Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,5,Mod(14,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 3]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.14");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.65164833877\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 | −3.75365 | − | 6.50151i | 3.49115 | − | 8.29529i | −20.1797 | + | 34.9523i | 2.78274 | + | 24.8446i | −67.0364 | + | 8.43986i | −60.4872 | + | 34.9223i | 182.874 | −56.6237 | − | 57.9202i | 151.082 | − | 111.350i | ||
14.2 | −3.64116 | − | 6.30667i | 4.56543 | + | 7.75608i | −18.5161 | + | 32.0708i | 21.9161 | − | 12.0286i | 32.2916 | − | 57.0338i | 38.4567 | − | 22.2030i | 153.163 | −39.3137 | + | 70.8197i | −155.660 | − | 94.4195i | ||
14.3 | −3.12350 | − | 5.41005i | −7.73715 | − | 4.59745i | −11.5125 | + | 19.9402i | −11.8313 | − | 22.0232i | −0.705517 | + | 56.2185i | −10.1314 | + | 5.84936i | 43.8846 | 38.7269 | + | 71.1423i | −82.1915 | + | 132.797i | ||
14.4 | −2.87361 | − | 4.97724i | −8.30470 | + | 3.46872i | −8.51525 | + | 14.7488i | 7.19048 | + | 23.9436i | 41.1291 | + | 31.3667i | 41.4151 | − | 23.9110i | 5.92246 | 56.9359 | − | 57.6134i | 98.5104 | − | 104.593i | ||
14.5 | −2.61690 | − | 4.53261i | 8.42379 | − | 3.16855i | −5.69638 | + | 9.86641i | −19.7616 | − | 15.3127i | −36.4061 | − | 29.8900i | 50.0684 | − | 28.9070i | −24.1135 | 60.9206 | − | 53.3825i | −17.6925 | + | 129.644i | ||
14.6 | −2.30921 | − | 3.99967i | 4.25182 | + | 7.93234i | −2.66491 | + | 4.61577i | −21.0948 | + | 13.4168i | 21.9084 | − | 35.3233i | −45.6166 | + | 26.3368i | −49.2794 | −44.8440 | + | 67.4538i | 102.375 | + | 53.3902i | ||
14.7 | −1.64811 | − | 2.85461i | −5.28472 | + | 7.28504i | 2.56747 | − | 4.44699i | 15.0736 | − | 19.9446i | 29.5057 | + | 3.07927i | −64.7475 | + | 37.3820i | −69.6654 | −25.1435 | − | 76.9987i | −81.7769 | − | 10.1586i | ||
14.8 | −1.59606 | − | 2.76446i | −0.340063 | − | 8.99357i | 2.90517 | − | 5.03190i | 24.0861 | − | 6.69764i | −24.3196 | + | 15.2944i | 21.0893 | − | 12.1759i | −69.6213 | −80.7687 | + | 6.11676i | −56.9583 | − | 55.8953i | ||
14.9 | −1.02189 | − | 1.76997i | 8.99991 | + | 0.0407214i | 5.91148 | − | 10.2390i | 15.4498 | + | 19.6546i | −9.12485 | − | 15.9711i | −2.09732 | + | 1.21089i | −56.8640 | 80.9967 | + | 0.732978i | 19.0000 | − | 47.4305i | ||
14.10 | −0.547257 | − | 0.947877i | −6.76074 | − | 5.94074i | 7.40102 | − | 12.8189i | −17.4860 | + | 17.8673i | −1.93123 | + | 9.65947i | −16.9207 | + | 9.76914i | −33.7133 | 10.4152 | + | 80.3276i | 26.5053 | + | 6.79660i | ||
14.11 | −0.316502 | − | 0.548197i | −4.90909 | + | 7.54326i | 7.79965 | − | 13.5094i | −24.0216 | − | 6.92551i | 5.68893 | + | 0.303692i | 73.2178 | − | 42.2723i | −20.0025 | −32.8017 | − | 74.0611i | 3.80633 | + | 15.3605i | ||
14.12 | 0.316502 | + | 0.548197i | 4.90909 | − | 7.54326i | 7.79965 | − | 13.5094i | −18.0085 | − | 17.3406i | 5.68893 | + | 0.303692i | −73.2178 | + | 42.2723i | 20.0025 | −32.8017 | − | 74.0611i | 3.80633 | − | 15.3605i | ||
14.13 | 0.547257 | + | 0.947877i | 6.76074 | + | 5.94074i | 7.40102 | − | 12.8189i | 6.73050 | − | 24.0770i | −1.93123 | + | 9.65947i | 16.9207 | − | 9.76914i | 33.7133 | 10.4152 | + | 80.3276i | 26.5053 | − | 6.79660i | ||
14.14 | 1.02189 | + | 1.76997i | −8.99991 | − | 0.0407214i | 5.91148 | − | 10.2390i | 24.7463 | + | 3.55264i | −9.12485 | − | 15.9711i | 2.09732 | − | 1.21089i | 56.8640 | 80.9967 | + | 0.732978i | 19.0000 | + | 47.4305i | ||
14.15 | 1.59606 | + | 2.76446i | 0.340063 | + | 8.99357i | 2.90517 | − | 5.03190i | 6.24274 | + | 24.2080i | −24.3196 | + | 15.2944i | −21.0893 | + | 12.1759i | 69.6213 | −80.7687 | + | 6.11676i | −56.9583 | + | 55.8953i | ||
14.16 | 1.64811 | + | 2.85461i | 5.28472 | − | 7.28504i | 2.56747 | − | 4.44699i | −9.73566 | + | 23.0264i | 29.5057 | + | 3.07927i | 64.7475 | − | 37.3820i | 69.6654 | −25.1435 | − | 76.9987i | −81.7769 | + | 10.1586i | ||
14.17 | 2.30921 | + | 3.99967i | −4.25182 | − | 7.93234i | −2.66491 | + | 4.61577i | 1.07184 | − | 24.9770i | 21.9084 | − | 35.3233i | 45.6166 | − | 26.3368i | 49.2794 | −44.8440 | + | 67.4538i | 102.375 | − | 53.3902i | ||
14.18 | 2.61690 | + | 4.53261i | −8.42379 | + | 3.16855i | −5.69638 | + | 9.86641i | −23.1420 | − | 9.45767i | −36.4061 | − | 29.8900i | −50.0684 | + | 28.9070i | 24.1135 | 60.9206 | − | 53.3825i | −17.6925 | − | 129.644i | ||
14.19 | 2.87361 | + | 4.97724i | 8.30470 | − | 3.46872i | −8.51525 | + | 14.7488i | 24.3310 | − | 5.74467i | 41.1291 | + | 31.3667i | −41.4151 | + | 23.9110i | −5.92246 | 56.9359 | − | 57.6134i | 98.5104 | + | 104.593i | ||
14.20 | 3.12350 | + | 5.41005i | 7.73715 | + | 4.59745i | −11.5125 | + | 19.9402i | −24.9883 | + | 0.765363i | −0.705517 | + | 56.2185i | 10.1314 | − | 5.84936i | −43.8846 | 38.7269 | + | 71.1423i | −82.1915 | − | 132.797i | ||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
45.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.5.h.a | ✓ | 44 |
3.b | odd | 2 | 1 | 135.5.h.a | 44 | ||
5.b | even | 2 | 1 | inner | 45.5.h.a | ✓ | 44 |
9.c | even | 3 | 1 | 135.5.h.a | 44 | ||
9.c | even | 3 | 1 | 405.5.d.a | 44 | ||
9.d | odd | 6 | 1 | inner | 45.5.h.a | ✓ | 44 |
9.d | odd | 6 | 1 | 405.5.d.a | 44 | ||
15.d | odd | 2 | 1 | 135.5.h.a | 44 | ||
45.h | odd | 6 | 1 | inner | 45.5.h.a | ✓ | 44 |
45.h | odd | 6 | 1 | 405.5.d.a | 44 | ||
45.j | even | 6 | 1 | 135.5.h.a | 44 | ||
45.j | even | 6 | 1 | 405.5.d.a | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.5.h.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
45.5.h.a | ✓ | 44 | 5.b | even | 2 | 1 | inner |
45.5.h.a | ✓ | 44 | 9.d | odd | 6 | 1 | inner |
45.5.h.a | ✓ | 44 | 45.h | odd | 6 | 1 | inner |
135.5.h.a | 44 | 3.b | odd | 2 | 1 | ||
135.5.h.a | 44 | 9.c | even | 3 | 1 | ||
135.5.h.a | 44 | 15.d | odd | 2 | 1 | ||
135.5.h.a | 44 | 45.j | even | 6 | 1 | ||
405.5.d.a | 44 | 9.c | even | 3 | 1 | ||
405.5.d.a | 44 | 9.d | odd | 6 | 1 | ||
405.5.d.a | 44 | 45.h | odd | 6 | 1 | ||
405.5.d.a | 44 | 45.j | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(45, [\chi])\).