Properties

Label 45.5.g.d.37.2
Level $45$
Weight $5$
Character 45.37
Analytic conductor $4.652$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.2
Root \(1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 45.37
Dual form 45.5.g.d.28.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58114 + 1.58114i) q^{2} -11.0000i q^{4} +(20.5548 - 14.2302i) q^{5} +(-5.00000 - 5.00000i) q^{7} +(42.6907 - 42.6907i) q^{8} +(55.0000 + 10.0000i) q^{10} +173.925 q^{11} +(-110.000 + 110.000i) q^{13} -15.8114i q^{14} -41.0000 q^{16} +(-3.16228 - 3.16228i) q^{17} -198.000i q^{19} +(-156.533 - 226.103i) q^{20} +(275.000 + 275.000i) q^{22} +(-534.425 + 534.425i) q^{23} +(220.000 - 585.000i) q^{25} -347.851 q^{26} +(-55.0000 + 55.0000i) q^{28} +996.117i q^{29} -1192.00 q^{31} +(-747.879 - 747.879i) q^{32} -10.0000i q^{34} +(-173.925 - 31.6228i) q^{35} +(1810.00 + 1810.00i) q^{37} +(313.065 - 313.065i) q^{38} +(270.000 - 1485.00i) q^{40} +1549.52 q^{41} +(-1310.00 + 1310.00i) q^{43} -1913.18i q^{44} -1690.00 q^{46} +(2235.73 + 2235.73i) q^{47} -2351.00i q^{49} +(1272.82 - 577.116i) q^{50} +(1210.00 + 1210.00i) q^{52} +(1619.09 - 1619.09i) q^{53} +(3575.00 - 2475.00i) q^{55} -426.907 q^{56} +(-1575.00 + 1575.00i) q^{58} -996.117i q^{59} -1378.00 q^{61} +(-1884.72 - 1884.72i) q^{62} -1709.00i q^{64} +(-695.701 + 3826.36i) q^{65} +(1870.00 + 1870.00i) q^{67} +(-34.7851 + 34.7851i) q^{68} +(-225.000 - 325.000i) q^{70} -6893.77 q^{71} +(-3905.00 + 3905.00i) q^{73} +5723.72i q^{74} -2178.00 q^{76} +(-869.626 - 869.626i) q^{77} -612.000i q^{79} +(-842.747 + 583.440i) q^{80} +(2450.00 + 2450.00i) q^{82} +(-4765.55 + 4765.55i) q^{83} +(-110.000 - 20.0000i) q^{85} -4142.58 q^{86} +(7425.00 - 7425.00i) q^{88} -11384.2i q^{89} +1100.00 q^{91} +(5878.67 + 5878.67i) q^{92} +7070.00i q^{94} +(-2817.59 - 4069.85i) q^{95} +(-7205.00 - 7205.00i) q^{97} +(3717.26 - 3717.26i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{7} + 220 q^{10} - 440 q^{13} - 164 q^{16} + 1100 q^{22} + 880 q^{25} - 220 q^{28} - 4768 q^{31} + 7240 q^{37} + 1080 q^{40} - 5240 q^{43} - 6760 q^{46} + 4840 q^{52} + 14300 q^{55} - 6300 q^{58}+ \cdots - 28820 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58114 + 1.58114i 0.395285 + 0.395285i 0.876566 0.481281i \(-0.159828\pi\)
−0.481281 + 0.876566i \(0.659828\pi\)
\(3\) 0 0
\(4\) 11.0000i 0.687500i
\(5\) 20.5548 14.2302i 0.822192 0.569210i
\(6\) 0 0
\(7\) −5.00000 5.00000i −0.102041 0.102041i 0.654243 0.756284i \(-0.272987\pi\)
−0.756284 + 0.654243i \(0.772987\pi\)
\(8\) 42.6907 42.6907i 0.667043 0.667043i
\(9\) 0 0
\(10\) 55.0000 + 10.0000i 0.550000 + 0.100000i
\(11\) 173.925 1.43740 0.718699 0.695321i \(-0.244738\pi\)
0.718699 + 0.695321i \(0.244738\pi\)
\(12\) 0 0
\(13\) −110.000 + 110.000i −0.650888 + 0.650888i −0.953207 0.302319i \(-0.902239\pi\)
0.302319 + 0.953207i \(0.402239\pi\)
\(14\) 15.8114i 0.0806703i
\(15\) 0 0
\(16\) −41.0000 −0.160156
\(17\) −3.16228 3.16228i −0.0109421 0.0109421i 0.701615 0.712557i \(-0.252463\pi\)
−0.712557 + 0.701615i \(0.752463\pi\)
\(18\) 0 0
\(19\) 198.000i 0.548476i −0.961662 0.274238i \(-0.911574\pi\)
0.961662 0.274238i \(-0.0884257\pi\)
\(20\) −156.533 226.103i −0.391332 0.565257i
\(21\) 0 0
\(22\) 275.000 + 275.000i 0.568182 + 0.568182i
\(23\) −534.425 + 534.425i −1.01026 + 1.01026i −0.0103082 + 0.999947i \(0.503281\pi\)
−0.999947 + 0.0103082i \(0.996719\pi\)
\(24\) 0 0
\(25\) 220.000 585.000i 0.352000 0.936000i
\(26\) −347.851 −0.514572
\(27\) 0 0
\(28\) −55.0000 + 55.0000i −0.0701531 + 0.0701531i
\(29\) 996.117i 1.18444i 0.805775 + 0.592222i \(0.201749\pi\)
−0.805775 + 0.592222i \(0.798251\pi\)
\(30\) 0 0
\(31\) −1192.00 −1.24037 −0.620187 0.784454i \(-0.712943\pi\)
−0.620187 + 0.784454i \(0.712943\pi\)
\(32\) −747.879 747.879i −0.730350 0.730350i
\(33\) 0 0
\(34\) 10.0000i 0.00865052i
\(35\) −173.925 31.6228i −0.141980 0.0258145i
\(36\) 0 0
\(37\) 1810.00 + 1810.00i 1.32213 + 1.32213i 0.912047 + 0.410086i \(0.134501\pi\)
0.410086 + 0.912047i \(0.365499\pi\)
\(38\) 313.065 313.065i 0.216804 0.216804i
\(39\) 0 0
\(40\) 270.000 1485.00i 0.168750 0.928125i
\(41\) 1549.52 0.921782 0.460891 0.887457i \(-0.347530\pi\)
0.460891 + 0.887457i \(0.347530\pi\)
\(42\) 0 0
\(43\) −1310.00 + 1310.00i −0.708491 + 0.708491i −0.966218 0.257727i \(-0.917027\pi\)
0.257727 + 0.966218i \(0.417027\pi\)
\(44\) 1913.18i 0.988212i
\(45\) 0 0
\(46\) −1690.00 −0.798677
\(47\) 2235.73 + 2235.73i 1.01210 + 1.01210i 0.999926 + 0.0121748i \(0.00387544\pi\)
0.0121748 + 0.999926i \(0.496125\pi\)
\(48\) 0 0
\(49\) 2351.00i 0.979175i
\(50\) 1272.82 577.116i 0.509127 0.230846i
\(51\) 0 0
\(52\) 1210.00 + 1210.00i 0.447485 + 0.447485i
\(53\) 1619.09 1619.09i 0.576392 0.576392i −0.357515 0.933907i \(-0.616376\pi\)
0.933907 + 0.357515i \(0.116376\pi\)
\(54\) 0 0
\(55\) 3575.00 2475.00i 1.18182 0.818182i
\(56\) −426.907 −0.136131
\(57\) 0 0
\(58\) −1575.00 + 1575.00i −0.468193 + 0.468193i
\(59\) 996.117i 0.286158i −0.989711 0.143079i \(-0.954300\pi\)
0.989711 0.143079i \(-0.0457004\pi\)
\(60\) 0 0
\(61\) −1378.00 −0.370331 −0.185165 0.982707i \(-0.559282\pi\)
−0.185165 + 0.982707i \(0.559282\pi\)
\(62\) −1884.72 1884.72i −0.490301 0.490301i
\(63\) 0 0
\(64\) 1709.00i 0.417236i
\(65\) −695.701 + 3826.36i −0.164663 + 0.905646i
\(66\) 0 0
\(67\) 1870.00 + 1870.00i 0.416574 + 0.416574i 0.884021 0.467447i \(-0.154826\pi\)
−0.467447 + 0.884021i \(0.654826\pi\)
\(68\) −34.7851 + 34.7851i −0.00752272 + 0.00752272i
\(69\) 0 0
\(70\) −225.000 325.000i −0.0459184 0.0663265i
\(71\) −6893.77 −1.36754 −0.683770 0.729698i \(-0.739661\pi\)
−0.683770 + 0.729698i \(0.739661\pi\)
\(72\) 0 0
\(73\) −3905.00 + 3905.00i −0.732783 + 0.732783i −0.971170 0.238387i \(-0.923381\pi\)
0.238387 + 0.971170i \(0.423381\pi\)
\(74\) 5723.72i 1.04524i
\(75\) 0 0
\(76\) −2178.00 −0.377078
\(77\) −869.626 869.626i −0.146673 0.146673i
\(78\) 0 0
\(79\) 612.000i 0.0980612i −0.998797 0.0490306i \(-0.984387\pi\)
0.998797 0.0490306i \(-0.0156132\pi\)
\(80\) −842.747 + 583.440i −0.131679 + 0.0911625i
\(81\) 0 0
\(82\) 2450.00 + 2450.00i 0.364366 + 0.364366i
\(83\) −4765.55 + 4765.55i −0.691763 + 0.691763i −0.962620 0.270857i \(-0.912693\pi\)
0.270857 + 0.962620i \(0.412693\pi\)
\(84\) 0 0
\(85\) −110.000 20.0000i −0.0152249 0.00276817i
\(86\) −4142.58 −0.560111
\(87\) 0 0
\(88\) 7425.00 7425.00i 0.958807 0.958807i
\(89\) 11384.2i 1.43722i −0.695415 0.718609i \(-0.744779\pi\)
0.695415 0.718609i \(-0.255221\pi\)
\(90\) 0 0
\(91\) 1100.00 0.132834
\(92\) 5878.67 + 5878.67i 0.694550 + 0.694550i
\(93\) 0 0
\(94\) 7070.00i 0.800136i
\(95\) −2817.59 4069.85i −0.312198 0.450953i
\(96\) 0 0
\(97\) −7205.00 7205.00i −0.765756 0.765756i 0.211600 0.977356i \(-0.432133\pi\)
−0.977356 + 0.211600i \(0.932133\pi\)
\(98\) 3717.26 3717.26i 0.387053 0.387053i
\(99\) 0 0
\(100\) −6435.00 2420.00i −0.643500 0.242000i
\(101\) 17250.2 1.69103 0.845516 0.533950i \(-0.179293\pi\)
0.845516 + 0.533950i \(0.179293\pi\)
\(102\) 0 0
\(103\) 3085.00 3085.00i 0.290791 0.290791i −0.546602 0.837393i \(-0.684079\pi\)
0.837393 + 0.546602i \(0.184079\pi\)
\(104\) 9391.96i 0.868340i
\(105\) 0 0
\(106\) 5120.00 0.455678
\(107\) −6321.39 6321.39i −0.552135 0.552135i 0.374922 0.927057i \(-0.377670\pi\)
−0.927057 + 0.374922i \(0.877670\pi\)
\(108\) 0 0
\(109\) 1782.00i 0.149987i −0.997184 0.0749937i \(-0.976106\pi\)
0.997184 0.0749937i \(-0.0238937\pi\)
\(110\) 9565.89 + 1739.25i 0.790569 + 0.143740i
\(111\) 0 0
\(112\) 205.000 + 205.000i 0.0163425 + 0.0163425i
\(113\) 8686.78 8686.78i 0.680302 0.680302i −0.279766 0.960068i \(-0.590257\pi\)
0.960068 + 0.279766i \(0.0902569\pi\)
\(114\) 0 0
\(115\) −3380.00 + 18590.0i −0.255577 + 1.40567i
\(116\) 10957.3 0.814305
\(117\) 0 0
\(118\) 1575.00 1575.00i 0.113114 0.113114i
\(119\) 31.6228i 0.00223309i
\(120\) 0 0
\(121\) 15609.0 1.06612
\(122\) −2178.81 2178.81i −0.146386 0.146386i
\(123\) 0 0
\(124\) 13112.0i 0.852758i
\(125\) −3802.64 15155.2i −0.243369 0.969934i
\(126\) 0 0
\(127\) −19745.0 19745.0i −1.22419 1.22419i −0.966128 0.258065i \(-0.916915\pi\)
−0.258065 0.966128i \(-0.583085\pi\)
\(128\) −9263.89 + 9263.89i −0.565423 + 0.565423i
\(129\) 0 0
\(130\) −7150.00 + 4950.00i −0.423077 + 0.292899i
\(131\) −11400.0 −0.664298 −0.332149 0.943227i \(-0.607774\pi\)
−0.332149 + 0.943227i \(0.607774\pi\)
\(132\) 0 0
\(133\) −990.000 + 990.000i −0.0559670 + 0.0559670i
\(134\) 5913.46i 0.329331i
\(135\) 0 0
\(136\) −270.000 −0.0145978
\(137\) 5707.91 + 5707.91i 0.304114 + 0.304114i 0.842621 0.538507i \(-0.181012\pi\)
−0.538507 + 0.842621i \(0.681012\pi\)
\(138\) 0 0
\(139\) 3438.00i 0.177941i −0.996034 0.0889706i \(-0.971642\pi\)
0.996034 0.0889706i \(-0.0283577\pi\)
\(140\) −347.851 + 1913.18i −0.0177475 + 0.0976111i
\(141\) 0 0
\(142\) −10900.0 10900.0i −0.540567 0.540567i
\(143\) −19131.8 + 19131.8i −0.935585 + 0.935585i
\(144\) 0 0
\(145\) 14175.0 + 20475.0i 0.674197 + 0.973841i
\(146\) −12348.7 −0.579316
\(147\) 0 0
\(148\) 19910.0 19910.0i 0.908966 0.908966i
\(149\) 4695.98i 0.211521i 0.994392 + 0.105761i \(0.0337277\pi\)
−0.994392 + 0.105761i \(0.966272\pi\)
\(150\) 0 0
\(151\) 31418.0 1.37792 0.688961 0.724798i \(-0.258067\pi\)
0.688961 + 0.724798i \(0.258067\pi\)
\(152\) −8452.77 8452.77i −0.365857 0.365857i
\(153\) 0 0
\(154\) 2750.00i 0.115955i
\(155\) −24501.3 + 16962.5i −1.01983 + 0.706034i
\(156\) 0 0
\(157\) −11000.0 11000.0i −0.446266 0.446266i 0.447845 0.894111i \(-0.352191\pi\)
−0.894111 + 0.447845i \(0.852191\pi\)
\(158\) 967.657 967.657i 0.0387621 0.0387621i
\(159\) 0 0
\(160\) −26015.0 4730.00i −1.01621 0.184766i
\(161\) 5344.25 0.206175
\(162\) 0 0
\(163\) −14300.0 + 14300.0i −0.538221 + 0.538221i −0.923006 0.384785i \(-0.874276\pi\)
0.384785 + 0.923006i \(0.374276\pi\)
\(164\) 17044.7i 0.633725i
\(165\) 0 0
\(166\) −15070.0 −0.546886
\(167\) −989.793 989.793i −0.0354904 0.0354904i 0.689139 0.724629i \(-0.257989\pi\)
−0.724629 + 0.689139i \(0.757989\pi\)
\(168\) 0 0
\(169\) 4361.00i 0.152691i
\(170\) −142.302 205.548i −0.00492396 0.00711239i
\(171\) 0 0
\(172\) 14410.0 + 14410.0i 0.487088 + 0.487088i
\(173\) 19653.6 19653.6i 0.656673 0.656673i −0.297919 0.954591i \(-0.596292\pi\)
0.954591 + 0.297919i \(0.0962924\pi\)
\(174\) 0 0
\(175\) −4025.00 + 1825.00i −0.131429 + 0.0595918i
\(176\) −7130.94 −0.230208
\(177\) 0 0
\(178\) 18000.0 18000.0i 0.568110 0.568110i
\(179\) 14087.9i 0.439685i 0.975535 + 0.219842i \(0.0705543\pi\)
−0.975535 + 0.219842i \(0.929446\pi\)
\(180\) 0 0
\(181\) 1298.00 0.0396203 0.0198101 0.999804i \(-0.493694\pi\)
0.0198101 + 0.999804i \(0.493694\pi\)
\(182\) 1739.25 + 1739.25i 0.0525073 + 0.0525073i
\(183\) 0 0
\(184\) 45630.0i 1.34777i
\(185\) 62960.9 + 11447.4i 1.83962 + 0.334476i
\(186\) 0 0
\(187\) −550.000 550.000i −0.0157282 0.0157282i
\(188\) 24593.0 24593.0i 0.695819 0.695819i
\(189\) 0 0
\(190\) 1980.00 10890.0i 0.0548476 0.301662i
\(191\) −3952.85 −0.108354 −0.0541768 0.998531i \(-0.517253\pi\)
−0.0541768 + 0.998531i \(0.517253\pi\)
\(192\) 0 0
\(193\) −8525.00 + 8525.00i −0.228865 + 0.228865i −0.812219 0.583353i \(-0.801740\pi\)
0.583353 + 0.812219i \(0.301740\pi\)
\(194\) 22784.2i 0.605383i
\(195\) 0 0
\(196\) −25861.0 −0.673183
\(197\) 40837.7 + 40837.7i 1.05227 + 1.05227i 0.998556 + 0.0537165i \(0.0171067\pi\)
0.0537165 + 0.998556i \(0.482893\pi\)
\(198\) 0 0
\(199\) 41922.0i 1.05861i −0.848432 0.529305i \(-0.822453\pi\)
0.848432 0.529305i \(-0.177547\pi\)
\(200\) −15582.1 34366.1i −0.389553 0.859151i
\(201\) 0 0
\(202\) 27275.0 + 27275.0i 0.668439 + 0.668439i
\(203\) 4980.59 4980.59i 0.120862 0.120862i
\(204\) 0 0
\(205\) 31850.0 22050.0i 0.757882 0.524688i
\(206\) 9755.63 0.229890
\(207\) 0 0
\(208\) 4510.00 4510.00i 0.104244 0.104244i
\(209\) 34437.2i 0.788379i
\(210\) 0 0
\(211\) −29938.0 −0.672447 −0.336223 0.941782i \(-0.609150\pi\)
−0.336223 + 0.941782i \(0.609150\pi\)
\(212\) −17809.9 17809.9i −0.396270 0.396270i
\(213\) 0 0
\(214\) 19990.0i 0.436501i
\(215\) −8285.17 + 45568.4i −0.179236 + 0.985796i
\(216\) 0 0
\(217\) 5960.00 + 5960.00i 0.126569 + 0.126569i
\(218\) 2817.59 2817.59i 0.0592877 0.0592877i
\(219\) 0 0
\(220\) −27225.0 39325.0i −0.562500 0.812500i
\(221\) 695.701 0.0142442
\(222\) 0 0
\(223\) −44735.0 + 44735.0i −0.899576 + 0.899576i −0.995398 0.0958227i \(-0.969452\pi\)
0.0958227 + 0.995398i \(0.469452\pi\)
\(224\) 7478.79i 0.149051i
\(225\) 0 0
\(226\) 27470.0 0.537826
\(227\) −30465.4 30465.4i −0.591228 0.591228i 0.346735 0.937963i \(-0.387290\pi\)
−0.937963 + 0.346735i \(0.887290\pi\)
\(228\) 0 0
\(229\) 51498.0i 0.982018i −0.871155 0.491009i \(-0.836628\pi\)
0.871155 0.491009i \(-0.163372\pi\)
\(230\) −34737.6 + 24049.1i −0.656666 + 0.454615i
\(231\) 0 0
\(232\) 42525.0 + 42525.0i 0.790075 + 0.790075i
\(233\) −30626.7 + 30626.7i −0.564141 + 0.564141i −0.930481 0.366340i \(-0.880611\pi\)
0.366340 + 0.930481i \(0.380611\pi\)
\(234\) 0 0
\(235\) 77770.0 + 14140.0i 1.40824 + 0.256043i
\(236\) −10957.3 −0.196734
\(237\) 0 0
\(238\) −50.0000 + 50.0000i −0.000882706 + 0.000882706i
\(239\) 87658.3i 1.53461i 0.641284 + 0.767304i \(0.278402\pi\)
−0.641284 + 0.767304i \(0.721598\pi\)
\(240\) 0 0
\(241\) −62668.0 −1.07898 −0.539488 0.841993i \(-0.681382\pi\)
−0.539488 + 0.841993i \(0.681382\pi\)
\(242\) 24680.0 + 24680.0i 0.421419 + 0.421419i
\(243\) 0 0
\(244\) 15158.0i 0.254602i
\(245\) −33455.3 48324.3i −0.557356 0.805070i
\(246\) 0 0
\(247\) 21780.0 + 21780.0i 0.356997 + 0.356997i
\(248\) −50887.4 + 50887.4i −0.827383 + 0.827383i
\(249\) 0 0
\(250\) 17950.0 29975.0i 0.287200 0.479600i
\(251\) −45742.3 −0.726057 −0.363029 0.931778i \(-0.618257\pi\)
−0.363029 + 0.931778i \(0.618257\pi\)
\(252\) 0 0
\(253\) −92950.0 + 92950.0i −1.45214 + 1.45214i
\(254\) 62439.2i 0.967809i
\(255\) 0 0
\(256\) −56639.0 −0.864243
\(257\) −32182.5 32182.5i −0.487252 0.487252i 0.420186 0.907438i \(-0.361965\pi\)
−0.907438 + 0.420186i \(0.861965\pi\)
\(258\) 0 0
\(259\) 18100.0i 0.269823i
\(260\) 42089.9 + 7652.71i 0.622632 + 0.113206i
\(261\) 0 0
\(262\) −18025.0 18025.0i −0.262587 0.262587i
\(263\) −1577.98 + 1577.98i −0.0228133 + 0.0228133i −0.718421 0.695608i \(-0.755135\pi\)
0.695608 + 0.718421i \(0.255135\pi\)
\(264\) 0 0
\(265\) 10240.0 56320.0i 0.145817 0.801994i
\(266\) −3130.65 −0.0442458
\(267\) 0 0
\(268\) 20570.0 20570.0i 0.286395 0.286395i
\(269\) 48525.2i 0.670598i 0.942112 + 0.335299i \(0.108837\pi\)
−0.942112 + 0.335299i \(0.891163\pi\)
\(270\) 0 0
\(271\) 53102.0 0.723057 0.361528 0.932361i \(-0.382255\pi\)
0.361528 + 0.932361i \(0.382255\pi\)
\(272\) 129.653 + 129.653i 0.00175245 + 0.00175245i
\(273\) 0 0
\(274\) 18050.0i 0.240423i
\(275\) 38263.6 101746.i 0.505964 1.34541i
\(276\) 0 0
\(277\) 66370.0 + 66370.0i 0.864992 + 0.864992i 0.991913 0.126921i \(-0.0405093\pi\)
−0.126921 + 0.991913i \(0.540509\pi\)
\(278\) 5435.96 5435.96i 0.0703374 0.0703374i
\(279\) 0 0
\(280\) −8775.00 + 6075.00i −0.111926 + 0.0774872i
\(281\) 64352.4 0.814989 0.407495 0.913208i \(-0.366403\pi\)
0.407495 + 0.913208i \(0.366403\pi\)
\(282\) 0 0
\(283\) 54250.0 54250.0i 0.677371 0.677371i −0.282033 0.959405i \(-0.591009\pi\)
0.959405 + 0.282033i \(0.0910088\pi\)
\(284\) 75831.4i 0.940183i
\(285\) 0 0
\(286\) −60500.0 −0.739645
\(287\) −7747.58 7747.58i −0.0940594 0.0940594i
\(288\) 0 0
\(289\) 83501.0i 0.999761i
\(290\) −9961.17 + 54786.5i −0.118444 + 0.651444i
\(291\) 0 0
\(292\) 42955.0 + 42955.0i 0.503788 + 0.503788i
\(293\) 80777.2 80777.2i 0.940922 0.940922i −0.0574276 0.998350i \(-0.518290\pi\)
0.998350 + 0.0574276i \(0.0182898\pi\)
\(294\) 0 0
\(295\) −14175.0 20475.0i −0.162884 0.235277i
\(296\) 154541. 1.76384
\(297\) 0 0
\(298\) −7425.00 + 7425.00i −0.0836111 + 0.0836111i
\(299\) 117573.i 1.31512i
\(300\) 0 0
\(301\) 13100.0 0.144590
\(302\) 49676.2 + 49676.2i 0.544672 + 0.544672i
\(303\) 0 0
\(304\) 8118.00i 0.0878419i
\(305\) −28324.5 + 19609.3i −0.304483 + 0.210796i
\(306\) 0 0
\(307\) −88010.0 88010.0i −0.933803 0.933803i 0.0641380 0.997941i \(-0.479570\pi\)
−0.997941 + 0.0641380i \(0.979570\pi\)
\(308\) −9565.89 + 9565.89i −0.100838 + 0.100838i
\(309\) 0 0
\(310\) −65560.0 11920.0i −0.682206 0.124037i
\(311\) 44524.9 0.460343 0.230172 0.973150i \(-0.426071\pi\)
0.230172 + 0.973150i \(0.426071\pi\)
\(312\) 0 0
\(313\) 5305.00 5305.00i 0.0541498 0.0541498i −0.679513 0.733663i \(-0.737809\pi\)
0.733663 + 0.679513i \(0.237809\pi\)
\(314\) 34785.1i 0.352804i
\(315\) 0 0
\(316\) −6732.00 −0.0674171
\(317\) −48367.0 48367.0i −0.481317 0.481317i 0.424235 0.905552i \(-0.360543\pi\)
−0.905552 + 0.424235i \(0.860543\pi\)
\(318\) 0 0
\(319\) 173250.i 1.70252i
\(320\) −24319.5 35128.2i −0.237495 0.343048i
\(321\) 0 0
\(322\) 8450.00 + 8450.00i 0.0814976 + 0.0814976i
\(323\) −626.131 + 626.131i −0.00600150 + 0.00600150i
\(324\) 0 0
\(325\) 40150.0 + 88550.0i 0.380118 + 0.838343i
\(326\) −45220.6 −0.425501
\(327\) 0 0
\(328\) 66150.0 66150.0i 0.614868 0.614868i
\(329\) 22357.3i 0.206551i
\(330\) 0 0
\(331\) 29402.0 0.268362 0.134181 0.990957i \(-0.457160\pi\)
0.134181 + 0.990957i \(0.457160\pi\)
\(332\) 52421.1 + 52421.1i 0.475587 + 0.475587i
\(333\) 0 0
\(334\) 3130.00i 0.0280577i
\(335\) 65048.1 + 11826.9i 0.579622 + 0.105386i
\(336\) 0 0
\(337\) 14245.0 + 14245.0i 0.125430 + 0.125430i 0.767035 0.641605i \(-0.221731\pi\)
−0.641605 + 0.767035i \(0.721731\pi\)
\(338\) −6895.35 + 6895.35i −0.0603563 + 0.0603563i
\(339\) 0 0
\(340\) −220.000 + 1210.00i −0.00190311 + 0.0104671i
\(341\) −207319. −1.78291
\(342\) 0 0
\(343\) −23760.0 + 23760.0i −0.201957 + 0.201957i
\(344\) 111850.i 0.945188i
\(345\) 0 0
\(346\) 62150.0 0.519145
\(347\) 8942.92 + 8942.92i 0.0742712 + 0.0742712i 0.743267 0.668995i \(-0.233275\pi\)
−0.668995 + 0.743267i \(0.733275\pi\)
\(348\) 0 0
\(349\) 11178.0i 0.0917726i −0.998947 0.0458863i \(-0.985389\pi\)
0.998947 0.0458863i \(-0.0146112\pi\)
\(350\) −9249.66 3478.51i −0.0755074 0.0283960i
\(351\) 0 0
\(352\) −130075. 130075.i −1.04980 1.04980i
\(353\) −107394. + 107394.i −0.861849 + 0.861849i −0.991553 0.129704i \(-0.958597\pi\)
0.129704 + 0.991553i \(0.458597\pi\)
\(354\) 0 0
\(355\) −141700. + 98100.0i −1.12438 + 0.778417i
\(356\) −125226. −0.988087
\(357\) 0 0
\(358\) −22275.0 + 22275.0i −0.173801 + 0.173801i
\(359\) 33868.0i 0.262785i −0.991330 0.131393i \(-0.958055\pi\)
0.991330 0.131393i \(-0.0419448\pi\)
\(360\) 0 0
\(361\) 91117.0 0.699174
\(362\) 2052.32 + 2052.32i 0.0156613 + 0.0156613i
\(363\) 0 0
\(364\) 12100.0i 0.0913235i
\(365\) −24697.4 + 135836.i −0.185381 + 1.01960i
\(366\) 0 0
\(367\) −127985. 127985.i −0.950226 0.950226i 0.0485926 0.998819i \(-0.484526\pi\)
−0.998819 + 0.0485926i \(0.984526\pi\)
\(368\) 21911.4 21911.4i 0.161799 0.161799i
\(369\) 0 0
\(370\) 81450.0 + 117650.i 0.594960 + 0.859386i
\(371\) −16190.9 −0.117631
\(372\) 0 0
\(373\) 117700. 117700.i 0.845977 0.845977i −0.143651 0.989628i \(-0.545884\pi\)
0.989628 + 0.143651i \(0.0458843\pi\)
\(374\) 1739.25i 0.0124342i
\(375\) 0 0
\(376\) 190890. 1.35023
\(377\) −109573. 109573.i −0.770940 0.770940i
\(378\) 0 0
\(379\) 113418.i 0.789594i −0.918768 0.394797i \(-0.870815\pi\)
0.918768 0.394797i \(-0.129185\pi\)
\(380\) −44768.4 + 30993.5i −0.310030 + 0.214636i
\(381\) 0 0
\(382\) −6250.00 6250.00i −0.0428305 0.0428305i
\(383\) 78301.2 78301.2i 0.533790 0.533790i −0.387908 0.921698i \(-0.626802\pi\)
0.921698 + 0.387908i \(0.126802\pi\)
\(384\) 0 0
\(385\) −30250.0 5500.00i −0.204082 0.0371058i
\(386\) −26958.4 −0.180934
\(387\) 0 0
\(388\) −79255.0 + 79255.0i −0.526457 + 0.526457i
\(389\) 119961.i 0.792758i 0.918087 + 0.396379i \(0.129733\pi\)
−0.918087 + 0.396379i \(0.870267\pi\)
\(390\) 0 0
\(391\) 3380.00 0.0221087
\(392\) −100366. 100366.i −0.653152 0.653152i
\(393\) 0 0
\(394\) 129140.i 0.831895i
\(395\) −8708.91 12579.5i −0.0558174 0.0806252i
\(396\) 0 0
\(397\) −97460.0 97460.0i −0.618366 0.618366i 0.326746 0.945112i \(-0.394048\pi\)
−0.945112 + 0.326746i \(0.894048\pi\)
\(398\) 66284.5 66284.5i 0.418452 0.418452i
\(399\) 0 0
\(400\) −9020.00 + 23985.0i −0.0563750 + 0.149906i
\(401\) 44524.9 0.276894 0.138447 0.990370i \(-0.455789\pi\)
0.138447 + 0.990370i \(0.455789\pi\)
\(402\) 0 0
\(403\) 131120. 131120.i 0.807344 0.807344i
\(404\) 189752.i 1.16258i
\(405\) 0 0
\(406\) 15750.0 0.0955495
\(407\) 314805. + 314805.i 1.90043 + 1.90043i
\(408\) 0 0
\(409\) 210492.i 1.25831i 0.777278 + 0.629157i \(0.216600\pi\)
−0.777278 + 0.629157i \(0.783400\pi\)
\(410\) 85223.4 + 15495.2i 0.506980 + 0.0921782i
\(411\) 0 0
\(412\) −33935.0 33935.0i −0.199919 0.199919i
\(413\) −4980.59 + 4980.59i −0.0291998 + 0.0291998i
\(414\) 0 0
\(415\) −30140.0 + 165770.i −0.175004 + 0.962520i
\(416\) 164533. 0.950752
\(417\) 0 0
\(418\) 54450.0 54450.0i 0.311634 0.311634i
\(419\) 189405.i 1.07885i −0.842032 0.539427i \(-0.818641\pi\)
0.842032 0.539427i \(-0.181359\pi\)
\(420\) 0 0
\(421\) −97462.0 −0.549884 −0.274942 0.961461i \(-0.588659\pi\)
−0.274942 + 0.961461i \(0.588659\pi\)
\(422\) −47336.1 47336.1i −0.265808 0.265808i
\(423\) 0 0
\(424\) 138240.i 0.768957i
\(425\) −2545.63 + 1154.23i −0.0140935 + 0.00639021i
\(426\) 0 0
\(427\) 6890.00 + 6890.00i 0.0377888 + 0.0377888i
\(428\) −69535.3 + 69535.3i −0.379593 + 0.379593i
\(429\) 0 0
\(430\) −85150.0 + 58950.0i −0.460519 + 0.318821i
\(431\) 223352. 1.20236 0.601180 0.799113i \(-0.294697\pi\)
0.601180 + 0.799113i \(0.294697\pi\)
\(432\) 0 0
\(433\) −91295.0 + 91295.0i −0.486935 + 0.486935i −0.907338 0.420402i \(-0.861889\pi\)
0.420402 + 0.907338i \(0.361889\pi\)
\(434\) 18847.2i 0.100061i
\(435\) 0 0
\(436\) −19602.0 −0.103116
\(437\) 105816. + 105816.i 0.554101 + 0.554101i
\(438\) 0 0
\(439\) 177858.i 0.922878i 0.887172 + 0.461439i \(0.152667\pi\)
−0.887172 + 0.461439i \(0.847333\pi\)
\(440\) 46959.8 258279.i 0.242561 1.33409i
\(441\) 0 0
\(442\) 1100.00 + 1100.00i 0.00563052 + 0.00563052i
\(443\) 131418. 131418.i 0.669649 0.669649i −0.287986 0.957635i \(-0.592986\pi\)
0.957635 + 0.287986i \(0.0929856\pi\)
\(444\) 0 0
\(445\) −162000. 234000.i −0.818079 1.18167i
\(446\) −141464. −0.711177
\(447\) 0 0
\(448\) −8545.00 + 8545.00i −0.0425751 + 0.0425751i
\(449\) 159663.i 0.791977i 0.918255 + 0.395989i \(0.129598\pi\)
−0.918255 + 0.395989i \(0.870402\pi\)
\(450\) 0 0
\(451\) 269500. 1.32497
\(452\) −95554.5 95554.5i −0.467708 0.467708i
\(453\) 0 0
\(454\) 96340.0i 0.467407i
\(455\) 22610.3 15653.3i 0.109215 0.0756106i
\(456\) 0 0
\(457\) 170635. + 170635.i 0.817026 + 0.817026i 0.985676 0.168650i \(-0.0539408\pi\)
−0.168650 + 0.985676i \(0.553941\pi\)
\(458\) 81425.5 81425.5i 0.388177 0.388177i
\(459\) 0 0
\(460\) 204490. + 37180.0i 0.966399 + 0.175709i
\(461\) −9218.04 −0.0433747 −0.0216874 0.999765i \(-0.506904\pi\)
−0.0216874 + 0.999765i \(0.506904\pi\)
\(462\) 0 0
\(463\) 242485. 242485.i 1.13116 1.13116i 0.141172 0.989985i \(-0.454913\pi\)
0.989985 0.141172i \(-0.0450870\pi\)
\(464\) 40840.8i 0.189696i
\(465\) 0 0
\(466\) −96850.0 −0.445993
\(467\) −195356. 195356.i −0.895763 0.895763i 0.0992952 0.995058i \(-0.468341\pi\)
−0.995058 + 0.0992952i \(0.968341\pi\)
\(468\) 0 0
\(469\) 18700.0i 0.0850151i
\(470\) 100608. + 145322.i 0.455445 + 0.657865i
\(471\) 0 0
\(472\) −42525.0 42525.0i −0.190880 0.190880i
\(473\) −227842. + 227842.i −1.01838 + 1.01838i
\(474\) 0 0
\(475\) −115830. 43560.0i −0.513374 0.193064i
\(476\) 347.851 0.00153525
\(477\) 0 0
\(478\) −138600. + 138600.i −0.606607 + 0.606607i
\(479\) 413246.i 1.80110i 0.434751 + 0.900551i \(0.356836\pi\)
−0.434751 + 0.900551i \(0.643164\pi\)
\(480\) 0 0
\(481\) −398200. −1.72112
\(482\) −99086.8 99086.8i −0.426503 0.426503i
\(483\) 0 0
\(484\) 171699.i 0.732955i
\(485\) −250626. 45568.4i −1.06547 0.193723i
\(486\) 0 0
\(487\) 46675.0 + 46675.0i 0.196801 + 0.196801i 0.798627 0.601826i \(-0.205560\pi\)
−0.601826 + 0.798627i \(0.705560\pi\)
\(488\) −58827.9 + 58827.9i −0.247026 + 0.247026i
\(489\) 0 0
\(490\) 23510.0 129305.i 0.0979175 0.538546i
\(491\) 218845. 0.907767 0.453884 0.891061i \(-0.350038\pi\)
0.453884 + 0.891061i \(0.350038\pi\)
\(492\) 0 0
\(493\) 3150.00 3150.00i 0.0129603 0.0129603i
\(494\) 68874.4i 0.282231i
\(495\) 0 0
\(496\) 48872.0 0.198654
\(497\) 34468.8 + 34468.8i 0.139545 + 0.139545i
\(498\) 0 0
\(499\) 166518.i 0.668744i 0.942441 + 0.334372i \(0.108524\pi\)
−0.942441 + 0.334372i \(0.891476\pi\)
\(500\) −166707. + 41829.0i −0.666829 + 0.167316i
\(501\) 0 0
\(502\) −72325.0 72325.0i −0.286999 0.286999i
\(503\) −183744. + 183744.i −0.726236 + 0.726236i −0.969868 0.243632i \(-0.921661\pi\)
0.243632 + 0.969868i \(0.421661\pi\)
\(504\) 0 0
\(505\) 354575. 245475.i 1.39035 0.962553i
\(506\) −293934. −1.14802
\(507\) 0 0
\(508\) −217195. + 217195.i −0.841632 + 0.841632i
\(509\) 234088.i 0.903531i −0.892137 0.451765i \(-0.850794\pi\)
0.892137 0.451765i \(-0.149206\pi\)
\(510\) 0 0
\(511\) 39050.0 0.149548
\(512\) 58668.2 + 58668.2i 0.223801 + 0.223801i
\(513\) 0 0
\(514\) 101770.i 0.385206i
\(515\) 19511.3 107312.i 0.0735649 0.404607i
\(516\) 0 0
\(517\) 388850. + 388850.i 1.45479 + 1.45479i
\(518\) 28618.6 28618.6i 0.106657 0.106657i
\(519\) 0 0
\(520\) 133650. + 193050.i 0.494268 + 0.713942i
\(521\) −238278. −0.877825 −0.438912 0.898530i \(-0.644636\pi\)
−0.438912 + 0.898530i \(0.644636\pi\)
\(522\) 0 0
\(523\) −215270. + 215270.i −0.787010 + 0.787010i −0.981003 0.193993i \(-0.937856\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(524\) 125400.i 0.456705i
\(525\) 0 0
\(526\) −4990.00 −0.0180355
\(527\) 3769.43 + 3769.43i 0.0135723 + 0.0135723i
\(528\) 0 0
\(529\) 291379.i 1.04123i
\(530\) 105241. 72858.9i 0.374655 0.259377i
\(531\) 0 0
\(532\) 10890.0 + 10890.0i 0.0384773 + 0.0384773i
\(533\) −170447. + 170447.i −0.599977 + 0.599977i
\(534\) 0 0
\(535\) −219890. 39980.0i −0.768242 0.139680i
\(536\) 159663. 0.555745
\(537\) 0 0
\(538\) −76725.0 + 76725.0i −0.265077 + 0.265077i
\(539\) 408898.i 1.40747i
\(540\) 0 0
\(541\) −353518. −1.20786 −0.603931 0.797037i \(-0.706400\pi\)
−0.603931 + 0.797037i \(0.706400\pi\)
\(542\) 83961.6 + 83961.6i 0.285813 + 0.285813i
\(543\) 0 0
\(544\) 4730.00i 0.0159832i
\(545\) −25358.3 36628.7i −0.0853743 0.123318i
\(546\) 0 0
\(547\) 52690.0 + 52690.0i 0.176098 + 0.176098i 0.789652 0.613555i \(-0.210261\pi\)
−0.613555 + 0.789652i \(0.710261\pi\)
\(548\) 62787.0 62787.0i 0.209078 0.209078i
\(549\) 0 0
\(550\) 221375. 100375.i 0.731818 0.331818i
\(551\) 197231. 0.649640
\(552\) 0 0
\(553\) −3060.00 + 3060.00i −0.0100062 + 0.0100062i
\(554\) 209880.i 0.683837i
\(555\) 0 0
\(556\) −37818.0 −0.122335
\(557\) 85634.5 + 85634.5i 0.276019 + 0.276019i 0.831517 0.555499i \(-0.187473\pi\)
−0.555499 + 0.831517i \(0.687473\pi\)
\(558\) 0 0
\(559\) 288200.i 0.922296i
\(560\) 7130.94 + 1296.53i 0.0227390 + 0.00413436i
\(561\) 0 0
\(562\) 101750. + 101750.i 0.322153 + 0.322153i
\(563\) 377905. 377905.i 1.19225 1.19225i 0.215810 0.976435i \(-0.430761\pi\)
0.976435 0.215810i \(-0.0692392\pi\)
\(564\) 0 0
\(565\) 54940.0 302170.i 0.172104 0.946574i
\(566\) 171554. 0.535509
\(567\) 0 0
\(568\) −294300. + 294300.i −0.912207 + 0.912207i
\(569\) 292005.i 0.901914i −0.892546 0.450957i \(-0.851083\pi\)
0.892546 0.450957i \(-0.148917\pi\)
\(570\) 0 0
\(571\) −232618. −0.713462 −0.356731 0.934207i \(-0.616109\pi\)
−0.356731 + 0.934207i \(0.616109\pi\)
\(572\) 210450. + 210450.i 0.643215 + 0.643215i
\(573\) 0 0
\(574\) 24500.0i 0.0743605i
\(575\) 195065. + 430212.i 0.589989 + 1.30121i
\(576\) 0 0
\(577\) 226765. + 226765.i 0.681121 + 0.681121i 0.960253 0.279132i \(-0.0900466\pi\)
−0.279132 + 0.960253i \(0.590047\pi\)
\(578\) 132027. 132027.i 0.395190 0.395190i
\(579\) 0 0
\(580\) 225225. 155925.i 0.669515 0.463511i
\(581\) 47655.5 0.141176
\(582\) 0 0
\(583\) 281600. 281600.i 0.828506 0.828506i
\(584\) 333415.i 0.977595i
\(585\) 0 0
\(586\) 255440. 0.743864
\(587\) −451538. 451538.i −1.31044 1.31044i −0.921087 0.389358i \(-0.872697\pi\)
−0.389358 0.921087i \(-0.627303\pi\)
\(588\) 0 0
\(589\) 236016.i 0.680316i
\(590\) 9961.17 54786.5i 0.0286158 0.157387i
\(591\) 0 0
\(592\) −74210.0 74210.0i −0.211748 0.211748i
\(593\) 396793. 396793.i 1.12838 1.12838i 0.137937 0.990441i \(-0.455953\pi\)
0.990441 0.137937i \(-0.0440473\pi\)
\(594\) 0 0
\(595\) 450.000 + 650.000i 0.00127110 + 0.00183603i
\(596\) 51655.8 0.145421
\(597\) 0 0
\(598\) 185900. 185900.i 0.519849 0.519849i
\(599\) 50375.1i 0.140398i −0.997533 0.0701992i \(-0.977637\pi\)
0.997533 0.0701992i \(-0.0223635\pi\)
\(600\) 0 0
\(601\) −151822. −0.420326 −0.210163 0.977666i \(-0.567399\pi\)
−0.210163 + 0.977666i \(0.567399\pi\)
\(602\) 20712.9 + 20712.9i 0.0571542 + 0.0571542i
\(603\) 0 0
\(604\) 345598.i 0.947321i
\(605\) 320840. 222120.i 0.876552 0.606844i
\(606\) 0 0
\(607\) −65945.0 65945.0i −0.178980 0.178980i 0.611931 0.790911i \(-0.290393\pi\)
−0.790911 + 0.611931i \(0.790393\pi\)
\(608\) −148080. + 148080.i −0.400580 + 0.400580i
\(609\) 0 0
\(610\) −75790.0 13780.0i −0.203682 0.0370331i
\(611\) −491861. −1.31753
\(612\) 0 0
\(613\) −204380. + 204380.i −0.543898 + 0.543898i −0.924669 0.380771i \(-0.875659\pi\)
0.380771 + 0.924669i \(0.375659\pi\)
\(614\) 278312.i 0.738236i
\(615\) 0 0
\(616\) −74250.0 −0.195675
\(617\) 187874. + 187874.i 0.493511 + 0.493511i 0.909410 0.415900i \(-0.136533\pi\)
−0.415900 + 0.909410i \(0.636533\pi\)
\(618\) 0 0
\(619\) 617958.i 1.61279i 0.591378 + 0.806395i \(0.298584\pi\)
−0.591378 + 0.806395i \(0.701416\pi\)
\(620\) 186587. + 269515.i 0.485398 + 0.701131i
\(621\) 0 0
\(622\) 70400.0 + 70400.0i 0.181967 + 0.181967i
\(623\) −56921.0 + 56921.0i −0.146655 + 0.146655i
\(624\) 0 0
\(625\) −293825. 257400.i −0.752192 0.658944i
\(626\) 16775.9 0.0428092
\(627\) 0 0
\(628\) −121000. + 121000.i −0.306808 + 0.306808i
\(629\) 11447.4i 0.0289339i
\(630\) 0 0
\(631\) −256228. −0.643529 −0.321764 0.946820i \(-0.604276\pi\)
−0.321764 + 0.946820i \(0.604276\pi\)
\(632\) −26126.7 26126.7i −0.0654110 0.0654110i
\(633\) 0 0
\(634\) 152950.i 0.380514i
\(635\) −686831. 124878.i −1.70334 0.309699i
\(636\) 0 0
\(637\) 258610. + 258610.i 0.637333 + 0.637333i
\(638\) −273932. + 273932.i −0.672980 + 0.672980i
\(639\) 0 0
\(640\) −58590.0 + 322245.i −0.143042 + 0.786731i
\(641\) −370809. −0.902472 −0.451236 0.892405i \(-0.649017\pi\)
−0.451236 + 0.892405i \(0.649017\pi\)
\(642\) 0 0
\(643\) 311380. 311380.i 0.753128 0.753128i −0.221934 0.975062i \(-0.571237\pi\)
0.975062 + 0.221934i \(0.0712369\pi\)
\(644\) 58786.7i 0.141745i
\(645\) 0 0
\(646\) −1980.00 −0.00474461
\(647\) 438972. + 438972.i 1.04864 + 1.04864i 0.998755 + 0.0498886i \(0.0158866\pi\)
0.0498886 + 0.998755i \(0.484113\pi\)
\(648\) 0 0
\(649\) 173250.i 0.411324i
\(650\) −76527.1 + 203493.i −0.181129 + 0.481639i
\(651\) 0 0
\(652\) 157300. + 157300.i 0.370027 + 0.370027i
\(653\) −250475. + 250475.i −0.587404 + 0.587404i −0.936928 0.349523i \(-0.886344\pi\)
0.349523 + 0.936928i \(0.386344\pi\)
\(654\) 0 0
\(655\) −234325. + 162225.i −0.546180 + 0.378125i
\(656\) −63530.2 −0.147629
\(657\) 0 0
\(658\) 35350.0 35350.0i 0.0816465 0.0816465i
\(659\) 24618.3i 0.0566876i 0.999598 + 0.0283438i \(0.00902331\pi\)
−0.999598 + 0.0283438i \(0.990977\pi\)
\(660\) 0 0
\(661\) 508838. 1.16460 0.582300 0.812974i \(-0.302153\pi\)
0.582300 + 0.812974i \(0.302153\pi\)
\(662\) 46488.6 + 46488.6i 0.106079 + 0.106079i
\(663\) 0 0
\(664\) 406890.i 0.922871i
\(665\) −6261.31 + 34437.2i −0.0141587 + 0.0778726i
\(666\) 0 0
\(667\) −532350. 532350.i −1.19659 1.19659i
\(668\) −10887.7 + 10887.7i −0.0243997 + 0.0243997i
\(669\) 0 0
\(670\) 84150.0 + 121550.i 0.187458 + 0.270773i
\(671\) −239669. −0.532313
\(672\) 0 0
\(673\) −66425.0 + 66425.0i −0.146657 + 0.146657i −0.776623 0.629966i \(-0.783069\pi\)
0.629966 + 0.776623i \(0.283069\pi\)
\(674\) 45046.6i 0.0991614i
\(675\) 0 0
\(676\) 47971.0 0.104975
\(677\) −583937. 583937.i −1.27406 1.27406i −0.943941 0.330115i \(-0.892912\pi\)
−0.330115 0.943941i \(-0.607088\pi\)
\(678\) 0 0
\(679\) 72050.0i 0.156277i
\(680\) −5549.80 + 3842.17i −0.0120022 + 0.00830919i
\(681\) 0 0
\(682\) −327800. 327800.i −0.704758 0.704758i
\(683\) −258140. + 258140.i −0.553368 + 0.553368i −0.927411 0.374044i \(-0.877971\pi\)
0.374044 + 0.927411i \(0.377971\pi\)
\(684\) 0 0
\(685\) 198550. + 36100.0i 0.423145 + 0.0769354i
\(686\) −75135.7 −0.159661
\(687\) 0 0
\(688\) 53710.0 53710.0i 0.113469 0.113469i
\(689\) 356199.i 0.750333i
\(690\) 0 0
\(691\) 509318. 1.06668 0.533338 0.845902i \(-0.320937\pi\)
0.533338 + 0.845902i \(0.320937\pi\)
\(692\) −216189. 216189.i −0.451462 0.451462i
\(693\) 0 0
\(694\) 28280.0i 0.0587165i
\(695\) −48923.6 70667.4i −0.101286 0.146302i
\(696\) 0 0
\(697\) −4900.00 4900.00i −0.0100863 0.0100863i
\(698\) 17674.0 17674.0i 0.0362763 0.0362763i
\(699\) 0 0
\(700\) 20075.0 + 44275.0i 0.0409694 + 0.0903571i
\(701\) 705615. 1.43592 0.717962 0.696082i \(-0.245075\pi\)
0.717962 + 0.696082i \(0.245075\pi\)
\(702\) 0 0
\(703\) 358380. 358380.i 0.725159 0.725159i
\(704\) 297238.i 0.599735i
\(705\) 0 0
\(706\) −339610. −0.681351
\(707\) −86251.1 86251.1i −0.172554 0.172554i
\(708\) 0 0
\(709\) 463158.i 0.921376i −0.887562 0.460688i \(-0.847603\pi\)
0.887562 0.460688i \(-0.152397\pi\)
\(710\) −379157. 68937.7i −0.752147 0.136754i
\(711\) 0 0
\(712\) −486000. 486000.i −0.958686 0.958686i
\(713\) 637035. 637035.i 1.25309 1.25309i
\(714\) 0 0
\(715\) −121000. + 665500.i −0.236686 + 1.30178i
\(716\) 154967. 0.302283
\(717\) 0 0
\(718\) 53550.0 53550.0i 0.103875 0.103875i
\(719\) 751926.i 1.45451i 0.686366 + 0.727256i \(0.259205\pi\)
−0.686366 + 0.727256i \(0.740795\pi\)
\(720\) 0 0
\(721\) −30850.0 −0.0593451
\(722\) 144069. + 144069.i 0.276373 + 0.276373i
\(723\) 0 0
\(724\) 14278.0i 0.0272389i
\(725\) 582729. + 219146.i 1.10864 + 0.416924i
\(726\) 0 0
\(727\) −353705. 353705.i −0.669225 0.669225i 0.288311 0.957537i \(-0.406906\pi\)
−0.957537 + 0.288311i \(0.906906\pi\)
\(728\) 46959.8 46959.8i 0.0886061 0.0886061i
\(729\) 0 0
\(730\) −253825. + 175725.i −0.476309 + 0.329752i
\(731\) 8285.17 0.0155048
\(732\) 0 0
\(733\) −45650.0 + 45650.0i −0.0849636 + 0.0849636i −0.748311 0.663348i \(-0.769135\pi\)
0.663348 + 0.748311i \(0.269135\pi\)
\(734\) 404724.i 0.751220i
\(735\) 0 0
\(736\) 799370. 1.47568
\(737\) 325240. + 325240.i 0.598783 + 0.598783i
\(738\) 0 0
\(739\) 827262.i 1.51480i 0.652953 + 0.757398i \(0.273530\pi\)
−0.652953 + 0.757398i \(0.726470\pi\)
\(740\) 125922. 692570.i 0.229952 1.26474i
\(741\) 0 0
\(742\) −25600.0 25600.0i −0.0464978 0.0464978i
\(743\) −463131. + 463131.i −0.838932 + 0.838932i −0.988718 0.149787i \(-0.952141\pi\)
0.149787 + 0.988718i \(0.452141\pi\)
\(744\) 0 0
\(745\) 66825.0 + 96525.0i 0.120400 + 0.173911i
\(746\) 372200. 0.668804
\(747\) 0 0
\(748\) −6050.00 + 6050.00i −0.0108131 + 0.0108131i
\(749\) 63213.9i 0.112681i
\(750\) 0 0
\(751\) 922568. 1.63576 0.817878 0.575392i \(-0.195150\pi\)
0.817878 + 0.575392i \(0.195150\pi\)
\(752\) −91664.9 91664.9i −0.162094 0.162094i
\(753\) 0 0
\(754\) 346500.i 0.609482i
\(755\) 645791. 447086.i 1.13292 0.784327i
\(756\) 0 0
\(757\) 34030.0 + 34030.0i 0.0593841 + 0.0593841i 0.736175 0.676791i \(-0.236630\pi\)
−0.676791 + 0.736175i \(0.736630\pi\)
\(758\) 179330. 179330.i 0.312114 0.312114i
\(759\) 0 0
\(760\) −294030. 53460.0i −0.509055 0.0925554i
\(761\) 855364. 1.47700 0.738502 0.674251i \(-0.235533\pi\)
0.738502 + 0.674251i \(0.235533\pi\)
\(762\) 0 0
\(763\) −8910.00 + 8910.00i −0.0153048 + 0.0153048i
\(764\) 43481.3i 0.0744931i
\(765\) 0 0
\(766\) 247610. 0.421998
\(767\) 109573. + 109573.i 0.186257 + 0.186257i
\(768\) 0 0
\(769\) 272898.i 0.461474i 0.973016 + 0.230737i \(0.0741138\pi\)
−0.973016 + 0.230737i \(0.925886\pi\)
\(770\) −39133.2 56525.7i −0.0660030 0.0953377i
\(771\) 0 0
\(772\) 93775.0 + 93775.0i 0.157345 + 0.157345i
\(773\) 148333. 148333.i 0.248244 0.248244i −0.572006 0.820250i \(-0.693834\pi\)
0.820250 + 0.572006i \(0.193834\pi\)
\(774\) 0 0
\(775\) −262240. + 697320.i −0.436612 + 1.16099i
\(776\) −615174. −1.02158
\(777\) 0 0
\(778\) −189675. + 189675.i −0.313365 + 0.313365i
\(779\) 306804.i 0.505576i
\(780\) 0 0
\(781\) −1.19900e6 −1.96570
\(782\) 5344.25 + 5344.25i 0.00873923 + 0.00873923i
\(783\) 0 0
\(784\) 96391.0i 0.156821i
\(785\) −382636. 69570.1i −0.620935 0.112897i
\(786\) 0 0
\(787\) −771950. 771950.i −1.24635 1.24635i −0.957320 0.289029i \(-0.906668\pi\)
−0.289029 0.957320i \(-0.593332\pi\)
\(788\) 449214. 449214.i 0.723438 0.723438i
\(789\) 0 0
\(790\) 6120.00 33660.0i 0.00980612 0.0539337i
\(791\) −86867.8 −0.138837
\(792\) 0 0
\(793\) 151580. 151580.i 0.241044 0.241044i
\(794\) 308196.i 0.488861i
\(795\) 0 0
\(796\) −461142. −0.727794
\(797\) 59517.2 + 59517.2i 0.0936971 + 0.0936971i 0.752402 0.658705i \(-0.228895\pi\)
−0.658705 + 0.752402i \(0.728895\pi\)
\(798\) 0 0
\(799\) 14140.0i 0.0221491i
\(800\) −602042. + 272976.i −0.940691 + 0.426525i
\(801\) 0 0
\(802\) 70400.0 + 70400.0i 0.109452 + 0.109452i
\(803\) −679178. + 679178.i −1.05330 + 1.05330i
\(804\) 0 0
\(805\) 109850. 76050.0i 0.169515 0.117357i
\(806\) 414638. 0.638262
\(807\) 0 0
\(808\) 736425. 736425.i 1.12799 1.12799i
\(809\) 181578.i 0.277438i 0.990332 + 0.138719i \(0.0442985\pi\)
−0.990332 + 0.138719i \(0.955701\pi\)
\(810\) 0 0
\(811\) 1.26958e6 1.93027 0.965134 0.261756i \(-0.0843015\pi\)
0.965134 + 0.261756i \(0.0843015\pi\)
\(812\) −54786.5 54786.5i −0.0830924 0.0830924i
\(813\) 0 0
\(814\) 995500.i 1.50242i
\(815\) −90441.1 + 497426.i −0.136160 + 0.748882i
\(816\) 0 0
\(817\) 259380. + 259380.i 0.388591 + 0.388591i
\(818\) −332817. + 332817.i −0.497392 + 0.497392i
\(819\) 0 0
\(820\) −242550. 350350.i −0.360723 0.521044i
\(821\) 504779. 0.748884 0.374442 0.927250i \(-0.377834\pi\)
0.374442 + 0.927250i \(0.377834\pi\)
\(822\) 0 0
\(823\) 299365. 299365.i 0.441979 0.441979i −0.450698 0.892677i \(-0.648825\pi\)
0.892677 + 0.450698i \(0.148825\pi\)
\(824\) 263402.i 0.387940i
\(825\) 0 0
\(826\) −15750.0 −0.0230845
\(827\) −364269. 364269.i −0.532612 0.532612i 0.388737 0.921349i \(-0.372912\pi\)
−0.921349 + 0.388737i \(0.872912\pi\)
\(828\) 0 0
\(829\) 597438.i 0.869328i −0.900593 0.434664i \(-0.856867\pi\)
0.900593 0.434664i \(-0.143133\pi\)
\(830\) −309761. + 214450.i −0.449646 + 0.311293i
\(831\) 0 0
\(832\) 187990. + 187990.i 0.271574 + 0.271574i
\(833\) −7434.51 + 7434.51i −0.0107143 + 0.0107143i
\(834\) 0 0
\(835\) −34430.0 6260.00i −0.0493815 0.00897845i
\(836\) −378809. −0.542011
\(837\) 0 0
\(838\) 299475. 299475.i 0.426454 0.426454i
\(839\) 1.11992e6i 1.59097i 0.605970 + 0.795487i \(0.292785\pi\)
−0.605970 + 0.795487i \(0.707215\pi\)
\(840\) 0 0
\(841\) −284969. −0.402908
\(842\) −154101. 154101.i −0.217361 0.217361i
\(843\) 0 0
\(844\) 329318.i 0.462307i
\(845\) 62058.1 + 89639.5i 0.0869131 + 0.125541i
\(846\) 0 0
\(847\) −78045.0 78045.0i −0.108787 0.108787i
\(848\) −66382.5 + 66382.5i −0.0923128 + 0.0923128i
\(849\) 0 0
\(850\) −5850.00 2200.00i −0.00809689 0.00304498i
\(851\) −1.93462e6 −2.67138
\(852\) 0 0
\(853\) −695120. + 695120.i −0.955348 + 0.955348i −0.999045 0.0436966i \(-0.986087\pi\)
0.0436966 + 0.999045i \(0.486087\pi\)
\(854\) 21788.1i 0.0298747i
\(855\) 0 0
\(856\) −539730. −0.736595
\(857\) 106117. + 106117.i 0.144485 + 0.144485i 0.775649 0.631164i \(-0.217423\pi\)
−0.631164 + 0.775649i \(0.717423\pi\)
\(858\) 0 0
\(859\) 1.25206e6i 1.69683i −0.529328 0.848417i \(-0.677556\pi\)
0.529328 0.848417i \(-0.322444\pi\)
\(860\) 501253. + 91136.8i 0.677735 + 0.123225i
\(861\) 0 0
\(862\) 353150. + 353150.i 0.475275 + 0.475275i
\(863\) 221818. 221818.i 0.297835 0.297835i −0.542331 0.840165i \(-0.682458\pi\)
0.840165 + 0.542331i \(0.182458\pi\)
\(864\) 0 0
\(865\) 124300. 683650.i 0.166126 0.913696i
\(866\) −288700. −0.384956
\(867\) 0 0
\(868\) 65560.0 65560.0i 0.0870161 0.0870161i
\(869\) 106442.i 0.140953i
\(870\) 0 0
\(871\) −411400. −0.542285
\(872\) −76074.9 76074.9i −0.100048 0.100048i
\(873\) 0 0
\(874\) 334620.i 0.438055i
\(875\) −56762.9 + 94789.3i −0.0741393 + 0.123806i
\(876\) 0 0
\(877\) −20900.0 20900.0i −0.0271736 0.0271736i 0.693389 0.720563i \(-0.256117\pi\)
−0.720563 + 0.693389i \(0.756117\pi\)
\(878\) −281218. + 281218.i −0.364800 + 0.364800i
\(879\) 0 0
\(880\) −146575. + 101475.i −0.189276 + 0.131037i
\(881\) −518044. −0.667444 −0.333722 0.942671i \(-0.608305\pi\)
−0.333722 + 0.942671i \(0.608305\pi\)
\(882\) 0 0
\(883\) −416240. + 416240.i −0.533854 + 0.533854i −0.921717 0.387863i \(-0.873213\pi\)
0.387863 + 0.921717i \(0.373213\pi\)
\(884\) 7652.71i 0.00979289i
\(885\) 0 0
\(886\) 415580. 0.529404
\(887\) 92076.0 + 92076.0i 0.117031 + 0.117031i 0.763197 0.646166i \(-0.223629\pi\)
−0.646166 + 0.763197i \(0.723629\pi\)
\(888\) 0 0
\(889\) 197450.i 0.249835i
\(890\) 113842. 626131.i 0.143722 0.790470i
\(891\) 0 0
\(892\) 492085. + 492085.i 0.618458 + 0.618458i
\(893\) 442675. 442675.i 0.555113 0.555113i
\(894\) 0 0
\(895\) 200475. + 289575.i 0.250273 + 0.361506i
\(896\) 92638.9 0.115392
\(897\) 0 0
\(898\) −252450. + 252450.i −0.313056 + 0.313056i
\(899\) 1.18737e6i 1.46915i
\(900\) 0 0
\(901\) −10240.0 −0.0126139
\(902\) 426117. + 426117.i 0.523740 + 0.523740i
\(903\) 0 0
\(904\) 741690.i 0.907581i
\(905\) 26680.1 18470.9i 0.0325755 0.0225523i
\(906\) 0 0
\(907\) 216040. + 216040.i 0.262615 + 0.262615i 0.826116 0.563501i \(-0.190546\pi\)
−0.563501 + 0.826116i \(0.690546\pi\)
\(908\) −335119. + 335119.i −0.406469 + 0.406469i
\(909\) 0 0
\(910\) 60500.0 + 11000.0i 0.0730588 + 0.0132834i
\(911\) 354080. 0.426643 0.213322 0.976982i \(-0.431572\pi\)
0.213322 + 0.976982i \(0.431572\pi\)
\(912\) 0 0
\(913\) −828850. + 828850.i −0.994339 + 0.994339i
\(914\) 539595.i 0.645916i
\(915\) 0 0
\(916\) −566478. −0.675137
\(917\) 57000.1 + 57000.1i 0.0677855 + 0.0677855i
\(918\) 0 0
\(919\) 951192.i 1.12626i 0.826370 + 0.563128i \(0.190402\pi\)
−0.826370 + 0.563128i \(0.809598\pi\)
\(920\) 649326. + 937916.i 0.767162 + 1.10812i
\(921\) 0 0
\(922\) −14575.0 14575.0i −0.0171454 0.0171454i
\(923\) 758314. 758314.i 0.890114 0.890114i
\(924\) 0 0
\(925\) 1.45705e6 660650.i 1.70291 0.772126i
\(926\) 766805. 0.894258
\(927\) 0 0
\(928\) 744975. 744975.i 0.865059 0.865059i
\(929\) 600801.i 0.696144i −0.937468 0.348072i \(-0.886836\pi\)
0.937468 0.348072i \(-0.113164\pi\)
\(930\) 0 0
\(931\) −465498. −0.537055
\(932\) 336893. + 336893.i 0.387847 + 0.387847i
\(933\) 0 0
\(934\) 617770.i 0.708163i
\(935\) −19131.8 3478.51i −0.0218843 0.00397896i
\(936\) 0 0
\(937\) 672265. + 672265.i 0.765705 + 0.765705i 0.977347 0.211642i \(-0.0678812\pi\)
−0.211642 + 0.977347i \(0.567881\pi\)
\(938\) 29567.3 29567.3i 0.0336052 0.0336052i
\(939\) 0 0
\(940\) 155540. 855470.i 0.176030 0.968164i
\(941\) −198101. −0.223721 −0.111861 0.993724i \(-0.535681\pi\)
−0.111861 + 0.993724i \(0.535681\pi\)
\(942\) 0 0
\(943\) −828100. + 828100.i −0.931235 + 0.931235i
\(944\) 40840.8i 0.0458301i
\(945\) 0 0
\(946\) −720500. −0.805103
\(947\) 329845. + 329845.i 0.367798 + 0.367798i 0.866674 0.498876i \(-0.166254\pi\)
−0.498876 + 0.866674i \(0.666254\pi\)
\(948\) 0 0
\(949\) 859100.i 0.953919i
\(950\) −114269. 252018.i −0.126614 0.279244i
\(951\) 0 0
\(952\) 1350.00 + 1350.00i 0.00148957 + 0.00148957i
\(953\) 811918. 811918.i 0.893977 0.893977i −0.100918 0.994895i \(-0.532178\pi\)
0.994895 + 0.100918i \(0.0321779\pi\)
\(954\) 0 0
\(955\) −81250.0 + 56250.0i −0.0890875 + 0.0616759i
\(956\) 964242. 1.05504
\(957\) 0 0
\(958\) −653400. + 653400.i −0.711948 + 0.711948i
\(959\) 57079.1i 0.0620640i
\(960\) 0 0
\(961\) 497343. 0.538529
\(962\) −629609. 629609.i −0.680332 0.680332i
\(963\) 0 0
\(964\) 689348.i 0.741796i
\(965\) −53916.8 + 296543.i −0.0578988 + 0.318444i
\(966\) 0 0
\(967\) −422345. 422345.i −0.451663 0.451663i 0.444243 0.895906i \(-0.353473\pi\)
−0.895906 + 0.444243i \(0.853473\pi\)
\(968\) 666360. 666360.i 0.711145 0.711145i
\(969\) 0 0
\(970\) −324225. 468325.i −0.344590 0.497742i
\(971\) 852756. 0.904453 0.452227 0.891903i \(-0.350630\pi\)
0.452227 + 0.891903i \(0.350630\pi\)
\(972\) 0 0
\(973\) −17190.0 + 17190.0i −0.0181573 + 0.0181573i
\(974\) 147599.i 0.155585i
\(975\) 0 0
\(976\) 56498.0 0.0593108
\(977\) −499390. 499390.i −0.523180 0.523180i 0.395351 0.918530i \(-0.370623\pi\)
−0.918530 + 0.395351i \(0.870623\pi\)
\(978\) 0 0
\(979\) 1.98000e6i 2.06585i
\(980\) −531568. + 368008.i −0.553486 + 0.383183i
\(981\) 0 0
\(982\) 346025. + 346025.i 0.358826 + 0.358826i
\(983\) −516599. + 516599.i −0.534622 + 0.534622i −0.921944 0.387322i \(-0.873400\pi\)
0.387322 + 0.921944i \(0.373400\pi\)
\(984\) 0 0
\(985\) 1.42054e6 + 258280.i 1.46413 + 0.266206i
\(986\) 9961.17 0.0102461
\(987\) 0 0
\(988\) 239580. 239580.i 0.245435 0.245435i
\(989\) 1.40019e6i 1.43151i
\(990\) 0 0
\(991\) −552958. −0.563047 −0.281524 0.959554i \(-0.590840\pi\)
−0.281524 + 0.959554i \(0.590840\pi\)
\(992\) 891471. + 891471.i 0.905908 + 0.905908i
\(993\) 0 0
\(994\) 109000.i 0.110320i
\(995\) −596561. 861699.i −0.602571 0.870381i
\(996\) 0 0
\(997\) 830110. + 830110.i 0.835113 + 0.835113i 0.988211 0.153098i \(-0.0489250\pi\)
−0.153098 + 0.988211i \(0.548925\pi\)
\(998\) −263288. + 263288.i −0.264344 + 0.264344i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.d.37.2 yes 4
3.2 odd 2 inner 45.5.g.d.37.1 yes 4
5.2 odd 4 225.5.g.k.118.1 4
5.3 odd 4 inner 45.5.g.d.28.2 yes 4
5.4 even 2 225.5.g.k.82.1 4
15.2 even 4 225.5.g.k.118.2 4
15.8 even 4 inner 45.5.g.d.28.1 4
15.14 odd 2 225.5.g.k.82.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.g.d.28.1 4 15.8 even 4 inner
45.5.g.d.28.2 yes 4 5.3 odd 4 inner
45.5.g.d.37.1 yes 4 3.2 odd 2 inner
45.5.g.d.37.2 yes 4 1.1 even 1 trivial
225.5.g.k.82.1 4 5.4 even 2
225.5.g.k.82.2 4 15.14 odd 2
225.5.g.k.118.1 4 5.2 odd 4
225.5.g.k.118.2 4 15.2 even 4