Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,5,Mod(11,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.11");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.i (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.65164833877\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −6.31571 | − | 3.64638i | −7.77630 | + | 4.53091i | 18.5921 | + | 32.2025i | 9.68246 | − | 5.59017i | 65.6342 | − | 0.260606i | −25.8824 | + | 44.8297i | − | 154.491i | 39.9417 | − | 70.4675i | −81.5354 | |||
11.2 | −5.76237 | − | 3.32690i | 8.89517 | − | 1.36966i | 14.1366 | + | 24.4853i | −9.68246 | + | 5.59017i | −55.8139 | − | 21.7009i | −43.3865 | + | 75.1475i | − | 81.6633i | 77.2481 | − | 24.3666i | 74.3918 | |||
11.3 | −5.11159 | − | 2.95118i | 1.28176 | + | 8.90826i | 9.41890 | + | 16.3140i | −9.68246 | + | 5.59017i | 19.7380 | − | 49.3181i | 36.1606 | − | 62.6320i | − | 16.7497i | −77.7142 | + | 22.8364i | 65.9903 | |||
11.4 | −3.37336 | − | 1.94761i | 8.40237 | − | 3.22494i | −0.413632 | − | 0.716431i | 9.68246 | − | 5.59017i | −34.6251 | − | 5.48565i | 15.5174 | − | 26.8770i | 65.5459i | 60.1995 | − | 54.1943i | −43.5499 | ||||
11.5 | −3.23824 | − | 1.86960i | 3.54924 | + | 8.27060i | −1.00919 | − | 1.74797i | 9.68246 | − | 5.59017i | 3.96942 | − | 33.4179i | −19.7075 | + | 34.1344i | 67.3743i | −55.8058 | + | 58.7087i | −41.8055 | ||||
11.6 | −3.23643 | − | 1.86855i | −8.96800 | + | 0.758233i | −1.01703 | − | 1.76154i | −9.68246 | + | 5.59017i | 30.4411 | + | 14.3032i | 8.02923 | − | 13.9070i | 67.3951i | 79.8502 | − | 13.5997i | 41.7821 | ||||
11.7 | −2.15054 | − | 1.24161i | −6.81039 | − | 5.88376i | −4.91680 | − | 8.51614i | 9.68246 | − | 5.59017i | 7.34064 | + | 21.1091i | −15.7848 | + | 27.3401i | 64.1506i | 11.7628 | + | 80.1414i | −27.7633 | ||||
11.8 | −1.06605 | − | 0.615486i | 1.63702 | − | 8.84987i | −7.24235 | − | 12.5441i | −9.68246 | + | 5.59017i | −7.19213 | + | 8.42687i | −21.1314 | + | 36.6007i | 37.5258i | −75.6403 | − | 28.9748i | 13.7627 | ||||
11.9 | 0.817210 | + | 0.471817i | −6.73136 | + | 5.97401i | −7.55478 | − | 13.0853i | 9.68246 | − | 5.59017i | −8.31957 | + | 1.70605i | 31.6912 | − | 54.8908i | − | 29.3560i | 9.62249 | − | 80.4264i | 10.5501 | |||
11.10 | 0.904609 | + | 0.522276i | −2.25893 | + | 8.71190i | −7.45446 | − | 12.9115i | −9.68246 | + | 5.59017i | −6.59347 | + | 6.70108i | −36.4983 | + | 63.2168i | − | 32.2860i | −70.7944 | − | 39.3592i | −11.6784 | |||
11.11 | 2.59623 | + | 1.49894i | 4.94975 | − | 7.51665i | −3.50638 | − | 6.07323i | 9.68246 | − | 5.59017i | 24.1177 | − | 12.0956i | −1.63719 | + | 2.83570i | − | 68.9893i | −31.9999 | − | 74.4110i | 33.5172 | |||
11.12 | 3.10572 | + | 1.79309i | −5.44105 | − | 7.16903i | −1.56968 | − | 2.71877i | −9.68246 | + | 5.59017i | −4.04367 | − | 32.0212i | 45.9054 | − | 79.5105i | − | 68.6371i | −21.7900 | + | 78.0141i | −40.0946 | |||
11.13 | 4.78725 | + | 2.76392i | 4.38356 | + | 7.86031i | 7.27848 | + | 12.6067i | 9.68246 | − | 5.59017i | −0.740053 | + | 49.7450i | −0.820328 | + | 1.42085i | − | 7.97692i | −42.5688 | + | 68.9122i | 61.8031 | |||
11.14 | 5.22878 | + | 3.01884i | 8.75515 | − | 2.08503i | 10.2268 | + | 17.7133i | −9.68246 | + | 5.59017i | 52.0731 | + | 15.5282i | −8.13139 | + | 14.0840i | 26.8889i | 72.3053 | − | 36.5095i | −67.5033 | ||||
11.15 | 5.93733 | + | 3.42792i | −5.90111 | + | 6.79536i | 15.5013 | + | 26.8490i | −9.68246 | + | 5.59017i | −58.3308 | + | 20.1178i | 12.5523 | − | 21.7412i | 102.855i | −11.3538 | − | 80.2003i | −76.6506 | ||||
11.16 | 6.87716 | + | 3.97053i | −1.96687 | − | 8.78245i | 23.5302 | + | 40.7555i | 9.68246 | − | 5.59017i | 21.3445 | − | 68.2078i | 10.1236 | − | 17.5346i | 246.652i | −73.2629 | + | 34.5478i | 88.7837 | ||||
41.1 | −6.31571 | + | 3.64638i | −7.77630 | − | 4.53091i | 18.5921 | − | 32.2025i | 9.68246 | + | 5.59017i | 65.6342 | + | 0.260606i | −25.8824 | − | 44.8297i | 154.491i | 39.9417 | + | 70.4675i | −81.5354 | ||||
41.2 | −5.76237 | + | 3.32690i | 8.89517 | + | 1.36966i | 14.1366 | − | 24.4853i | −9.68246 | − | 5.59017i | −55.8139 | + | 21.7009i | −43.3865 | − | 75.1475i | 81.6633i | 77.2481 | + | 24.3666i | 74.3918 | ||||
41.3 | −5.11159 | + | 2.95118i | 1.28176 | − | 8.90826i | 9.41890 | − | 16.3140i | −9.68246 | − | 5.59017i | 19.7380 | + | 49.3181i | 36.1606 | + | 62.6320i | 16.7497i | −77.7142 | − | 22.8364i | 65.9903 | ||||
41.4 | −3.37336 | + | 1.94761i | 8.40237 | + | 3.22494i | −0.413632 | + | 0.716431i | 9.68246 | + | 5.59017i | −34.6251 | + | 5.48565i | 15.5174 | + | 26.8770i | − | 65.5459i | 60.1995 | + | 54.1943i | −43.5499 | |||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.5.i.a | ✓ | 32 |
3.b | odd | 2 | 1 | 135.5.i.a | 32 | ||
9.c | even | 3 | 1 | 135.5.i.a | 32 | ||
9.c | even | 3 | 1 | 405.5.c.b | 32 | ||
9.d | odd | 6 | 1 | inner | 45.5.i.a | ✓ | 32 |
9.d | odd | 6 | 1 | 405.5.c.b | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.5.i.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
45.5.i.a | ✓ | 32 | 9.d | odd | 6 | 1 | inner |
135.5.i.a | 32 | 3.b | odd | 2 | 1 | ||
135.5.i.a | 32 | 9.c | even | 3 | 1 | ||
405.5.c.b | 32 | 9.c | even | 3 | 1 | ||
405.5.c.b | 32 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(45, [\chi])\).