Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,5,Mod(7,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([8, 3]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.7");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.k (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.65164833877\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −7.37360 | + | 1.97575i | −7.93026 | + | 4.25569i | 36.6100 | − | 21.1368i | −3.41993 | − | 24.7650i | 50.0664 | − | 47.0480i | 1.13081 | − | 0.303000i | −141.821 | + | 141.821i | 44.7781 | − | 67.4975i | 74.1466 | + | 175.850i |
7.2 | −7.18652 | + | 1.92562i | 5.92105 | − | 6.77799i | 34.0817 | − | 19.6771i | −17.5700 | + | 17.7847i | −29.4999 | + | 60.1119i | 7.39767 | − | 1.98220i | −122.864 | + | 122.864i | −10.8823 | − | 80.2657i | 92.0204 | − | 161.643i |
7.3 | −5.96640 | + | 1.59869i | 4.37368 | + | 7.86581i | 19.1857 | − | 11.0769i | 17.4821 | + | 17.8711i | −38.6701 | − | 39.9384i | 57.8267 | − | 15.4946i | −26.8779 | + | 26.8779i | −42.7419 | + | 68.8050i | −132.876 | − | 78.6774i |
7.4 | −5.12943 | + | 1.37443i | −2.02987 | − | 8.76810i | 10.5656 | − | 6.10008i | 22.8406 | − | 10.1640i | 22.4632 | + | 42.1855i | −44.8951 | + | 12.0296i | 14.2684 | − | 14.2684i | −72.7592 | + | 35.5962i | −103.190 | + | 83.5282i |
7.5 | −5.09412 | + | 1.36497i | 8.84729 | + | 1.65091i | 10.2306 | − | 5.90662i | 5.54978 | − | 24.3762i | −47.3226 | + | 3.66629i | −32.3351 | + | 8.66418i | 15.6131 | − | 15.6131i | 75.5490 | + | 29.2122i | 5.00143 | + | 131.751i |
7.6 | −4.24313 | + | 1.13694i | −7.57398 | + | 4.86156i | 2.85511 | − | 1.64840i | 3.64389 | + | 24.7330i | 26.6101 | − | 29.2394i | −60.5059 | + | 16.2125i | 39.4585 | − | 39.4585i | 33.7305 | − | 73.6428i | −43.5815 | − | 100.803i |
7.7 | −4.24152 | + | 1.13651i | −6.48766 | − | 6.23781i | 2.84239 | − | 1.64106i | −24.8558 | + | 2.68162i | 34.6068 | + | 19.0845i | 33.8543 | − | 9.07123i | 39.4891 | − | 39.4891i | 3.17942 | + | 80.9376i | 102.378 | − | 39.6230i |
7.8 | −2.72485 | + | 0.730121i | −0.405345 | + | 8.99087i | −6.96468 | + | 4.02106i | −20.8337 | − | 13.8187i | −5.45992 | − | 24.7947i | 37.5459 | − | 10.0604i | 47.9575 | − | 47.9575i | −80.6714 | − | 7.28880i | 66.8580 | + | 22.4427i |
7.9 | −1.67997 | + | 0.450147i | 8.99424 | + | 0.321935i | −11.2367 | + | 6.48753i | −21.1623 | + | 13.3100i | −15.2550 | + | 3.50789i | −38.8993 | + | 10.4230i | 35.6343 | − | 35.6343i | 80.7927 | + | 5.79111i | 29.5606 | − | 31.8866i |
7.10 | −1.49904 | + | 0.401665i | 6.08169 | − | 6.63423i | −11.7706 | + | 6.79578i | 19.7780 | + | 15.2915i | −6.45194 | + | 12.3878i | 55.2269 | − | 14.7980i | 32.4729 | − | 32.4729i | −7.02599 | − | 80.6947i | −35.7900 | − | 14.9784i |
7.11 | −0.777665 | + | 0.208375i | −8.98887 | + | 0.447392i | −13.2951 | + | 7.67591i | 20.3088 | − | 14.5793i | 6.89710 | − | 2.22097i | 66.5008 | − | 17.8188i | 17.8483 | − | 17.8483i | 80.5997 | − | 8.04310i | −12.7555 | + | 15.5696i |
7.12 | 0.540591 | − | 0.144851i | 0.247757 | + | 8.99659i | −13.5851 | + | 7.84339i | 23.0808 | − | 9.60597i | 1.43710 | + | 4.82759i | −71.0919 | + | 19.0490i | −12.5397 | + | 12.5397i | −80.8772 | + | 4.45794i | 11.0859 | − | 8.53618i |
7.13 | 0.873962 | − | 0.234177i | 2.00485 | − | 8.77386i | −13.1474 | + | 7.59068i | −13.2061 | − | 21.2273i | −0.302473 | − | 8.13751i | −26.6745 | + | 7.14742i | −19.9493 | + | 19.9493i | −72.9611 | − | 35.1806i | −16.5126 | − | 15.4593i |
7.14 | 1.99166 | − | 0.533664i | −6.71025 | − | 5.99772i | −10.1745 | + | 5.87424i | 3.24189 | + | 24.7889i | −16.5653 | − | 8.36441i | −22.3091 | + | 5.97771i | −40.4572 | + | 40.4572i | 9.05478 | + | 80.4923i | 19.6857 | + | 47.6411i |
7.15 | 2.86666 | − | 0.768118i | 4.92601 | + | 7.53222i | −6.22870 | + | 3.59614i | −6.53092 | + | 24.1319i | 19.9068 | + | 17.8085i | 27.3211 | − | 7.32067i | −48.6699 | + | 48.6699i | −32.4688 | + | 74.2077i | −0.185764 | + | 74.1943i |
7.16 | 3.53742 | − | 0.947849i | −7.88777 | + | 4.33395i | −2.24148 | + | 1.29412i | −24.4029 | − | 5.43125i | −23.7944 | + | 22.8074i | −20.1905 | + | 5.41004i | −48.1356 | + | 48.1356i | 43.4337 | − | 68.3704i | −91.4713 | + | 3.91765i |
7.17 | 3.53838 | − | 0.948107i | 8.84647 | + | 1.65531i | −2.23516 | + | 1.29047i | 7.26089 | − | 23.9224i | 32.8716 | − | 2.53029i | 59.6290 | − | 15.9776i | −48.1298 | + | 48.1298i | 75.5199 | + | 29.2872i | 3.01086 | − | 91.5306i |
7.18 | 5.46311 | − | 1.46384i | 7.72308 | − | 4.62104i | 13.8464 | − | 7.99420i | 22.0807 | + | 11.7237i | 35.4276 | − | 36.5506i | −85.6591 | + | 22.9523i | −0.0464312 | + | 0.0464312i | 38.2920 | − | 71.3773i | 137.791 | + | 31.7253i |
7.19 | 6.10168 | − | 1.63494i | −6.85270 | − | 5.83443i | 20.7010 | − | 11.9517i | 10.5860 | − | 22.6481i | −51.3519 | − | 24.3961i | −11.1590 | + | 2.99004i | 35.3028 | − | 35.3028i | 12.9189 | + | 79.9631i | 27.5642 | − | 155.499i |
7.20 | 6.12130 | − | 1.64020i | 2.33917 | − | 8.69070i | 20.9237 | − | 12.0803i | −20.7596 | + | 13.9297i | 0.0642868 | − | 57.0351i | 76.3600 | − | 20.4606i | 36.5683 | − | 36.5683i | −70.0566 | − | 40.6580i | −104.228 | + | 119.318i |
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.k | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.5.k.a | ✓ | 88 |
3.b | odd | 2 | 1 | 135.5.l.a | 88 | ||
5.c | odd | 4 | 1 | inner | 45.5.k.a | ✓ | 88 |
9.c | even | 3 | 1 | inner | 45.5.k.a | ✓ | 88 |
9.d | odd | 6 | 1 | 135.5.l.a | 88 | ||
15.e | even | 4 | 1 | 135.5.l.a | 88 | ||
45.k | odd | 12 | 1 | inner | 45.5.k.a | ✓ | 88 |
45.l | even | 12 | 1 | 135.5.l.a | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.5.k.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
45.5.k.a | ✓ | 88 | 5.c | odd | 4 | 1 | inner |
45.5.k.a | ✓ | 88 | 9.c | even | 3 | 1 | inner |
45.5.k.a | ✓ | 88 | 45.k | odd | 12 | 1 | inner |
135.5.l.a | 88 | 3.b | odd | 2 | 1 | ||
135.5.l.a | 88 | 9.d | odd | 6 | 1 | ||
135.5.l.a | 88 | 15.e | even | 4 | 1 | ||
135.5.l.a | 88 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(45, [\chi])\).