.664 0.692003 0.346001 0.938234i \(-0.387539\pi\)
0.346001 + 0.938234i \(0.387539\pi\)
\(14\) 283.128 0.386067
\(15\) 0 0
\(16\) −12.3561 −0.0120666
\(17\) 1162.67 0.975736 0.487868 0.872917i \(-0.337775\pi\)
0.487868 + 0.872917i \(0.337775\pi\)
\(18\) 0 0
\(19\) 1170.66 0.743952 0.371976 0.928242i \(-0.378680\pi\)
0.371976 + 0.928242i \(0.378680\pi\)
\(20\) −490.100 −0.273974
\(21\) 0 0
\(22\) −1832.28 −0.807114
\(23\) 2374.48 0.935943 0.467971 0.883744i \(-0.344985\pi\)
0.467971 + 0.883744i \(0.344985\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −1484.59 −0.430699
\(27\) 0 0
\(28\) 1576.47 0.380007
\(29\) −7056.62 −1.55812 −0.779062 0.626947i \(-0.784304\pi\)
−0.779062 + 0.626947i \(0.784304\pi\)
\(30\) 0 0
\(31\) −5561.15 −1.03935 −0.519673 0.854365i \(-0.673946\pi\)
−0.519673 + 0.854365i \(0.673946\pi\)
\(32\) −5770.49 −0.996179
\(33\) 0 0
\(34\) −4093.51 −0.607293
\(35\) −2010.40 −0.277404
\(36\) 0 0
\(37\) 2389.95 0.287001 0.143501 0.989650i \(-0.454164\pi\)
0.143501 + 0.989650i \(0.454164\pi\)
\(38\) −4121.64 −0.463032
\(39\) 0 0
\(40\) 4542.18 0.448864
\(41\) 8388.28 0.779316 0.389658 0.920960i \(-0.372593\pi\)
0.389658 + 0.920960i \(0.372593\pi\)
\(42\) 0 0
\(43\) 20546.6 1.69461 0.847304 0.531108i \(-0.178224\pi\)
0.847304 + 0.531108i \(0.178224\pi\)
\(44\) −10202.2 −0.794444
\(45\) 0 0
\(46\) −8360.07 −0.582526
\(47\) 8352.17 0.551512 0.275756 0.961228i \(-0.411072\pi\)
0.275756 + 0.961228i \(0.411072\pi\)
\(48\) 0 0
\(49\) −10340.3 −0.615236
\(50\) −2200.50 −0.124479
\(51\) 0 0
\(52\) −8266.29 −0.423938
\(53\) 28390.6 1.38831 0.694154 0.719827i \(-0.255779\pi\)
0.694154 + 0.719827i \(0.255779\pi\)
\(54\) 0 0
\(55\) 13010.4 0.579941
\(56\) −14610.5 −0.622582
\(57\) 0 0
\(58\) 24844.9 0.969768
\(59\) 37500.4 1.40251 0.701254 0.712911i \(-0.252624\pi\)
0.701254 + 0.712911i \(0.252624\pi\)
\(60\) 0 0
\(61\) −57311.1 −1.97203 −0.986017 0.166644i \(-0.946707\pi\)
−0.986017 + 0.166644i \(0.946707\pi\)
\(62\) 19579.7 0.646884
\(63\) 0 0
\(64\) 20712.1 0.632083
\(65\) 10541.6 0.309473
\(66\) 0 0
\(67\) −45848.9 −1.24779 −0.623895 0.781508i \(-0.714451\pi\)
−0.623895 + 0.781508i \(0.714451\pi\)
\(68\) −22792.9 −0.597760
\(69\) 0 0
\(70\) 7078.21 0.172655
\(71\) 41510.8 0.977271 0.488636 0.872488i \(-0.337495\pi\)
0.488636 + 0.872488i \(0.337495\pi\)
\(72\) 0 0
\(73\) 76806.5 1.68691 0.843453 0.537203i \(-0.180519\pi\)
0.843453 + 0.537203i \(0.180519\pi\)
\(74\) −8414.52 −0.178628
\(75\) 0 0
\(76\) −22949.5 −0.455763
\(77\) −41849.7 −0.804389
\(78\) 0 0
\(79\) −7008.26 −0.126341 −0.0631703 0.998003i \(-0.520121\pi\)
−0.0631703 + 0.998003i \(0.520121\pi\)
\(80\) −308.904 −0.00539633
\(81\) 0 0
\(82\) −29533.4 −0.485042
\(83\) −93271.1 −1.48611 −0.743057 0.669229i \(-0.766625\pi\)
−0.743057 + 0.669229i \(0.766625\pi\)
\(84\) 0 0
\(85\) 29066.6 0.436363
\(86\) −72340.5 −1.05472
\(87\) 0 0
\(88\) 94552.9 1.30157
\(89\) 7074.70 0.0946745 0.0473372 0.998879i \(-0.484926\pi\)
0.0473372 + 0.998879i \(0.484926\pi\)
\(90\) 0 0
\(91\) −33908.5 −0.429245
\(92\) −46549.3 −0.573382
\(93\) 0 0
\(94\) −29406.3 −0.343258
\(95\) 29266.4 0.332705
\(96\) 0 0
\(97\) 22429.9 0.242046 0.121023 0.992650i \(-0.461383\pi\)
0.121023 + 0.992650i \(0.461383\pi\)
\(98\) 36406.0 0.382920
\(99\) 0 0
\(100\) −12252.5 −0.122525
\(101\) −107340. −1.04703 −0.523515 0.852017i \(-0.675379\pi\)
−0.523515 + 0.852017i \(0.675379\pi\)
\(102\) 0 0
\(103\) −14473.5 −0.134425 −0.0672125 0.997739i \(-0.521411\pi\)
−0.0672125 + 0.997739i \(0.521411\pi\)
\(104\) 76610.9 0.694556
\(105\) 0 0
\(106\) −99957.7 −0.864075
\(107\) 47956.9 0.404941 0.202470 0.979288i \(-0.435103\pi\)
0.202470 + 0.979288i \(0.435103\pi\)
\(108\) 0 0
\(109\) −67023.6 −0.540333 −0.270167 0.962814i \(-0.587079\pi\)
−0.270167 + 0.962814i \(0.587079\pi\)
\(110\) −45807.0 −0.360952
\(111\) 0 0
\(112\) 993.631 0.00748480
\(113\) −7799.34 −0.0574595 −0.0287297 0.999587i \(-0.509146\pi\)
−0.0287297 + 0.999587i \(0.509146\pi\)
\(114\) 0 0
\(115\) 59362.0 0.418566
\(116\) 138338. 0.954545
\(117\) 0 0
\(118\) −132031. −0.872914
\(119\) −93496.8 −0.605243
\(120\) 0 0
\(121\) 109782. 0.681658
\(122\) 201781. 1.22738
\(123\) 0 0
\(124\) 109021. 0.636729
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 157992. 0.869214 0.434607 0.900620i \(-0.356887\pi\)
0.434607 + 0.900620i \(0.356887\pi\)
\(128\) 111732. 0.602774
\(129\) 0 0
\(130\) −37114.8 −0.192614
\(131\) 328644. 1.67320 0.836600 0.547814i \(-0.184540\pi\)
0.836600 + 0.547814i \(0.184540\pi\)
\(132\) 0 0
\(133\) −94139.3 −0.461468
\(134\) 161425. 0.776618
\(135\) 0 0
\(136\) 211241. 0.979336
\(137\) −297430. −1.35389 −0.676944 0.736034i \(-0.736696\pi\)
−0.676944 + 0.736034i \(0.736696\pi\)
\(138\) 0 0
\(139\) −16801.8 −0.0737594 −0.0368797 0.999320i \(-0.511742\pi\)
−0.0368797 + 0.999320i \(0.511742\pi\)
\(140\) 39411.8 0.169944
\(141\) 0 0
\(142\) −146151. −0.608249
\(143\) 219441. 0.897381
\(144\) 0 0
\(145\) −176416. −0.696814
\(146\) −270420. −1.04992
\(147\) 0 0
\(148\) −46852.5 −0.175824
\(149\) −490724. −1.81081 −0.905403 0.424553i \(-0.860431\pi\)
−0.905403 + 0.424553i \(0.860431\pi\)
\(150\) 0 0
\(151\) 132845. 0.474137 0.237069 0.971493i \(-0.423813\pi\)
0.237069 + 0.971493i \(0.423813\pi\)
\(152\) 212693. 0.746697
\(153\) 0 0
\(154\) 147344. 0.500647
\(155\) −139029. −0.464810
\(156\) 0 0
\(157\) 300751. 0.973772 0.486886 0.873465i \(-0.338133\pi\)
0.486886 + 0.873465i \(0.338133\pi\)
\(158\) 24674.7 0.0786337
\(159\) 0 0
\(160\) −144262. −0.445505
\(161\) −190946. −0.580559
\(162\) 0 0
\(163\) −663660. −1.95649 −0.978243 0.207464i \(-0.933479\pi\)
−0.978243 + 0.207464i \(0.933479\pi\)
\(164\) −164444. −0.477428
\(165\) 0 0
\(166\) 328389. 0.924949
\(167\) −198828. −0.551678 −0.275839 0.961204i \(-0.588956\pi\)
−0.275839 + 0.961204i \(0.588956\pi\)
\(168\) 0 0
\(169\) −193493. −0.521132
\(170\) −102338. −0.271590
\(171\) 0 0
\(172\) −402796. −1.03816
\(173\) −425570. −1.08108 −0.540538 0.841320i \(-0.681779\pi\)
−0.540538 + 0.841320i \(0.681779\pi\)
\(174\) 0 0
\(175\) −50260.0 −0.124059
\(176\) −6430.34 −0.0156478
\(177\) 0 0
\(178\) −24908.6 −0.0589249
\(179\) 271380. 0.633061 0.316530 0.948582i \(-0.397482\pi\)
0.316530 + 0.948582i \(0.397482\pi\)
\(180\) 0 0
\(181\) 390577. 0.886156 0.443078 0.896483i \(-0.353886\pi\)
0.443078 + 0.896483i \(0.353886\pi\)
\(182\) 119385. 0.267160
\(183\) 0 0
\(184\) 431413. 0.939396
\(185\) 59748.7 0.128351
\(186\) 0 0
\(187\) 605070. 1.26532
\(188\) −163736. −0.337870
\(189\) 0 0
\(190\) −103041. −0.207074
\(191\) 185922. 0.368764 0.184382 0.982855i \(-0.440972\pi\)
0.184382 + 0.982855i \(0.440972\pi\)
\(192\) 0 0
\(193\) −774298. −1.49629 −0.748143 0.663537i \(-0.769054\pi\)
−0.748143 + 0.663537i \(0.769054\pi\)
\(194\) −78971.1 −0.150648
\(195\) 0 0
\(196\) 202711. 0.376909
\(197\) −39823.2 −0.0731090 −0.0365545 0.999332i \(-0.511638\pi\)
−0.0365545 + 0.999332i \(0.511638\pi\)
\(198\) 0 0
\(199\) −20033.4 −0.0358610 −0.0179305 0.999839i \(-0.505708\pi\)
−0.0179305 + 0.999839i \(0.505708\pi\)
\(200\) 113554. 0.200738
\(201\) 0 0
\(202\) 377923. 0.651666
\(203\) 567465. 0.966493
\(204\) 0 0
\(205\) 209707. 0.348521
\(206\) 50958.2 0.0836654
\(207\) 0 0
\(208\) −5210.14 −0.00835009
\(209\) 609228. 0.964748
\(210\) 0 0
\(211\) −231466. −0.357917 −0.178958 0.983857i \(-0.557273\pi\)
−0.178958 + 0.983857i \(0.557273\pi\)
\(212\) −556570. −0.850511
\(213\) 0 0
\(214\) −168846. −0.252033
\(215\) 513666. 0.757852
\(216\) 0 0
\(217\) 447205. 0.644700
\(218\) 235977. 0.336301
\(219\) 0 0
\(220\) −255056. −0.355286
\(221\) 490254. 0.675212
\(222\) 0 0
\(223\) 134460. 0.181063 0.0905315 0.995894i \(-0.471143\pi\)
0.0905315 + 0.995894i \(0.471143\pi\)
\(224\) 464039. 0.617923
\(225\) 0 0
\(226\) 27459.9 0.0357625
\(227\) 1.48703e6 1.91538 0.957690 0.287803i \(-0.0929248\pi\)
0.957690 + 0.287803i \(0.0929248\pi\)
\(228\) 0 0
\(229\) −1.23314e6 −1.55390 −0.776950 0.629563i \(-0.783234\pi\)
−0.776950 + 0.629563i \(0.783234\pi\)
\(230\) −209002. −0.260514
\(231\) 0 0
\(232\) −1.28210e6 −1.56387
\(233\) −941066. −1.13561 −0.567806 0.823162i \(-0.692208\pi\)
−0.567806 + 0.823162i \(0.692208\pi\)
\(234\) 0 0
\(235\) 208804. 0.246644
\(236\) −735157. −0.859211
\(237\) 0 0
\(238\) 329183. 0.376700
\(239\) 835483. 0.946113 0.473056 0.881032i \(-0.343151\pi\)
0.473056 + 0.881032i \(0.343151\pi\)
\(240\) 0 0
\(241\) 32145.1 0.0356511 0.0178255 0.999841i \(-0.494326\pi\)
0.0178255 + 0.999841i \(0.494326\pi\)
\(242\) −386519. −0.424261
\(243\) 0 0
\(244\) 1.12353e6 1.20812
\(245\) −258507. −0.275142
\(246\) 0 0
\(247\) 493623. 0.514817
\(248\) −1.01039e6 −1.04318
\(249\) 0 0
\(250\) −55012.5 −0.0556687
\(251\) −680645. −0.681924 −0.340962 0.940077i \(-0.610753\pi\)
−0.340962 + 0.940077i \(0.610753\pi\)
\(252\) 0 0
\(253\) 1.23572e6 1.21372
\(254\) −556259. −0.540995
\(255\) 0 0
\(256\) −1.05617e6 −1.00725
\(257\) −959946. −0.906596 −0.453298 0.891359i \(-0.649753\pi\)
−0.453298 + 0.891359i \(0.649753\pi\)
\(258\) 0 0
\(259\) −192190. −0.178025
\(260\) −206657. −0.189591
\(261\) 0 0
\(262\) −1.15709e6 −1.04139
\(263\) 828601. 0.738680 0.369340 0.929294i \(-0.379584\pi\)
0.369340 + 0.929294i \(0.379584\pi\)
\(264\) 0 0
\(265\) 709766. 0.620870
\(266\) 331446. 0.287216
\(267\) 0 0
\(268\) 898821. 0.764427
\(269\) −1.47945e6 −1.24658 −0.623290 0.781991i \(-0.714204\pi\)
−0.623290 + 0.781991i \(0.714204\pi\)
\(270\) 0 0
\(271\) −812554. −0.672093 −0.336046 0.941845i \(-0.609090\pi\)
−0.336046 + 0.941845i \(0.609090\pi\)
\(272\) −14366.1 −0.0117738
\(273\) 0 0
\(274\) 1.04719e6 0.842653
\(275\) 325260. 0.259358
\(276\) 0 0
\(277\) 275667. 0.215866 0.107933 0.994158i \(-0.465577\pi\)
0.107933 + 0.994158i \(0.465577\pi\)
\(278\) 59155.6 0.0459075
\(279\) 0 0
\(280\) −365264. −0.278427
\(281\) −509442. −0.384883 −0.192442 0.981308i \(-0.561641\pi\)
−0.192442 + 0.981308i \(0.561641\pi\)
\(282\) 0 0
\(283\) 986519. 0.732216 0.366108 0.930572i \(-0.380690\pi\)
0.366108 + 0.930572i \(0.380690\pi\)
\(284\) −813777. −0.598700
\(285\) 0 0
\(286\) −772606. −0.558525
\(287\) −674552. −0.483404
\(288\) 0 0
\(289\) −68065.9 −0.0479386
\(290\) 621123. 0.433693
\(291\) 0 0
\(292\) −1.50571e6 −1.03344
\(293\) 201092. 0.136844 0.0684219 0.997656i \(-0.478204\pi\)
0.0684219 + 0.997656i \(0.478204\pi\)
\(294\) 0 0
\(295\) 937510. 0.627221
\(296\) 434223. 0.288060
\(297\) 0 0
\(298\) 1.72774e6 1.12704
\(299\) 1.00123e6 0.647675
\(300\) 0 0
\(301\) −1.65228e6 −1.05115
\(302\) −467722. −0.295101
\(303\) 0 0
\(304\) −14464.8 −0.00897694
\(305\) −1.43278e6 −0.881920
\(306\) 0 0
\(307\) −982845. −0.595167 −0.297584 0.954696i \(-0.596181\pi\)
−0.297584 + 0.954696i \(0.596181\pi\)
\(308\) 820422. 0.492788
\(309\) 0 0
\(310\) 489492. 0.289295
\(311\) 1.70689e6 1.00070 0.500351 0.865823i \(-0.333204\pi\)
0.500351 + 0.865823i \(0.333204\pi\)
\(312\) 0 0
\(313\) −511933. −0.295360 −0.147680 0.989035i \(-0.547181\pi\)
−0.147680 + 0.989035i \(0.547181\pi\)
\(314\) −1.05888e6 −0.606071
\(315\) 0 0
\(316\) 137390. 0.0773993
\(317\) 2.51314e6 1.40465 0.702325 0.711857i \(-0.252145\pi\)
0.702325 + 0.711857i \(0.252145\pi\)
\(318\) 0 0
\(319\) −3.67238e6 −2.02055
\(320\) 517803. 0.282676
\(321\) 0 0
\(322\) 672283. 0.361337
\(323\) 1.36108e6 0.725901
\(324\) 0 0
\(325\) 263540. 0.138401
\(326\) 2.33661e6 1.21771
\(327\) 0 0
\(328\) 1.52404e6 0.782191
\(329\) −671648. −0.342099
\(330\) 0 0
\(331\) −1.89334e6 −0.949857 −0.474928 0.880024i \(-0.657526\pi\)
−0.474928 + 0.880024i \(0.657526\pi\)
\(332\) 1.82849e6 0.910430
\(333\) 0 0
\(334\) 700032. 0.343361
\(335\) −1.14622e6 −0.558029
\(336\) 0 0
\(337\) 3.29119e6 1.57862 0.789310 0.613994i \(-0.210438\pi\)
0.789310 + 0.613994i \(0.210438\pi\)
\(338\) 681248. 0.324350
\(339\) 0 0
\(340\) −569822. −0.267326
\(341\) −2.89411e6 −1.34781
\(342\) 0 0
\(343\) 2.18307e6 1.00192
\(344\) 3.73306e6 1.70086
\(345\) 0 0
\(346\) 1.49835e6 0.672856
\(347\) −182036. −0.0811584 −0.0405792 0.999176i \(-0.512920\pi\)
−0.0405792 + 0.999176i \(0.512920\pi\)
\(348\) 0 0
\(349\) 796176. 0.349901 0.174951 0.984577i \(-0.444023\pi\)
0.174951 + 0.984577i \(0.444023\pi\)
\(350\) 176955. 0.0772135
\(351\) 0 0
\(352\) −3.00305e6 −1.29183
\(353\) 727614. 0.310788 0.155394 0.987853i \(-0.450335\pi\)
0.155394 + 0.987853i \(0.450335\pi\)
\(354\) 0 0
\(355\) 1.03777e6 0.437049
\(356\) −138692. −0.0579999
\(357\) 0 0
\(358\) −955475. −0.394014
\(359\) −2.55650e6 −1.04691 −0.523454 0.852054i \(-0.675357\pi\)
−0.523454 + 0.852054i \(0.675357\pi\)
\(360\) 0 0
\(361\) −1.10567e6 −0.446535
\(362\) −1.37514e6 −0.551539
\(363\) 0 0
\(364\) 664742. 0.262966
\(365\) 1.92016e6 0.754407
\(366\) 0 0
\(367\) 2.15447e6 0.834977 0.417489 0.908682i \(-0.362910\pi\)
0.417489 + 0.908682i \(0.362910\pi\)
\(368\) −29339.5 −0.0112936
\(369\) 0 0
\(370\) −210363. −0.0798850
\(371\) −2.28306e6 −0.861158
\(372\) 0 0
\(373\) −3.61293e6 −1.34458 −0.672291 0.740287i \(-0.734689\pi\)
−0.672291 + 0.740287i \(0.734689\pi\)
\(374\) −2.13033e6 −0.787531
\(375\) 0 0
\(376\) 1.51748e6 0.553547
\(377\) −2.97552e6 −1.07823
\(378\) 0 0
\(379\) 660411. 0.236165 0.118083 0.993004i \(-0.462325\pi\)
0.118083 + 0.993004i \(0.462325\pi\)
\(380\) −573738. −0.203824
\(381\) 0 0
\(382\) −654595. −0.229517
\(383\) −5.10573e6 −1.77853 −0.889264 0.457395i \(-0.848783\pi\)
−0.889264 + 0.457395i \(0.848783\pi\)
\(384\) 0 0
\(385\) −1.04624e6 −0.359734
\(386\) 2.72615e6 0.931281
\(387\) 0 0
\(388\) −439715. −0.148283
\(389\) 492425. 0.164993 0.0824966 0.996591i \(-0.473711\pi\)
0.0824966 + 0.996591i \(0.473711\pi\)
\(390\) 0 0
\(391\) 2.76073e6 0.913233
\(392\) −1.87870e6 −0.617506
\(393\) 0 0
\(394\) 140210. 0.0455027
\(395\) −175207. −0.0565012
\(396\) 0 0
\(397\) −2.72078e6 −0.866397 −0.433199 0.901298i \(-0.642615\pi\)
−0.433199 + 0.901298i \(0.642615\pi\)
\(398\) 70533.6 0.0223197
\(399\) 0 0
\(400\) −7722.59 −0.00241331
\(401\) 204131. 0.0633941 0.0316970 0.999498i \(-0.489909\pi\)
0.0316970 + 0.999498i \(0.489909\pi\)
\(402\) 0 0
\(403\) −2.34494e6 −0.719231
\(404\) 2.10429e6 0.641436
\(405\) 0 0
\(406\) −1.99793e6 −0.601541
\(407\) 1.24377e6 0.372180
\(408\) 0 0
\(409\) −468364. −0.138444 −0.0692221 0.997601i \(-0.522052\pi\)
−0.0692221 + 0.997601i \(0.522052\pi\)
\(410\) −738336. −0.216917
\(411\) 0 0
\(412\) 283738. 0.0823521
\(413\) −3.01563e6 −0.869967
\(414\) 0 0
\(415\) −2.33178e6 −0.664610
\(416\) −2.43321e6 −0.689359
\(417\) 0 0
\(418\) −2.14497e6 −0.600454
\(419\) 2.45205e6 0.682328 0.341164 0.940004i \(-0.389179\pi\)
0.341164 + 0.940004i \(0.389179\pi\)
\(420\) 0 0
\(421\) 5.51677e6 1.51698 0.758489 0.651686i \(-0.225938\pi\)
0.758489 + 0.651686i \(0.225938\pi\)
\(422\) 814946. 0.222765
\(423\) 0 0
\(424\) 5.15822e6 1.39343
\(425\) 726666. 0.195147
\(426\) 0 0
\(427\) 4.60873e6 1.22324
\(428\) −940146. −0.248077
\(429\) 0 0
\(430\) −1.80851e6 −0.471683
\(431\) −2.25875e6 −0.585701 −0.292850 0.956158i \(-0.594604\pi\)
−0.292850 + 0.956158i \(0.594604\pi\)
\(432\) 0 0
\(433\) −2.02853e6 −0.519951 −0.259976 0.965615i \(-0.583715\pi\)
−0.259976 + 0.965615i \(0.583715\pi\)
\(434\) −1.57452e6 −0.401258
\(435\) 0 0
\(436\) 1.31393e6 0.331021
\(437\) 2.77970e6 0.696297
\(438\) 0 0
\(439\) −1.74449e6 −0.432024 −0.216012 0.976391i \(-0.569305\pi\)
−0.216012 + 0.976391i \(0.569305\pi\)
\(440\) 2.36382e6 0.582081
\(441\) 0 0
\(442\) −1.72608e6 −0.420249
\(443\) 987200. 0.238999 0.119499 0.992834i \(-0.461871\pi\)
0.119499 + 0.992834i \(0.461871\pi\)
\(444\) 0 0
\(445\) 176867. 0.0423397
\(446\) −473405. −0.112693
\(447\) 0 0
\(448\) −1.66558e6 −0.392077
\(449\) 7.78246e6 1.82180 0.910901 0.412624i \(-0.135388\pi\)
0.910901 + 0.412624i \(0.135388\pi\)
\(450\) 0 0
\(451\) 4.36540e6 1.01061
\(452\) 152898. 0.0352011
\(453\) 0 0
\(454\) −5.23553e6 −1.19212
\(455\) −847712. −0.191964
\(456\) 0 0
\(457\) 4.01729e6 0.899793 0.449896 0.893081i \(-0.351461\pi\)
0.449896 + 0.893081i \(0.351461\pi\)
\(458\) 4.34163e6 0.967139
\(459\) 0 0
\(460\) −1.16373e6 −0.256424
\(461\) 1.42822e6 0.313000 0.156500 0.987678i \(-0.449979\pi\)
0.156500 + 0.987678i \(0.449979\pi\)
\(462\) 0 0
\(463\) −2.56420e6 −0.555904 −0.277952 0.960595i \(-0.589656\pi\)
−0.277952 + 0.960595i \(0.589656\pi\)
\(464\) 87192.7 0.0188012
\(465\) 0 0
\(466\) 3.31330e6 0.706800
\(467\) 2.07027e6 0.439272 0.219636 0.975582i \(-0.429513\pi\)
0.219636 + 0.975582i \(0.429513\pi\)
\(468\) 0 0
\(469\) 3.68698e6 0.773996
\(470\) −735158. −0.153510
\(471\) 0 0
\(472\) 6.81334e6 1.40768
\(473\) 1.06928e7 2.19755
\(474\) 0 0
\(475\) 731659. 0.148790
\(476\) 1.83291e6 0.370787
\(477\) 0 0
\(478\) −2.94157e6 −0.588856
\(479\) −3.78107e6 −0.752967 −0.376484 0.926423i \(-0.622867\pi\)
−0.376484 + 0.926423i \(0.622867\pi\)
\(480\) 0 0
\(481\) 1.00775e6 0.198606
\(482\) −113176. −0.0221890
\(483\) 0 0
\(484\) −2.15216e6 −0.417601
\(485\) 560747. 0.108246
\(486\) 0 0
\(487\) −7.73232e6 −1.47736 −0.738682 0.674054i \(-0.764551\pi\)
−0.738682 + 0.674054i \(0.764551\pi\)
\(488\) −1.04127e7 −1.97931
\(489\) 0 0
\(490\) 910150. 0.171247
\(491\) 8.20848e6 1.53659 0.768296 0.640094i \(-0.221105\pi\)
0.768296 + 0.640094i \(0.221105\pi\)
\(492\) 0 0
\(493\) −8.20449e6 −1.52032
\(494\) −1.73795e6 −0.320419
\(495\) 0 0
\(496\) 68714.4 0.0125413
\(497\) −3.33813e6 −0.606195
\(498\) 0 0
\(499\) 58456.0 0.0105094 0.00525470 0.999986i \(-0.498327\pi\)
0.00525470 + 0.999986i \(0.498327\pi\)
\(500\) −306312. −0.0547948
\(501\) 0 0
\(502\) 2.39641e6 0.424426
\(503\) −4.83775e6 −0.852557 −0.426278 0.904592i \(-0.640176\pi\)
−0.426278 + 0.904592i \(0.640176\pi\)
\(504\) 0 0
\(505\) −2.68350e6 −0.468246
\(506\) −4.35071e6 −0.755413
\(507\) 0 0
\(508\) −3.09728e6 −0.532502
\(509\) −1.42306e6 −0.243460 −0.121730 0.992563i \(-0.538844\pi\)
−0.121730 + 0.992563i \(0.538844\pi\)
\(510\) 0 0
\(511\) −6.17647e6 −1.04638
\(512\) 143140. 0.0241315
\(513\) 0 0
\(514\) 3.37977e6 0.564261
\(515\) −361837. −0.0601167
\(516\) 0 0
\(517\) 4.34660e6 0.715194
\(518\) 676662. 0.110802
\(519\) 0 0
\(520\) 1.91527e6 0.310615
\(521\) 5.26166e6 0.849236 0.424618 0.905373i \(-0.360408\pi\)
0.424618 + 0.905373i \(0.360408\pi\)
\(522\) 0 0
\(523\) 6.53462e6 1.04464 0.522319 0.852750i \(-0.325067\pi\)
0.522319 + 0.852750i \(0.325067\pi\)
\(524\) −6.44274e6 −1.02504
\(525\) 0 0
\(526\) −2.91734e6 −0.459751
\(527\) −6.46576e6 −1.01413
\(528\) 0 0
\(529\) −798179. −0.124011
\(530\) −2.49894e6 −0.386426
\(531\) 0 0
\(532\) 1.84551e6 0.282707
\(533\) 3.53704e6 0.539289
\(534\) 0 0
\(535\) 1.19892e6 0.181095
\(536\) −8.33015e6 −1.25239
\(537\) 0 0
\(538\) 5.20885e6 0.775865
\(539\) −5.38124e6 −0.797831
\(540\) 0 0
\(541\) 9.38001e6 1.37788 0.688938 0.724820i \(-0.258077\pi\)
0.688938 + 0.724820i \(0.258077\pi\)
\(542\) 2.86084e6 0.418307
\(543\) 0 0
\(544\) −6.70915e6 −0.972008
\(545\) −1.67559e6 −0.241644
\(546\) 0 0
\(547\) −7.75854e6 −1.10869 −0.554347 0.832286i \(-0.687032\pi\)
−0.554347 + 0.832286i \(0.687032\pi\)
\(548\) 5.83081e6 0.829425
\(549\) 0 0
\(550\) −1.14517e6 −0.161423
\(551\) −8.26087e6 −1.15917
\(552\) 0 0
\(553\) 563576. 0.0783682
\(554\) −970567. −0.134354
\(555\) 0 0
\(556\) 329381. 0.0451868
\(557\) 7.61675e6 1.04024 0.520118 0.854094i \(-0.325888\pi\)
0.520118 + 0.854094i \(0.325888\pi\)
\(558\) 0 0
\(559\) 8.66377e6 1.17267
\(560\) 24840.8 0.00334730
\(561\) 0 0
\(562\) 1.79364e6 0.239549
\(563\) 2.87806e6 0.382674 0.191337 0.981524i \(-0.438718\pi\)
0.191337 + 0.981524i \(0.438718\pi\)
\(564\) 0 0
\(565\) −194983. −0.0256967
\(566\) −3.47333e6 −0.455728
\(567\) 0 0
\(568\) 7.54198e6 0.980876
\(569\) −6.23789e6 −0.807713 −0.403856 0.914822i \(-0.632330\pi\)
−0.403856 + 0.914822i \(0.632330\pi\)
\(570\) 0 0
\(571\) −1.14465e7 −1.46920 −0.734601 0.678499i \(-0.762631\pi\)
−0.734601 + 0.678499i \(0.762631\pi\)
\(572\) −4.30191e6 −0.549758
\(573\) 0 0
\(574\) 2.37496e6 0.300868
\(575\) 1.48405e6 0.187189
\(576\) 0 0
\(577\) −1.48097e7 −1.85186 −0.925928 0.377700i \(-0.876715\pi\)
−0.925928 + 0.377700i \(0.876715\pi\)
\(578\) 239646. 0.0298367
\(579\) 0 0
\(580\) 3.45845e6 0.426885
\(581\) 7.50048e6 0.921826
\(582\) 0 0
\(583\) 1.47749e7 1.80034
\(584\) 1.39548e7 1.69313
\(585\) 0 0
\(586\) −708003. −0.0851708
\(587\) −7.19551e6 −0.861919 −0.430959 0.902371i \(-0.641825\pi\)
−0.430959 + 0.902371i \(0.641825\pi\)
\(588\) 0 0
\(589\) −6.51019e6 −0.773224
\(590\) −3.30078e6 −0.390379
\(591\) 0 0
\(592\) −29530.6 −0.00346312
\(593\) −2.20920e6 −0.257987 −0.128994 0.991645i \(-0.541175\pi\)
−0.128994 + 0.991645i \(0.541175\pi\)
\(594\) 0 0
\(595\) −2.33742e6 −0.270673
\(596\) 9.62015e6 1.10934
\(597\) 0 0
\(598\) −3.52514e6 −0.403110
\(599\) −309553. −0.0352508 −0.0176254 0.999845i \(-0.505611\pi\)
−0.0176254 + 0.999845i \(0.505611\pi\)
\(600\) 0 0
\(601\) −5.93532e6 −0.670283 −0.335141 0.942168i \(-0.608784\pi\)
−0.335141 + 0.942168i \(0.608784\pi\)
\(602\) 5.81733e6 0.654233
\(603\) 0 0
\(604\) −2.60430e6 −0.290468
\(605\) 2.74454e6 0.304847
\(606\) 0 0
\(607\) 4.30961e6 0.474751 0.237376 0.971418i \(-0.423713\pi\)
0.237376 + 0.971418i \(0.423713\pi\)
\(608\) −6.75525e6 −0.741110
\(609\) 0 0
\(610\) 5.04452e6 0.548903
\(611\) 3.52181e6 0.381648
\(612\) 0 0
\(613\) 1.06508e7 1.14480 0.572402 0.819973i \(-0.306012\pi\)
0.572402 + 0.819973i \(0.306012\pi\)
\(614\) 3.46040e6 0.370429
\(615\) 0 0
\(616\) −7.60356e6 −0.807356
\(617\) 1.57352e7 1.66403 0.832014 0.554754i \(-0.187188\pi\)
0.832014 + 0.554754i \(0.187188\pi\)
\(618\) 0 0
\(619\) 3.90140e6 0.409255 0.204627 0.978840i \(-0.434402\pi\)
0.204627 + 0.978840i \(0.434402\pi\)
\(620\) 2.72552e6 0.284754
\(621\) 0 0
\(622\) −6.00962e6 −0.622832
\(623\) −568918. −0.0587259
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.80241e6 0.183831
\(627\) 0 0
\(628\) −5.89591e6 −0.596557
\(629\) 2.77871e6 0.280038
\(630\) 0 0
\(631\) −1.35074e7 −1.35051 −0.675254 0.737586i \(-0.735966\pi\)
−0.675254 + 0.737586i \(0.735966\pi\)
\(632\) −1.27331e6 −0.126807
\(633\) 0 0
\(634\) −8.84825e6 −0.874247
\(635\) 3.94981e6 0.388724
\(636\) 0 0
\(637\) −4.36012e6 −0.425745
\(638\) 1.29297e7 1.25758
\(639\) 0 0
\(640\) 2.79331e6 0.269569
\(641\) 7.66035e6 0.736382 0.368191 0.929750i \(-0.379977\pi\)
0.368191 + 0.929750i \(0.379977\pi\)
\(642\) 0 0
\(643\) 1.12191e7 1.07012 0.535060 0.844814i \(-0.320289\pi\)
0.535060 + 0.844814i \(0.320289\pi\)
\(644\) 3.74331e6 0.355665
\(645\) 0 0
\(646\) −4.79209e6 −0.451797
\(647\) −1.67988e7 −1.57767 −0.788835 0.614604i \(-0.789316\pi\)
−0.788835 + 0.614604i \(0.789316\pi\)
\(648\) 0 0
\(649\) 1.95158e7 1.81876
\(650\) −927870. −0.0861398
\(651\) 0 0
\(652\) 1.30104e7 1.19859
\(653\) −9.92579e6 −0.910924 −0.455462 0.890255i \(-0.650526\pi\)
−0.455462 + 0.890255i \(0.650526\pi\)
\(654\) 0 0
\(655\) 8.21611e6 0.748278
\(656\) −103647. −0.00940365
\(657\) 0 0
\(658\) 2.36474e6 0.212921
\(659\) 7.26028e6 0.651238 0.325619 0.945501i \(-0.394427\pi\)
0.325619 + 0.945501i \(0.394427\pi\)
\(660\) 0 0
\(661\) 4.89224e6 0.435516 0.217758 0.976003i \(-0.430126\pi\)
0.217758 + 0.976003i \(0.430126\pi\)
\(662\) 6.66606e6 0.591186
\(663\) 0 0
\(664\) −1.69462e7 −1.49160
\(665\) −2.35348e6 −0.206375
\(666\) 0 0
\(667\) −1.67558e7 −1.45831
\(668\) 3.89781e6 0.337971
\(669\) 0 0
\(670\) 4.03561e6 0.347314
\(671\) −2.98256e7 −2.55731
\(672\) 0 0
\(673\) 8.33639e6 0.709481 0.354740 0.934965i \(-0.384569\pi\)
0.354740 + 0.934965i \(0.384569\pi\)
\(674\) −1.15876e7 −0.982526
\(675\) 0 0
\(676\) 3.79323e6 0.319258
\(677\) −1.56824e7 −1.31505 −0.657525 0.753433i \(-0.728396\pi\)
−0.657525 + 0.753433i \(0.728396\pi\)
\(678\) 0 0
\(679\) −1.80372e6 −0.150140
\(680\) 5.28104e6 0.437972
\(681\) 0 0
\(682\) 1.01896e7 0.838871
\(683\) −1.39324e7 −1.14281 −0.571407 0.820667i \(-0.693602\pi\)
−0.571407 + 0.820667i \(0.693602\pi\)
\(684\) 0 0
\(685\) −7.43574e6 −0.605477
\(686\) −7.68616e6 −0.623590
\(687\) 0 0
\(688\) −253877. −0.0204481
\(689\) 1.19713e7 0.960713
\(690\) 0 0
\(691\) −3.60504e6 −0.287220 −0.143610 0.989634i \(-0.545871\pi\)
−0.143610 + 0.989634i \(0.545871\pi\)
\(692\) 8.34288e6 0.662294
\(693\) 0 0
\(694\) 640912. 0.0505126
\(695\) −420044. −0.0329862
\(696\) 0 0
\(697\) 9.75277e6 0.760407
\(698\) −2.80318e6 −0.217777
\(699\) 0 0
\(700\) 985296. 0.0760014
\(701\) −5.10596e6 −0.392448 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(702\) 0 0
\(703\) 2.79781e6 0.213515
\(704\) 1.07789e7 0.819678
\(705\) 0 0
\(706\) −2.56178e6 −0.193433
\(707\) 8.63186e6 0.649465
\(708\) 0 0
\(709\) −8.89610e6 −0.664637 −0.332318 0.943167i \(-0.607831\pi\)
−0.332318 + 0.943167i \(0.607831\pi\)
\(710\) −3.65378e6 −0.272017
\(711\) 0 0
\(712\) 1.28538e6 0.0950237
\(713\) −1.32049e7 −0.972769
\(714\) 0 0
\(715\) 5.48601e6 0.401321
\(716\) −5.32013e6 −0.387829
\(717\) 0 0
\(718\) 9.00090e6 0.651591
\(719\) −1.71802e7 −1.23938 −0.619691 0.784846i \(-0.712742\pi\)
−0.619691 + 0.784846i \(0.712742\pi\)
\(720\) 0 0
\(721\) 1.16390e6 0.0833829
\(722\) 3.89282e6 0.277921
\(723\) 0 0
\(724\) −7.65687e6 −0.542881
\(725\) −4.41039e6 −0.311625
\(726\) 0 0
\(727\) −1.48569e7 −1.04254 −0.521270 0.853392i \(-0.674542\pi\)
−0.521270 + 0.853392i \(0.674542\pi\)
\(728\) −6.16074e6 −0.430828
\(729\) 0 0
\(730\) −6.76050e6 −0.469539
\(731\) 2.38888e7 1.65349
\(732\) 0 0
\(733\) −1.97878e7 −1.36031 −0.680154 0.733069i \(-0.738087\pi\)
−0.680154 + 0.733069i \(0.738087\pi\)
\(734\) −7.58544e6 −0.519686
\(735\) 0 0
\(736\) −1.37019e7 −0.932367
\(737\) −2.38605e7 −1.61812
\(738\) 0 0
\(739\) 1.26011e7 0.848783 0.424392 0.905479i \(-0.360488\pi\)
0.424392 + 0.905479i \(0.360488\pi\)
\(740\) −1.17131e6 −0.0786310
\(741\) 0 0
\(742\) 8.03819e6 0.535980
\(743\) 1.19632e7 0.795014 0.397507 0.917599i \(-0.369875\pi\)
0.397507 + 0.917599i \(0.369875\pi\)
\(744\) 0 0
\(745\) −1.22681e7 −0.809817
\(746\) 1.27204e7 0.836860
\(747\) 0 0
\(748\) −1.18618e7 −0.775168
\(749\) −3.85650e6 −0.251182
\(750\) 0 0
\(751\) 1.44504e7 0.934933 0.467466 0.884011i \(-0.345167\pi\)
0.467466 + 0.884011i \(0.345167\pi\)
\(752\) −103201. −0.00665485
\(753\) 0 0
\(754\) 1.04762e7 0.671082
\(755\) 3.32113e6 0.212041
\(756\) 0 0
\(757\) −2.08448e7 −1.32208 −0.661040 0.750351i \(-0.729885\pi\)
−0.661040 + 0.750351i \(0.729885\pi\)
\(758\) −2.32517e6 −0.146988
\(759\) 0 0
\(760\) 5.31733e6 0.333933
\(761\) −6.27907e6 −0.393037 −0.196518 0.980500i \(-0.562964\pi\)
−0.196518 + 0.980500i \(0.562964\pi\)
\(762\) 0 0
\(763\) 5.38977e6 0.335165
\(764\) −3.64482e6 −0.225914
\(765\) 0 0
\(766\) 1.79762e7 1.10695
\(767\) 1.58126e7 0.970540
\(768\) 0 0
\(769\) 6.28302e6 0.383136 0.191568 0.981479i \(-0.438643\pi\)
0.191568 + 0.981479i \(0.438643\pi\)
\(770\) 3.68361e6 0.223896
\(771\) 0 0
\(772\) 1.51793e7 0.916662
\(773\) 2.10517e7 1.26718 0.633591 0.773668i \(-0.281580\pi\)
0.633591 + 0.773668i \(0.281580\pi\)
\(774\) 0 0
\(775\) −3.47572e6 −0.207869
\(776\) 4.07522e6 0.242939
\(777\) 0 0
\(778\) −1.73373e6 −0.102691
\(779\) 9.81979e6 0.579774
\(780\) 0 0
\(781\) 2.16029e7 1.26731
\(782\) −9.71996e6 −0.568392
\(783\) 0 0
\(784\) 127766. 0.00742378
\(785\) 7.51877e6 0.435484
\(786\) 0 0
\(787\) −1.95429e6 −0.112474 −0.0562370 0.998417i \(-0.517910\pi\)
−0.0562370 + 0.998417i \(0.517910\pi\)
\(788\) 780694. 0.0447884
\(789\) 0 0
\(790\) 616867. 0.0351661
\(791\) 627191. 0.0356417
\(792\) 0 0
\(793\) −2.41660e7 −1.36465
\(794\) 9.57931e6 0.539241
\(795\) 0 0
\(796\) 392735. 0.0219693
\(797\) 1.56292e7 0.871547 0.435774 0.900056i \(-0.356475\pi\)
0.435774 + 0.900056i \(0.356475\pi\)
\(798\) 0 0
\(799\) 9.71078e6 0.538130
\(800\) −3.60655e6 −0.199236
\(801\) 0 0
\(802\) −718705. −0.0394562
\(803\) 3.99713e7 2.18756
\(804\) 0 0
\(805\) −4.77366e6 −0.259634
\(806\) 8.25604e6 0.447646
\(807\) 0 0
\(808\) −1.95023e7 −1.05089
\(809\) −8.57518e6 −0.460651 −0.230326 0.973114i \(-0.573979\pi\)
−0.230326 + 0.973114i \(0.573979\pi\)
\(810\) 0 0
\(811\) −5.81206e6 −0.310297 −0.155149 0.987891i \(-0.549586\pi\)
−0.155149 + 0.987891i \(0.549586\pi\)
\(812\) −1.11246e7 −0.592098
\(813\) 0 0
\(814\) −4.37905e6 −0.231643
\(815\) −1.65915e7 −0.874967
\(816\) 0 0
\(817\) 2.40530e7 1.26071
\(818\) 1.64901e6 0.0861670
\(819\) 0 0
\(820\) −4.11110e6 −0.213512
\(821\) 8.43637e6 0.436815 0.218408 0.975858i \(-0.429914\pi\)
0.218408 + 0.975858i \(0.429914\pi\)
\(822\) 0 0
\(823\) −3.48078e6 −0.179133 −0.0895667 0.995981i \(-0.528548\pi\)
−0.0895667 + 0.995981i \(0.528548\pi\)
\(824\) −2.62965e6 −0.134921
\(825\) 0 0
\(826\) 1.06174e7 0.541463
\(827\) 3.76000e7 1.91172 0.955861 0.293820i \(-0.0949268\pi\)
0.955861 + 0.293820i \(0.0949268\pi\)
\(828\) 0 0
\(829\) 1.78630e7 0.902752 0.451376 0.892334i \(-0.350933\pi\)
0.451376 + 0.892334i \(0.350933\pi\)
\(830\) 8.20972e6 0.413650
\(831\) 0 0
\(832\) 8.73355e6 0.437404
\(833\) −1.20223e7 −0.600308
\(834\) 0 0
\(835\) −4.97069e6 −0.246718
\(836\) −1.19433e7 −0.591028
\(837\) 0 0
\(838\) −8.63315e6 −0.424678
\(839\) −1.01511e7 −0.497861 −0.248931 0.968521i \(-0.580079\pi\)
−0.248931 + 0.968521i \(0.580079\pi\)
\(840\) 0 0
\(841\) 2.92847e7 1.42775
\(842\) −1.94234e7 −0.944160
\(843\) 0 0
\(844\) 4.53766e6 0.219269
\(845\) −4.83732e6 −0.233057
\(846\) 0 0
\(847\) −8.82820e6 −0.422828
\(848\) −350799. −0.0167521
\(849\) 0 0
\(850\) −2.55844e6 −0.121459
\(851\) 5.67489e6 0.268617
\(852\) 0 0
\(853\) −2.57022e7 −1.20948 −0.604738 0.796425i \(-0.706722\pi\)
−0.604738 + 0.796425i \(0.706722\pi\)
\(854\) −1.62264e7 −0.761338
\(855\) 0 0
\(856\) 8.71315e6 0.406435
\(857\) 2.47250e7 1.14996 0.574982 0.818166i \(-0.305009\pi\)
0.574982 + 0.818166i \(0.305009\pi\)
\(858\) 0 0
\(859\) −4.01446e7 −1.85628 −0.928141 0.372228i \(-0.878594\pi\)
−0.928141 + 0.372228i \(0.878594\pi\)
\(860\) −1.00699e7 −0.464279
\(861\) 0 0
\(862\) 7.95261e6 0.364537
\(863\) −3.30616e7 −1.51111 −0.755556 0.655084i \(-0.772633\pi\)
−0.755556 + 0.655084i \(0.772633\pi\)
\(864\) 0 0
\(865\) −1.06393e7 −0.483472
\(866\) 7.14206e6 0.323615
\(867\) 0 0
\(868\) −8.76700e6 −0.394959
\(869\) −3.64721e6 −0.163837
\(870\) 0 0
\(871\) −1.93328e7 −0.863475
\(872\) −1.21773e7 −0.542327
\(873\) 0 0
\(874\) −9.78676e6 −0.433371
\(875\) −1.25650e6 −0.0554807
\(876\) 0 0
\(877\) 2.39879e7 1.05316 0.526579 0.850126i \(-0.323475\pi\)
0.526579 + 0.850126i \(0.323475\pi\)
\(878\) 6.14200e6 0.268889
\(879\) 0 0
\(880\) −160758. −0.00699789
\(881\) −3.84976e7 −1.67107 −0.835534 0.549439i \(-0.814842\pi\)
−0.835534 + 0.549439i \(0.814842\pi\)
\(882\) 0 0
\(883\) 2.51833e7 1.08695 0.543476 0.839425i \(-0.317108\pi\)
0.543476 + 0.839425i \(0.317108\pi\)
\(884\) −9.61093e6 −0.413652
\(885\) 0 0
\(886\) −3.47573e6 −0.148752
\(887\) −3.20905e7 −1.36952 −0.684759 0.728770i \(-0.740092\pi\)
−0.684759 + 0.728770i \(0.740092\pi\)
\(888\) 0 0
\(889\) −1.27051e7 −0.539168
\(890\) −622714. −0.0263520
\(891\) 0 0
\(892\) −2.63594e6 −0.110924
\(893\) 9.77751e6 0.410298
\(894\) 0 0
\(895\) 6.78450e6 0.283113
\(896\) −8.98507e6 −0.373896
\(897\) 0 0
\(898\) −2.74005e7 −1.13388
\(899\) 3.92429e7 1.61943
\(900\) 0 0
\(901\) 3.30088e7 1.35462
\(902\) −1.53697e7 −0.628997
\(903\) 0 0
\(904\) −1.41704e6 −0.0576715
\(905\) 9.76443e6 0.396301
\(906\) 0 0
\(907\) −463821. −0.0187211 −0.00936057 0.999956i \(-0.502980\pi\)
−0.00936057 + 0.999956i \(0.502980\pi\)
\(908\) −2.91517e7 −1.17341
\(909\) 0 0
\(910\) 2.98462e6 0.119477
\(911\) 2.98906e7 1.19327 0.596634 0.802513i \(-0.296504\pi\)
0.596634 + 0.802513i \(0.296504\pi\)
\(912\) 0 0
\(913\) −4.85398e7 −1.92717
\(914\) −1.41441e7 −0.560026
\(915\) 0 0
\(916\) 2.41744e7 0.951957
\(917\) −2.64282e7 −1.03787
\(918\) 0 0
\(919\) 3.02895e7 1.18305 0.591524 0.806287i \(-0.298526\pi\)
0.591524 + 0.806287i \(0.298526\pi\)
\(920\) 1.07853e7 0.420111
\(921\) 0 0
\(922\) −5.02849e6 −0.194809
\(923\) 1.75036e7 0.676274
\(924\) 0 0
\(925\) 1.49372e6 0.0574003
\(926\) 9.02803e6 0.345992
\(927\) 0 0
\(928\) 4.07201e7 1.55217
\(929\) −2.64394e7 −1.00511 −0.502554 0.864546i \(-0.667606\pi\)
−0.502554 + 0.864546i \(0.667606\pi\)
\(930\) 0 0
\(931\) −1.21049e7 −0.457706
\(932\) 1.84486e7 0.695704
\(933\) 0 0
\(934\) −7.28899e6 −0.273401
\(935\) 1.51267e7 0.565870
\(936\) 0 0
\(937\) 1.87274e7 0.696833 0.348416 0.937340i \(-0.386720\pi\)
0.348416 + 0.937340i \(0.386720\pi\)
\(938\) −1.29811e7 −0.481731
\(939\) 0 0
\(940\) −4.09340e6 −0.151100
\(941\) −2.91313e7 −1.07247 −0.536236 0.844068i \(-0.680154\pi\)
−0.536236 + 0.844068i \(0.680154\pi\)
\(942\) 0 0
\(943\) 1.99178e7 0.729395
\(944\) −463360. −0.0169234
\(945\) 0 0
\(946\) −3.76471e7 −1.36774
\(947\) 9.75601e6 0.353506 0.176753 0.984255i \(-0.443441\pi\)
0.176753 + 0.984255i \(0.443441\pi\)
\(948\) 0 0
\(949\) 3.23865e7 1.16734
\(950\) −2.57602e6 −0.0926064
\(951\) 0 0
\(952\) −1.69872e7 −0.607476
\(953\) 4.75019e6 0.169425 0.0847127 0.996405i \(-0.473003\pi\)
0.0847127 + 0.996405i \(0.473003\pi\)
\(954\) 0 0
\(955\) 4.64806e6 0.164916
\(956\) −1.63788e7 −0.579612
\(957\) 0 0
\(958\) 1.33124e7 0.468643
\(959\) 2.39181e7 0.839808
\(960\) 0 0
\(961\) 2.29725e6 0.0802415
\(962\) −3.54810e6 −0.123611
\(963\) 0 0
\(964\) −630173. −0.0218407
\(965\) −1.93574e7 −0.669160
\(966\) 0 0
\(967\) −208056. −0.00715508 −0.00357754 0.999994i \(-0.501139\pi\)
−0.00357754 + 0.999994i \(0.501139\pi\)
\(968\) 1.99459e7 0.684173
\(969\) 0 0
\(970\) −1.97428e6 −0.0673719
\(971\) 1.65816e7 0.564388 0.282194 0.959357i \(-0.408938\pi\)
0.282194 + 0.959357i \(0.408938\pi\)
\(972\) 0 0
\(973\) 1.35113e6 0.0457525
\(974\) 2.72239e7 0.919503
\(975\) 0 0
\(976\) 708145. 0.0237957
\(977\) 1.41891e7 0.475575 0.237787 0.971317i \(-0.423578\pi\)
0.237787 + 0.971317i \(0.423578\pi\)
\(978\) 0 0
\(979\) 3.68179e6 0.122773
\(980\) 5.06777e6 0.168559
\(981\) 0 0
\(982\) −2.89004e7 −0.956367
\(983\) −4.24448e7 −1.40101 −0.700504 0.713649i \(-0.747041\pi\)
−0.700504 + 0.713649i \(0.747041\pi\)
\(984\) 0 0
\(985\) −995581. −0.0326953
\(986\) 2.88863e7 0.946238
\(987\) 0 0
\(988\) −9.67698e6 −0.315390
\(989\) 4.87876e7 1.58606
\(990\) 0 0
\(991\) −3.61915e7 −1.17064 −0.585320 0.810803i \(-0.699031\pi\)
−0.585320 + 0.810803i \(0.699031\pi\)
\(992\) 3.20905e7 1.03538
\(993\) 0 0
\(994\) 1.17529e7 0.377292
\(995\) −500836. −0.0160375
\(996\) 0 0
\(997\) −9.68344e6 −0.308526 −0.154263 0.988030i \(-0.549300\pi\)
−0.154263 + 0.988030i \(0.549300\pi\)
\(998\) −205812. −0.00654100
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.6.a.f.1.1 yes 2
3.2 odd 2 45.6.a.d.1.2 2
4.3 odd 2 720.6.a.be.1.2 2
5.2 odd 4 225.6.b.k.199.2 4
5.3 odd 4 225.6.b.k.199.3 4
5.4 even 2 225.6.a.k.1.2 2
12.11 even 2 720.6.a.y.1.2 2
15.2 even 4 225.6.b.j.199.3 4
15.8 even 4 225.6.b.j.199.2 4
15.14 odd 2 225.6.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.6.a.d.1.2 2 3.2 odd 2
45.6.a.f.1.1 yes 2 1.1 even 1 trivial
225.6.a.k.1.2 2 5.4 even 2
225.6.a.r.1.1 2 15.14 odd 2
225.6.b.j.199.2 4 15.8 even 4
225.6.b.j.199.3 4 15.2 even 4
225.6.b.k.199.2 4 5.2 odd 4
225.6.b.k.199.3 4 5.3 odd 4
720.6.a.y.1.2 2 12.11 even 2
720.6.a.be.1.2 2 4.3 odd 2