Properties

Label 45.5.i.a
Level $45$
Weight $5$
Character orbit 45.i
Analytic conductor $4.652$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(11,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.11");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 8 q^{3} + 128 q^{4} + 98 q^{6} - 26 q^{7} - 220 q^{9} - 738 q^{11} - 214 q^{12} + 10 q^{13} + 1998 q^{14} - 50 q^{15} - 1024 q^{16} - 2504 q^{18} + 508 q^{19} - 1620 q^{21} + 672 q^{22} + 1998 q^{23}+ \cdots + 53512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −6.31571 3.64638i −7.77630 + 4.53091i 18.5921 + 32.2025i 9.68246 5.59017i 65.6342 0.260606i −25.8824 + 44.8297i 154.491i 39.9417 70.4675i −81.5354
11.2 −5.76237 3.32690i 8.89517 1.36966i 14.1366 + 24.4853i −9.68246 + 5.59017i −55.8139 21.7009i −43.3865 + 75.1475i 81.6633i 77.2481 24.3666i 74.3918
11.3 −5.11159 2.95118i 1.28176 + 8.90826i 9.41890 + 16.3140i −9.68246 + 5.59017i 19.7380 49.3181i 36.1606 62.6320i 16.7497i −77.7142 + 22.8364i 65.9903
11.4 −3.37336 1.94761i 8.40237 3.22494i −0.413632 0.716431i 9.68246 5.59017i −34.6251 5.48565i 15.5174 26.8770i 65.5459i 60.1995 54.1943i −43.5499
11.5 −3.23824 1.86960i 3.54924 + 8.27060i −1.00919 1.74797i 9.68246 5.59017i 3.96942 33.4179i −19.7075 + 34.1344i 67.3743i −55.8058 + 58.7087i −41.8055
11.6 −3.23643 1.86855i −8.96800 + 0.758233i −1.01703 1.76154i −9.68246 + 5.59017i 30.4411 + 14.3032i 8.02923 13.9070i 67.3951i 79.8502 13.5997i 41.7821
11.7 −2.15054 1.24161i −6.81039 5.88376i −4.91680 8.51614i 9.68246 5.59017i 7.34064 + 21.1091i −15.7848 + 27.3401i 64.1506i 11.7628 + 80.1414i −27.7633
11.8 −1.06605 0.615486i 1.63702 8.84987i −7.24235 12.5441i −9.68246 + 5.59017i −7.19213 + 8.42687i −21.1314 + 36.6007i 37.5258i −75.6403 28.9748i 13.7627
11.9 0.817210 + 0.471817i −6.73136 + 5.97401i −7.55478 13.0853i 9.68246 5.59017i −8.31957 + 1.70605i 31.6912 54.8908i 29.3560i 9.62249 80.4264i 10.5501
11.10 0.904609 + 0.522276i −2.25893 + 8.71190i −7.45446 12.9115i −9.68246 + 5.59017i −6.59347 + 6.70108i −36.4983 + 63.2168i 32.2860i −70.7944 39.3592i −11.6784
11.11 2.59623 + 1.49894i 4.94975 7.51665i −3.50638 6.07323i 9.68246 5.59017i 24.1177 12.0956i −1.63719 + 2.83570i 68.9893i −31.9999 74.4110i 33.5172
11.12 3.10572 + 1.79309i −5.44105 7.16903i −1.56968 2.71877i −9.68246 + 5.59017i −4.04367 32.0212i 45.9054 79.5105i 68.6371i −21.7900 + 78.0141i −40.0946
11.13 4.78725 + 2.76392i 4.38356 + 7.86031i 7.27848 + 12.6067i 9.68246 5.59017i −0.740053 + 49.7450i −0.820328 + 1.42085i 7.97692i −42.5688 + 68.9122i 61.8031
11.14 5.22878 + 3.01884i 8.75515 2.08503i 10.2268 + 17.7133i −9.68246 + 5.59017i 52.0731 + 15.5282i −8.13139 + 14.0840i 26.8889i 72.3053 36.5095i −67.5033
11.15 5.93733 + 3.42792i −5.90111 + 6.79536i 15.5013 + 26.8490i −9.68246 + 5.59017i −58.3308 + 20.1178i 12.5523 21.7412i 102.855i −11.3538 80.2003i −76.6506
11.16 6.87716 + 3.97053i −1.96687 8.78245i 23.5302 + 40.7555i 9.68246 5.59017i 21.3445 68.2078i 10.1236 17.5346i 246.652i −73.2629 + 34.5478i 88.7837
41.1 −6.31571 + 3.64638i −7.77630 4.53091i 18.5921 32.2025i 9.68246 + 5.59017i 65.6342 + 0.260606i −25.8824 44.8297i 154.491i 39.9417 + 70.4675i −81.5354
41.2 −5.76237 + 3.32690i 8.89517 + 1.36966i 14.1366 24.4853i −9.68246 5.59017i −55.8139 + 21.7009i −43.3865 75.1475i 81.6633i 77.2481 + 24.3666i 74.3918
41.3 −5.11159 + 2.95118i 1.28176 8.90826i 9.41890 16.3140i −9.68246 5.59017i 19.7380 + 49.3181i 36.1606 + 62.6320i 16.7497i −77.7142 22.8364i 65.9903
41.4 −3.37336 + 1.94761i 8.40237 + 3.22494i −0.413632 + 0.716431i 9.68246 + 5.59017i −34.6251 + 5.48565i 15.5174 + 26.8770i 65.5459i 60.1995 + 54.1943i −43.5499
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.5.i.a 32
3.b odd 2 1 135.5.i.a 32
9.c even 3 1 135.5.i.a 32
9.c even 3 1 405.5.c.b 32
9.d odd 6 1 inner 45.5.i.a 32
9.d odd 6 1 405.5.c.b 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.5.i.a 32 1.a even 1 1 trivial
45.5.i.a 32 9.d odd 6 1 inner
135.5.i.a 32 3.b odd 2 1
135.5.i.a 32 9.c even 3 1
405.5.c.b 32 9.c even 3 1
405.5.c.b 32 9.d odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(45, [\chi])\).