Properties

Label 45.5.g.d.28.1
Level $45$
Weight $5$
Character 45.28
Analytic conductor $4.652$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.1
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 45.28
Dual form 45.5.g.d.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58114 + 1.58114i) q^{2} +11.0000i q^{4} +(-20.5548 - 14.2302i) q^{5} +(-5.00000 + 5.00000i) q^{7} +(-42.6907 - 42.6907i) q^{8} +(55.0000 - 10.0000i) q^{10} -173.925 q^{11} +(-110.000 - 110.000i) q^{13} -15.8114i q^{14} -41.0000 q^{16} +(3.16228 - 3.16228i) q^{17} +198.000i q^{19} +(156.533 - 226.103i) q^{20} +(275.000 - 275.000i) q^{22} +(534.425 + 534.425i) q^{23} +(220.000 + 585.000i) q^{25} +347.851 q^{26} +(-55.0000 - 55.0000i) q^{28} +996.117i q^{29} -1192.00 q^{31} +(747.879 - 747.879i) q^{32} +10.0000i q^{34} +(173.925 - 31.6228i) q^{35} +(1810.00 - 1810.00i) q^{37} +(-313.065 - 313.065i) q^{38} +(270.000 + 1485.00i) q^{40} -1549.52 q^{41} +(-1310.00 - 1310.00i) q^{43} -1913.18i q^{44} -1690.00 q^{46} +(-2235.73 + 2235.73i) q^{47} +2351.00i q^{49} +(-1272.82 - 577.116i) q^{50} +(1210.00 - 1210.00i) q^{52} +(-1619.09 - 1619.09i) q^{53} +(3575.00 + 2475.00i) q^{55} +426.907 q^{56} +(-1575.00 - 1575.00i) q^{58} -996.117i q^{59} -1378.00 q^{61} +(1884.72 - 1884.72i) q^{62} +1709.00i q^{64} +(695.701 + 3826.36i) q^{65} +(1870.00 - 1870.00i) q^{67} +(34.7851 + 34.7851i) q^{68} +(-225.000 + 325.000i) q^{70} +6893.77 q^{71} +(-3905.00 - 3905.00i) q^{73} +5723.72i q^{74} -2178.00 q^{76} +(869.626 - 869.626i) q^{77} +612.000i q^{79} +(842.747 + 583.440i) q^{80} +(2450.00 - 2450.00i) q^{82} +(4765.55 + 4765.55i) q^{83} +(-110.000 + 20.0000i) q^{85} +4142.58 q^{86} +(7425.00 + 7425.00i) q^{88} -11384.2i q^{89} +1100.00 q^{91} +(-5878.67 + 5878.67i) q^{92} -7070.00i q^{94} +(2817.59 - 4069.85i) q^{95} +(-7205.00 + 7205.00i) q^{97} +(-3717.26 - 3717.26i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{7} + 220 q^{10} - 440 q^{13} - 164 q^{16} + 1100 q^{22} + 880 q^{25} - 220 q^{28} - 4768 q^{31} + 7240 q^{37} + 1080 q^{40} - 5240 q^{43} - 6760 q^{46} + 4840 q^{52} + 14300 q^{55} - 6300 q^{58}+ \cdots - 28820 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58114 + 1.58114i −0.395285 + 0.395285i −0.876566 0.481281i \(-0.840172\pi\)
0.481281 + 0.876566i \(0.340172\pi\)
\(3\) 0 0
\(4\) 11.0000i 0.687500i
\(5\) −20.5548 14.2302i −0.822192 0.569210i
\(6\) 0 0
\(7\) −5.00000 + 5.00000i −0.102041 + 0.102041i −0.756284 0.654243i \(-0.772987\pi\)
0.654243 + 0.756284i \(0.272987\pi\)
\(8\) −42.6907 42.6907i −0.667043 0.667043i
\(9\) 0 0
\(10\) 55.0000 10.0000i 0.550000 0.100000i
\(11\) −173.925 −1.43740 −0.718699 0.695321i \(-0.755262\pi\)
−0.718699 + 0.695321i \(0.755262\pi\)
\(12\) 0 0
\(13\) −110.000 110.000i −0.650888 0.650888i 0.302319 0.953207i \(-0.402239\pi\)
−0.953207 + 0.302319i \(0.902239\pi\)
\(14\) 15.8114i 0.0806703i
\(15\) 0 0
\(16\) −41.0000 −0.160156
\(17\) 3.16228 3.16228i 0.0109421 0.0109421i −0.701615 0.712557i \(-0.747537\pi\)
0.712557 + 0.701615i \(0.247537\pi\)
\(18\) 0 0
\(19\) 198.000i 0.548476i 0.961662 + 0.274238i \(0.0884257\pi\)
−0.961662 + 0.274238i \(0.911574\pi\)
\(20\) 156.533 226.103i 0.391332 0.565257i
\(21\) 0 0
\(22\) 275.000 275.000i 0.568182 0.568182i
\(23\) 534.425 + 534.425i 1.01026 + 1.01026i 0.999947 + 0.0103082i \(0.00328126\pi\)
0.0103082 + 0.999947i \(0.496719\pi\)
\(24\) 0 0
\(25\) 220.000 + 585.000i 0.352000 + 0.936000i
\(26\) 347.851 0.514572
\(27\) 0 0
\(28\) −55.0000 55.0000i −0.0701531 0.0701531i
\(29\) 996.117i 1.18444i 0.805775 + 0.592222i \(0.201749\pi\)
−0.805775 + 0.592222i \(0.798251\pi\)
\(30\) 0 0
\(31\) −1192.00 −1.24037 −0.620187 0.784454i \(-0.712943\pi\)
−0.620187 + 0.784454i \(0.712943\pi\)
\(32\) 747.879 747.879i 0.730350 0.730350i
\(33\) 0 0
\(34\) 10.0000i 0.00865052i
\(35\) 173.925 31.6228i 0.141980 0.0258145i
\(36\) 0 0
\(37\) 1810.00 1810.00i 1.32213 1.32213i 0.410086 0.912047i \(-0.365499\pi\)
0.912047 0.410086i \(-0.134501\pi\)
\(38\) −313.065 313.065i −0.216804 0.216804i
\(39\) 0 0
\(40\) 270.000 + 1485.00i 0.168750 + 0.928125i
\(41\) −1549.52 −0.921782 −0.460891 0.887457i \(-0.652470\pi\)
−0.460891 + 0.887457i \(0.652470\pi\)
\(42\) 0 0
\(43\) −1310.00 1310.00i −0.708491 0.708491i 0.257727 0.966218i \(-0.417027\pi\)
−0.966218 + 0.257727i \(0.917027\pi\)
\(44\) 1913.18i 0.988212i
\(45\) 0 0
\(46\) −1690.00 −0.798677
\(47\) −2235.73 + 2235.73i −1.01210 + 1.01210i −0.0121748 + 0.999926i \(0.503875\pi\)
−0.999926 + 0.0121748i \(0.996125\pi\)
\(48\) 0 0
\(49\) 2351.00i 0.979175i
\(50\) −1272.82 577.116i −0.509127 0.230846i
\(51\) 0 0
\(52\) 1210.00 1210.00i 0.447485 0.447485i
\(53\) −1619.09 1619.09i −0.576392 0.576392i 0.357515 0.933907i \(-0.383624\pi\)
−0.933907 + 0.357515i \(0.883624\pi\)
\(54\) 0 0
\(55\) 3575.00 + 2475.00i 1.18182 + 0.818182i
\(56\) 426.907 0.136131
\(57\) 0 0
\(58\) −1575.00 1575.00i −0.468193 0.468193i
\(59\) 996.117i 0.286158i −0.989711 0.143079i \(-0.954300\pi\)
0.989711 0.143079i \(-0.0457004\pi\)
\(60\) 0 0
\(61\) −1378.00 −0.370331 −0.185165 0.982707i \(-0.559282\pi\)
−0.185165 + 0.982707i \(0.559282\pi\)
\(62\) 1884.72 1884.72i 0.490301 0.490301i
\(63\) 0 0
\(64\) 1709.00i 0.417236i
\(65\) 695.701 + 3826.36i 0.164663 + 0.905646i
\(66\) 0 0
\(67\) 1870.00 1870.00i 0.416574 0.416574i −0.467447 0.884021i \(-0.654826\pi\)
0.884021 + 0.467447i \(0.154826\pi\)
\(68\) 34.7851 + 34.7851i 0.00752272 + 0.00752272i
\(69\) 0 0
\(70\) −225.000 + 325.000i −0.0459184 + 0.0663265i
\(71\) 6893.77 1.36754 0.683770 0.729698i \(-0.260339\pi\)
0.683770 + 0.729698i \(0.260339\pi\)
\(72\) 0 0
\(73\) −3905.00 3905.00i −0.732783 0.732783i 0.238387 0.971170i \(-0.423381\pi\)
−0.971170 + 0.238387i \(0.923381\pi\)
\(74\) 5723.72i 1.04524i
\(75\) 0 0
\(76\) −2178.00 −0.377078
\(77\) 869.626 869.626i 0.146673 0.146673i
\(78\) 0 0
\(79\) 612.000i 0.0980612i 0.998797 + 0.0490306i \(0.0156132\pi\)
−0.998797 + 0.0490306i \(0.984387\pi\)
\(80\) 842.747 + 583.440i 0.131679 + 0.0911625i
\(81\) 0 0
\(82\) 2450.00 2450.00i 0.364366 0.364366i
\(83\) 4765.55 + 4765.55i 0.691763 + 0.691763i 0.962620 0.270857i \(-0.0873071\pi\)
−0.270857 + 0.962620i \(0.587307\pi\)
\(84\) 0 0
\(85\) −110.000 + 20.0000i −0.0152249 + 0.00276817i
\(86\) 4142.58 0.560111
\(87\) 0 0
\(88\) 7425.00 + 7425.00i 0.958807 + 0.958807i
\(89\) 11384.2i 1.43722i −0.695415 0.718609i \(-0.744779\pi\)
0.695415 0.718609i \(-0.255221\pi\)
\(90\) 0 0
\(91\) 1100.00 0.132834
\(92\) −5878.67 + 5878.67i −0.694550 + 0.694550i
\(93\) 0 0
\(94\) 7070.00i 0.800136i
\(95\) 2817.59 4069.85i 0.312198 0.450953i
\(96\) 0 0
\(97\) −7205.00 + 7205.00i −0.765756 + 0.765756i −0.977356 0.211600i \(-0.932133\pi\)
0.211600 + 0.977356i \(0.432133\pi\)
\(98\) −3717.26 3717.26i −0.387053 0.387053i
\(99\) 0 0
\(100\) −6435.00 + 2420.00i −0.643500 + 0.242000i
\(101\) −17250.2 −1.69103 −0.845516 0.533950i \(-0.820707\pi\)
−0.845516 + 0.533950i \(0.820707\pi\)
\(102\) 0 0
\(103\) 3085.00 + 3085.00i 0.290791 + 0.290791i 0.837393 0.546602i \(-0.184079\pi\)
−0.546602 + 0.837393i \(0.684079\pi\)
\(104\) 9391.96i 0.868340i
\(105\) 0 0
\(106\) 5120.00 0.455678
\(107\) 6321.39 6321.39i 0.552135 0.552135i −0.374922 0.927057i \(-0.622330\pi\)
0.927057 + 0.374922i \(0.122330\pi\)
\(108\) 0 0
\(109\) 1782.00i 0.149987i 0.997184 + 0.0749937i \(0.0238937\pi\)
−0.997184 + 0.0749937i \(0.976106\pi\)
\(110\) −9565.89 + 1739.25i −0.790569 + 0.143740i
\(111\) 0 0
\(112\) 205.000 205.000i 0.0163425 0.0163425i
\(113\) −8686.78 8686.78i −0.680302 0.680302i 0.279766 0.960068i \(-0.409743\pi\)
−0.960068 + 0.279766i \(0.909743\pi\)
\(114\) 0 0
\(115\) −3380.00 18590.0i −0.255577 1.40567i
\(116\) −10957.3 −0.814305
\(117\) 0 0
\(118\) 1575.00 + 1575.00i 0.113114 + 0.113114i
\(119\) 31.6228i 0.00223309i
\(120\) 0 0
\(121\) 15609.0 1.06612
\(122\) 2178.81 2178.81i 0.146386 0.146386i
\(123\) 0 0
\(124\) 13112.0i 0.852758i
\(125\) 3802.64 15155.2i 0.243369 0.969934i
\(126\) 0 0
\(127\) −19745.0 + 19745.0i −1.22419 + 1.22419i −0.258065 + 0.966128i \(0.583085\pi\)
−0.966128 + 0.258065i \(0.916915\pi\)
\(128\) 9263.89 + 9263.89i 0.565423 + 0.565423i
\(129\) 0 0
\(130\) −7150.00 4950.00i −0.423077 0.292899i
\(131\) 11400.0 0.664298 0.332149 0.943227i \(-0.392226\pi\)
0.332149 + 0.943227i \(0.392226\pi\)
\(132\) 0 0
\(133\) −990.000 990.000i −0.0559670 0.0559670i
\(134\) 5913.46i 0.329331i
\(135\) 0 0
\(136\) −270.000 −0.0145978
\(137\) −5707.91 + 5707.91i −0.304114 + 0.304114i −0.842621 0.538507i \(-0.818988\pi\)
0.538507 + 0.842621i \(0.318988\pi\)
\(138\) 0 0
\(139\) 3438.00i 0.177941i 0.996034 + 0.0889706i \(0.0283577\pi\)
−0.996034 + 0.0889706i \(0.971642\pi\)
\(140\) 347.851 + 1913.18i 0.0177475 + 0.0976111i
\(141\) 0 0
\(142\) −10900.0 + 10900.0i −0.540567 + 0.540567i
\(143\) 19131.8 + 19131.8i 0.935585 + 0.935585i
\(144\) 0 0
\(145\) 14175.0 20475.0i 0.674197 0.973841i
\(146\) 12348.7 0.579316
\(147\) 0 0
\(148\) 19910.0 + 19910.0i 0.908966 + 0.908966i
\(149\) 4695.98i 0.211521i 0.994392 + 0.105761i \(0.0337277\pi\)
−0.994392 + 0.105761i \(0.966272\pi\)
\(150\) 0 0
\(151\) 31418.0 1.37792 0.688961 0.724798i \(-0.258067\pi\)
0.688961 + 0.724798i \(0.258067\pi\)
\(152\) 8452.77 8452.77i 0.365857 0.365857i
\(153\) 0 0
\(154\) 2750.00i 0.115955i
\(155\) 24501.3 + 16962.5i 1.01983 + 0.706034i
\(156\) 0 0
\(157\) −11000.0 + 11000.0i −0.446266 + 0.446266i −0.894111 0.447845i \(-0.852191\pi\)
0.447845 + 0.894111i \(0.352191\pi\)
\(158\) −967.657 967.657i −0.0387621 0.0387621i
\(159\) 0 0
\(160\) −26015.0 + 4730.00i −1.01621 + 0.184766i
\(161\) −5344.25 −0.206175
\(162\) 0 0
\(163\) −14300.0 14300.0i −0.538221 0.538221i 0.384785 0.923006i \(-0.374276\pi\)
−0.923006 + 0.384785i \(0.874276\pi\)
\(164\) 17044.7i 0.633725i
\(165\) 0 0
\(166\) −15070.0 −0.546886
\(167\) 989.793 989.793i 0.0354904 0.0354904i −0.689139 0.724629i \(-0.742011\pi\)
0.724629 + 0.689139i \(0.242011\pi\)
\(168\) 0 0
\(169\) 4361.00i 0.152691i
\(170\) 142.302 205.548i 0.00492396 0.00711239i
\(171\) 0 0
\(172\) 14410.0 14410.0i 0.487088 0.487088i
\(173\) −19653.6 19653.6i −0.656673 0.656673i 0.297919 0.954591i \(-0.403708\pi\)
−0.954591 + 0.297919i \(0.903708\pi\)
\(174\) 0 0
\(175\) −4025.00 1825.00i −0.131429 0.0595918i
\(176\) 7130.94 0.230208
\(177\) 0 0
\(178\) 18000.0 + 18000.0i 0.568110 + 0.568110i
\(179\) 14087.9i 0.439685i 0.975535 + 0.219842i \(0.0705543\pi\)
−0.975535 + 0.219842i \(0.929446\pi\)
\(180\) 0 0
\(181\) 1298.00 0.0396203 0.0198101 0.999804i \(-0.493694\pi\)
0.0198101 + 0.999804i \(0.493694\pi\)
\(182\) −1739.25 + 1739.25i −0.0525073 + 0.0525073i
\(183\) 0 0
\(184\) 45630.0i 1.34777i
\(185\) −62960.9 + 11447.4i −1.83962 + 0.334476i
\(186\) 0 0
\(187\) −550.000 + 550.000i −0.0157282 + 0.0157282i
\(188\) −24593.0 24593.0i −0.695819 0.695819i
\(189\) 0 0
\(190\) 1980.00 + 10890.0i 0.0548476 + 0.301662i
\(191\) 3952.85 0.108354 0.0541768 0.998531i \(-0.482747\pi\)
0.0541768 + 0.998531i \(0.482747\pi\)
\(192\) 0 0
\(193\) −8525.00 8525.00i −0.228865 0.228865i 0.583353 0.812219i \(-0.301740\pi\)
−0.812219 + 0.583353i \(0.801740\pi\)
\(194\) 22784.2i 0.605383i
\(195\) 0 0
\(196\) −25861.0 −0.673183
\(197\) −40837.7 + 40837.7i −1.05227 + 1.05227i −0.0537165 + 0.998556i \(0.517107\pi\)
−0.998556 + 0.0537165i \(0.982893\pi\)
\(198\) 0 0
\(199\) 41922.0i 1.05861i 0.848432 + 0.529305i \(0.177547\pi\)
−0.848432 + 0.529305i \(0.822453\pi\)
\(200\) 15582.1 34366.1i 0.389553 0.859151i
\(201\) 0 0
\(202\) 27275.0 27275.0i 0.668439 0.668439i
\(203\) −4980.59 4980.59i −0.120862 0.120862i
\(204\) 0 0
\(205\) 31850.0 + 22050.0i 0.757882 + 0.524688i
\(206\) −9755.63 −0.229890
\(207\) 0 0
\(208\) 4510.00 + 4510.00i 0.104244 + 0.104244i
\(209\) 34437.2i 0.788379i
\(210\) 0 0
\(211\) −29938.0 −0.672447 −0.336223 0.941782i \(-0.609150\pi\)
−0.336223 + 0.941782i \(0.609150\pi\)
\(212\) 17809.9 17809.9i 0.396270 0.396270i
\(213\) 0 0
\(214\) 19990.0i 0.436501i
\(215\) 8285.17 + 45568.4i 0.179236 + 0.985796i
\(216\) 0 0
\(217\) 5960.00 5960.00i 0.126569 0.126569i
\(218\) −2817.59 2817.59i −0.0592877 0.0592877i
\(219\) 0 0
\(220\) −27225.0 + 39325.0i −0.562500 + 0.812500i
\(221\) −695.701 −0.0142442
\(222\) 0 0
\(223\) −44735.0 44735.0i −0.899576 0.899576i 0.0958227 0.995398i \(-0.469452\pi\)
−0.995398 + 0.0958227i \(0.969452\pi\)
\(224\) 7478.79i 0.149051i
\(225\) 0 0
\(226\) 27470.0 0.537826
\(227\) 30465.4 30465.4i 0.591228 0.591228i −0.346735 0.937963i \(-0.612710\pi\)
0.937963 + 0.346735i \(0.112710\pi\)
\(228\) 0 0
\(229\) 51498.0i 0.982018i 0.871155 + 0.491009i \(0.163372\pi\)
−0.871155 + 0.491009i \(0.836628\pi\)
\(230\) 34737.6 + 24049.1i 0.656666 + 0.454615i
\(231\) 0 0
\(232\) 42525.0 42525.0i 0.790075 0.790075i
\(233\) 30626.7 + 30626.7i 0.564141 + 0.564141i 0.930481 0.366340i \(-0.119389\pi\)
−0.366340 + 0.930481i \(0.619389\pi\)
\(234\) 0 0
\(235\) 77770.0 14140.0i 1.40824 0.256043i
\(236\) 10957.3 0.196734
\(237\) 0 0
\(238\) −50.0000 50.0000i −0.000882706 0.000882706i
\(239\) 87658.3i 1.53461i 0.641284 + 0.767304i \(0.278402\pi\)
−0.641284 + 0.767304i \(0.721598\pi\)
\(240\) 0 0
\(241\) −62668.0 −1.07898 −0.539488 0.841993i \(-0.681382\pi\)
−0.539488 + 0.841993i \(0.681382\pi\)
\(242\) −24680.0 + 24680.0i −0.421419 + 0.421419i
\(243\) 0 0
\(244\) 15158.0i 0.254602i
\(245\) 33455.3 48324.3i 0.557356 0.805070i
\(246\) 0 0
\(247\) 21780.0 21780.0i 0.356997 0.356997i
\(248\) 50887.4 + 50887.4i 0.827383 + 0.827383i
\(249\) 0 0
\(250\) 17950.0 + 29975.0i 0.287200 + 0.479600i
\(251\) 45742.3 0.726057 0.363029 0.931778i \(-0.381743\pi\)
0.363029 + 0.931778i \(0.381743\pi\)
\(252\) 0 0
\(253\) −92950.0 92950.0i −1.45214 1.45214i
\(254\) 62439.2i 0.967809i
\(255\) 0 0
\(256\) −56639.0 −0.864243
\(257\) 32182.5 32182.5i 0.487252 0.487252i −0.420186 0.907438i \(-0.638035\pi\)
0.907438 + 0.420186i \(0.138035\pi\)
\(258\) 0 0
\(259\) 18100.0i 0.269823i
\(260\) −42089.9 + 7652.71i −0.622632 + 0.113206i
\(261\) 0 0
\(262\) −18025.0 + 18025.0i −0.262587 + 0.262587i
\(263\) 1577.98 + 1577.98i 0.0228133 + 0.0228133i 0.718421 0.695608i \(-0.244865\pi\)
−0.695608 + 0.718421i \(0.744865\pi\)
\(264\) 0 0
\(265\) 10240.0 + 56320.0i 0.145817 + 0.801994i
\(266\) 3130.65 0.0442458
\(267\) 0 0
\(268\) 20570.0 + 20570.0i 0.286395 + 0.286395i
\(269\) 48525.2i 0.670598i 0.942112 + 0.335299i \(0.108837\pi\)
−0.942112 + 0.335299i \(0.891163\pi\)
\(270\) 0 0
\(271\) 53102.0 0.723057 0.361528 0.932361i \(-0.382255\pi\)
0.361528 + 0.932361i \(0.382255\pi\)
\(272\) −129.653 + 129.653i −0.00175245 + 0.00175245i
\(273\) 0 0
\(274\) 18050.0i 0.240423i
\(275\) −38263.6 101746.i −0.505964 1.34541i
\(276\) 0 0
\(277\) 66370.0 66370.0i 0.864992 0.864992i −0.126921 0.991913i \(-0.540509\pi\)
0.991913 + 0.126921i \(0.0405093\pi\)
\(278\) −5435.96 5435.96i −0.0703374 0.0703374i
\(279\) 0 0
\(280\) −8775.00 6075.00i −0.111926 0.0774872i
\(281\) −64352.4 −0.814989 −0.407495 0.913208i \(-0.633597\pi\)
−0.407495 + 0.913208i \(0.633597\pi\)
\(282\) 0 0
\(283\) 54250.0 + 54250.0i 0.677371 + 0.677371i 0.959405 0.282033i \(-0.0910088\pi\)
−0.282033 + 0.959405i \(0.591009\pi\)
\(284\) 75831.4i 0.940183i
\(285\) 0 0
\(286\) −60500.0 −0.739645
\(287\) 7747.58 7747.58i 0.0940594 0.0940594i
\(288\) 0 0
\(289\) 83501.0i 0.999761i
\(290\) 9961.17 + 54786.5i 0.118444 + 0.651444i
\(291\) 0 0
\(292\) 42955.0 42955.0i 0.503788 0.503788i
\(293\) −80777.2 80777.2i −0.940922 0.940922i 0.0574276 0.998350i \(-0.481710\pi\)
−0.998350 + 0.0574276i \(0.981710\pi\)
\(294\) 0 0
\(295\) −14175.0 + 20475.0i −0.162884 + 0.235277i
\(296\) −154541. −1.76384
\(297\) 0 0
\(298\) −7425.00 7425.00i −0.0836111 0.0836111i
\(299\) 117573.i 1.31512i
\(300\) 0 0
\(301\) 13100.0 0.144590
\(302\) −49676.2 + 49676.2i −0.544672 + 0.544672i
\(303\) 0 0
\(304\) 8118.00i 0.0878419i
\(305\) 28324.5 + 19609.3i 0.304483 + 0.210796i
\(306\) 0 0
\(307\) −88010.0 + 88010.0i −0.933803 + 0.933803i −0.997941 0.0641380i \(-0.979570\pi\)
0.0641380 + 0.997941i \(0.479570\pi\)
\(308\) 9565.89 + 9565.89i 0.100838 + 0.100838i
\(309\) 0 0
\(310\) −65560.0 + 11920.0i −0.682206 + 0.124037i
\(311\) −44524.9 −0.460343 −0.230172 0.973150i \(-0.573929\pi\)
−0.230172 + 0.973150i \(0.573929\pi\)
\(312\) 0 0
\(313\) 5305.00 + 5305.00i 0.0541498 + 0.0541498i 0.733663 0.679513i \(-0.237809\pi\)
−0.679513 + 0.733663i \(0.737809\pi\)
\(314\) 34785.1i 0.352804i
\(315\) 0 0
\(316\) −6732.00 −0.0674171
\(317\) 48367.0 48367.0i 0.481317 0.481317i −0.424235 0.905552i \(-0.639457\pi\)
0.905552 + 0.424235i \(0.139457\pi\)
\(318\) 0 0
\(319\) 173250.i 1.70252i
\(320\) 24319.5 35128.2i 0.237495 0.343048i
\(321\) 0 0
\(322\) 8450.00 8450.00i 0.0814976 0.0814976i
\(323\) 626.131 + 626.131i 0.00600150 + 0.00600150i
\(324\) 0 0
\(325\) 40150.0 88550.0i 0.380118 0.838343i
\(326\) 45220.6 0.425501
\(327\) 0 0
\(328\) 66150.0 + 66150.0i 0.614868 + 0.614868i
\(329\) 22357.3i 0.206551i
\(330\) 0 0
\(331\) 29402.0 0.268362 0.134181 0.990957i \(-0.457160\pi\)
0.134181 + 0.990957i \(0.457160\pi\)
\(332\) −52421.1 + 52421.1i −0.475587 + 0.475587i
\(333\) 0 0
\(334\) 3130.00i 0.0280577i
\(335\) −65048.1 + 11826.9i −0.579622 + 0.105386i
\(336\) 0 0
\(337\) 14245.0 14245.0i 0.125430 0.125430i −0.641605 0.767035i \(-0.721731\pi\)
0.767035 + 0.641605i \(0.221731\pi\)
\(338\) 6895.35 + 6895.35i 0.0603563 + 0.0603563i
\(339\) 0 0
\(340\) −220.000 1210.00i −0.00190311 0.0104671i
\(341\) 207319. 1.78291
\(342\) 0 0
\(343\) −23760.0 23760.0i −0.201957 0.201957i
\(344\) 111850.i 0.945188i
\(345\) 0 0
\(346\) 62150.0 0.519145
\(347\) −8942.92 + 8942.92i −0.0742712 + 0.0742712i −0.743267 0.668995i \(-0.766725\pi\)
0.668995 + 0.743267i \(0.266725\pi\)
\(348\) 0 0
\(349\) 11178.0i 0.0917726i 0.998947 + 0.0458863i \(0.0146112\pi\)
−0.998947 + 0.0458863i \(0.985389\pi\)
\(350\) 9249.66 3478.51i 0.0755074 0.0283960i
\(351\) 0 0
\(352\) −130075. + 130075.i −1.04980 + 1.04980i
\(353\) 107394. + 107394.i 0.861849 + 0.861849i 0.991553 0.129704i \(-0.0414027\pi\)
−0.129704 + 0.991553i \(0.541403\pi\)
\(354\) 0 0
\(355\) −141700. 98100.0i −1.12438 0.778417i
\(356\) 125226. 0.988087
\(357\) 0 0
\(358\) −22275.0 22275.0i −0.173801 0.173801i
\(359\) 33868.0i 0.262785i −0.991330 0.131393i \(-0.958055\pi\)
0.991330 0.131393i \(-0.0419448\pi\)
\(360\) 0 0
\(361\) 91117.0 0.699174
\(362\) −2052.32 + 2052.32i −0.0156613 + 0.0156613i
\(363\) 0 0
\(364\) 12100.0i 0.0913235i
\(365\) 24697.4 + 135836.i 0.185381 + 1.01960i
\(366\) 0 0
\(367\) −127985. + 127985.i −0.950226 + 0.950226i −0.998819 0.0485926i \(-0.984526\pi\)
0.0485926 + 0.998819i \(0.484526\pi\)
\(368\) −21911.4 21911.4i −0.161799 0.161799i
\(369\) 0 0
\(370\) 81450.0 117650.i 0.594960 0.859386i
\(371\) 16190.9 0.117631
\(372\) 0 0
\(373\) 117700. + 117700.i 0.845977 + 0.845977i 0.989628 0.143651i \(-0.0458843\pi\)
−0.143651 + 0.989628i \(0.545884\pi\)
\(374\) 1739.25i 0.0124342i
\(375\) 0 0
\(376\) 190890. 1.35023
\(377\) 109573. 109573.i 0.770940 0.770940i
\(378\) 0 0
\(379\) 113418.i 0.789594i 0.918768 + 0.394797i \(0.129185\pi\)
−0.918768 + 0.394797i \(0.870815\pi\)
\(380\) 44768.4 + 30993.5i 0.310030 + 0.214636i
\(381\) 0 0
\(382\) −6250.00 + 6250.00i −0.0428305 + 0.0428305i
\(383\) −78301.2 78301.2i −0.533790 0.533790i 0.387908 0.921698i \(-0.373198\pi\)
−0.921698 + 0.387908i \(0.873198\pi\)
\(384\) 0 0
\(385\) −30250.0 + 5500.00i −0.204082 + 0.0371058i
\(386\) 26958.4 0.180934
\(387\) 0 0
\(388\) −79255.0 79255.0i −0.526457 0.526457i
\(389\) 119961.i 0.792758i 0.918087 + 0.396379i \(0.129733\pi\)
−0.918087 + 0.396379i \(0.870267\pi\)
\(390\) 0 0
\(391\) 3380.00 0.0221087
\(392\) 100366. 100366.i 0.653152 0.653152i
\(393\) 0 0
\(394\) 129140.i 0.831895i
\(395\) 8708.91 12579.5i 0.0558174 0.0806252i
\(396\) 0 0
\(397\) −97460.0 + 97460.0i −0.618366 + 0.618366i −0.945112 0.326746i \(-0.894048\pi\)
0.326746 + 0.945112i \(0.394048\pi\)
\(398\) −66284.5 66284.5i −0.418452 0.418452i
\(399\) 0 0
\(400\) −9020.00 23985.0i −0.0563750 0.149906i
\(401\) −44524.9 −0.276894 −0.138447 0.990370i \(-0.544211\pi\)
−0.138447 + 0.990370i \(0.544211\pi\)
\(402\) 0 0
\(403\) 131120. + 131120.i 0.807344 + 0.807344i
\(404\) 189752.i 1.16258i
\(405\) 0 0
\(406\) 15750.0 0.0955495
\(407\) −314805. + 314805.i −1.90043 + 1.90043i
\(408\) 0 0
\(409\) 210492.i 1.25831i −0.777278 0.629157i \(-0.783400\pi\)
0.777278 0.629157i \(-0.216600\pi\)
\(410\) −85223.4 + 15495.2i −0.506980 + 0.0921782i
\(411\) 0 0
\(412\) −33935.0 + 33935.0i −0.199919 + 0.199919i
\(413\) 4980.59 + 4980.59i 0.0291998 + 0.0291998i
\(414\) 0 0
\(415\) −30140.0 165770.i −0.175004 0.962520i
\(416\) −164533. −0.950752
\(417\) 0 0
\(418\) 54450.0 + 54450.0i 0.311634 + 0.311634i
\(419\) 189405.i 1.07885i −0.842032 0.539427i \(-0.818641\pi\)
0.842032 0.539427i \(-0.181359\pi\)
\(420\) 0 0
\(421\) −97462.0 −0.549884 −0.274942 0.961461i \(-0.588659\pi\)
−0.274942 + 0.961461i \(0.588659\pi\)
\(422\) 47336.1 47336.1i 0.265808 0.265808i
\(423\) 0 0
\(424\) 138240.i 0.768957i
\(425\) 2545.63 + 1154.23i 0.0140935 + 0.00639021i
\(426\) 0 0
\(427\) 6890.00 6890.00i 0.0377888 0.0377888i
\(428\) 69535.3 + 69535.3i 0.379593 + 0.379593i
\(429\) 0 0
\(430\) −85150.0 58950.0i −0.460519 0.318821i
\(431\) −223352. −1.20236 −0.601180 0.799113i \(-0.705303\pi\)
−0.601180 + 0.799113i \(0.705303\pi\)
\(432\) 0 0
\(433\) −91295.0 91295.0i −0.486935 0.486935i 0.420402 0.907338i \(-0.361889\pi\)
−0.907338 + 0.420402i \(0.861889\pi\)
\(434\) 18847.2i 0.100061i
\(435\) 0 0
\(436\) −19602.0 −0.103116
\(437\) −105816. + 105816.i −0.554101 + 0.554101i
\(438\) 0 0
\(439\) 177858.i 0.922878i −0.887172 0.461439i \(-0.847333\pi\)
0.887172 0.461439i \(-0.152667\pi\)
\(440\) −46959.8 258279.i −0.242561 1.33409i
\(441\) 0 0
\(442\) 1100.00 1100.00i 0.00563052 0.00563052i
\(443\) −131418. 131418.i −0.669649 0.669649i 0.287986 0.957635i \(-0.407014\pi\)
−0.957635 + 0.287986i \(0.907014\pi\)
\(444\) 0 0
\(445\) −162000. + 234000.i −0.818079 + 1.18167i
\(446\) 141464. 0.711177
\(447\) 0 0
\(448\) −8545.00 8545.00i −0.0425751 0.0425751i
\(449\) 159663.i 0.791977i 0.918255 + 0.395989i \(0.129598\pi\)
−0.918255 + 0.395989i \(0.870402\pi\)
\(450\) 0 0
\(451\) 269500. 1.32497
\(452\) 95554.5 95554.5i 0.467708 0.467708i
\(453\) 0 0
\(454\) 96340.0i 0.467407i
\(455\) −22610.3 15653.3i −0.109215 0.0756106i
\(456\) 0 0
\(457\) 170635. 170635.i 0.817026 0.817026i −0.168650 0.985676i \(-0.553941\pi\)
0.985676 + 0.168650i \(0.0539408\pi\)
\(458\) −81425.5 81425.5i −0.388177 0.388177i
\(459\) 0 0
\(460\) 204490. 37180.0i 0.966399 0.175709i
\(461\) 9218.04 0.0433747 0.0216874 0.999765i \(-0.493096\pi\)
0.0216874 + 0.999765i \(0.493096\pi\)
\(462\) 0 0
\(463\) 242485. + 242485.i 1.13116 + 1.13116i 0.989985 + 0.141172i \(0.0450870\pi\)
0.141172 + 0.989985i \(0.454913\pi\)
\(464\) 40840.8i 0.189696i
\(465\) 0 0
\(466\) −96850.0 −0.445993
\(467\) 195356. 195356.i 0.895763 0.895763i −0.0992952 0.995058i \(-0.531659\pi\)
0.995058 + 0.0992952i \(0.0316588\pi\)
\(468\) 0 0
\(469\) 18700.0i 0.0850151i
\(470\) −100608. + 145322.i −0.455445 + 0.657865i
\(471\) 0 0
\(472\) −42525.0 + 42525.0i −0.190880 + 0.190880i
\(473\) 227842. + 227842.i 1.01838 + 1.01838i
\(474\) 0 0
\(475\) −115830. + 43560.0i −0.513374 + 0.193064i
\(476\) −347.851 −0.00153525
\(477\) 0 0
\(478\) −138600. 138600.i −0.606607 0.606607i
\(479\) 413246.i 1.80110i 0.434751 + 0.900551i \(0.356836\pi\)
−0.434751 + 0.900551i \(0.643164\pi\)
\(480\) 0 0
\(481\) −398200. −1.72112
\(482\) 99086.8 99086.8i 0.426503 0.426503i
\(483\) 0 0
\(484\) 171699.i 0.732955i
\(485\) 250626. 45568.4i 1.06547 0.193723i
\(486\) 0 0
\(487\) 46675.0 46675.0i 0.196801 0.196801i −0.601826 0.798627i \(-0.705560\pi\)
0.798627 + 0.601826i \(0.205560\pi\)
\(488\) 58827.9 + 58827.9i 0.247026 + 0.247026i
\(489\) 0 0
\(490\) 23510.0 + 129305.i 0.0979175 + 0.538546i
\(491\) −218845. −0.907767 −0.453884 0.891061i \(-0.649962\pi\)
−0.453884 + 0.891061i \(0.649962\pi\)
\(492\) 0 0
\(493\) 3150.00 + 3150.00i 0.0129603 + 0.0129603i
\(494\) 68874.4i 0.282231i
\(495\) 0 0
\(496\) 48872.0 0.198654
\(497\) −34468.8 + 34468.8i −0.139545 + 0.139545i
\(498\) 0 0
\(499\) 166518.i 0.668744i −0.942441 0.334372i \(-0.891476\pi\)
0.942441 0.334372i \(-0.108524\pi\)
\(500\) 166707. + 41829.0i 0.666829 + 0.167316i
\(501\) 0 0
\(502\) −72325.0 + 72325.0i −0.286999 + 0.286999i
\(503\) 183744. + 183744.i 0.726236 + 0.726236i 0.969868 0.243632i \(-0.0783389\pi\)
−0.243632 + 0.969868i \(0.578339\pi\)
\(504\) 0 0
\(505\) 354575. + 245475.i 1.39035 + 0.962553i
\(506\) 293934. 1.14802
\(507\) 0 0
\(508\) −217195. 217195.i −0.841632 0.841632i
\(509\) 234088.i 0.903531i −0.892137 0.451765i \(-0.850794\pi\)
0.892137 0.451765i \(-0.149206\pi\)
\(510\) 0 0
\(511\) 39050.0 0.149548
\(512\) −58668.2 + 58668.2i −0.223801 + 0.223801i
\(513\) 0 0
\(514\) 101770.i 0.385206i
\(515\) −19511.3 107312.i −0.0735649 0.404607i
\(516\) 0 0
\(517\) 388850. 388850.i 1.45479 1.45479i
\(518\) −28618.6 28618.6i −0.106657 0.106657i
\(519\) 0 0
\(520\) 133650. 193050.i 0.494268 0.713942i
\(521\) 238278. 0.877825 0.438912 0.898530i \(-0.355364\pi\)
0.438912 + 0.898530i \(0.355364\pi\)
\(522\) 0 0
\(523\) −215270. 215270.i −0.787010 0.787010i 0.193993 0.981003i \(-0.437856\pi\)
−0.981003 + 0.193993i \(0.937856\pi\)
\(524\) 125400.i 0.456705i
\(525\) 0 0
\(526\) −4990.00 −0.0180355
\(527\) −3769.43 + 3769.43i −0.0135723 + 0.0135723i
\(528\) 0 0
\(529\) 291379.i 1.04123i
\(530\) −105241. 72858.9i −0.374655 0.259377i
\(531\) 0 0
\(532\) 10890.0 10890.0i 0.0384773 0.0384773i
\(533\) 170447. + 170447.i 0.599977 + 0.599977i
\(534\) 0 0
\(535\) −219890. + 39980.0i −0.768242 + 0.139680i
\(536\) −159663. −0.555745
\(537\) 0 0
\(538\) −76725.0 76725.0i −0.265077 0.265077i
\(539\) 408898.i 1.40747i
\(540\) 0 0
\(541\) −353518. −1.20786 −0.603931 0.797037i \(-0.706400\pi\)
−0.603931 + 0.797037i \(0.706400\pi\)
\(542\) −83961.6 + 83961.6i −0.285813 + 0.285813i
\(543\) 0 0
\(544\) 4730.00i 0.0159832i
\(545\) 25358.3 36628.7i 0.0853743 0.123318i
\(546\) 0 0
\(547\) 52690.0 52690.0i 0.176098 0.176098i −0.613555 0.789652i \(-0.710261\pi\)
0.789652 + 0.613555i \(0.210261\pi\)
\(548\) −62787.0 62787.0i −0.209078 0.209078i
\(549\) 0 0
\(550\) 221375. + 100375.i 0.731818 + 0.331818i
\(551\) −197231. −0.649640
\(552\) 0 0
\(553\) −3060.00 3060.00i −0.0100062 0.0100062i
\(554\) 209880.i 0.683837i
\(555\) 0 0
\(556\) −37818.0 −0.122335
\(557\) −85634.5 + 85634.5i −0.276019 + 0.276019i −0.831517 0.555499i \(-0.812527\pi\)
0.555499 + 0.831517i \(0.312527\pi\)
\(558\) 0 0
\(559\) 288200.i 0.922296i
\(560\) −7130.94 + 1296.53i −0.0227390 + 0.00413436i
\(561\) 0 0
\(562\) 101750. 101750.i 0.322153 0.322153i
\(563\) −377905. 377905.i −1.19225 1.19225i −0.976435 0.215810i \(-0.930761\pi\)
−0.215810 0.976435i \(-0.569239\pi\)
\(564\) 0 0
\(565\) 54940.0 + 302170.i 0.172104 + 0.946574i
\(566\) −171554. −0.535509
\(567\) 0 0
\(568\) −294300. 294300.i −0.912207 0.912207i
\(569\) 292005.i 0.901914i −0.892546 0.450957i \(-0.851083\pi\)
0.892546 0.450957i \(-0.148917\pi\)
\(570\) 0 0
\(571\) −232618. −0.713462 −0.356731 0.934207i \(-0.616109\pi\)
−0.356731 + 0.934207i \(0.616109\pi\)
\(572\) −210450. + 210450.i −0.643215 + 0.643215i
\(573\) 0 0
\(574\) 24500.0i 0.0743605i
\(575\) −195065. + 430212.i −0.589989 + 1.30121i
\(576\) 0 0
\(577\) 226765. 226765.i 0.681121 0.681121i −0.279132 0.960253i \(-0.590047\pi\)
0.960253 + 0.279132i \(0.0900466\pi\)
\(578\) −132027. 132027.i −0.395190 0.395190i
\(579\) 0 0
\(580\) 225225. + 155925.i 0.669515 + 0.463511i
\(581\) −47655.5 −0.141176
\(582\) 0 0
\(583\) 281600. + 281600.i 0.828506 + 0.828506i
\(584\) 333415.i 0.977595i
\(585\) 0 0
\(586\) 255440. 0.743864
\(587\) 451538. 451538.i 1.31044 1.31044i 0.389358 0.921087i \(-0.372697\pi\)
0.921087 0.389358i \(-0.127303\pi\)
\(588\) 0 0
\(589\) 236016.i 0.680316i
\(590\) −9961.17 54786.5i −0.0286158 0.157387i
\(591\) 0 0
\(592\) −74210.0 + 74210.0i −0.211748 + 0.211748i
\(593\) −396793. 396793.i −1.12838 1.12838i −0.990441 0.137937i \(-0.955953\pi\)
−0.137937 0.990441i \(-0.544047\pi\)
\(594\) 0 0
\(595\) 450.000 650.000i 0.00127110 0.00183603i
\(596\) −51655.8 −0.145421
\(597\) 0 0
\(598\) 185900. + 185900.i 0.519849 + 0.519849i
\(599\) 50375.1i 0.140398i −0.997533 0.0701992i \(-0.977637\pi\)
0.997533 0.0701992i \(-0.0223635\pi\)
\(600\) 0 0
\(601\) −151822. −0.420326 −0.210163 0.977666i \(-0.567399\pi\)
−0.210163 + 0.977666i \(0.567399\pi\)
\(602\) −20712.9 + 20712.9i −0.0571542 + 0.0571542i
\(603\) 0 0
\(604\) 345598.i 0.947321i
\(605\) −320840. 222120.i −0.876552 0.606844i
\(606\) 0 0
\(607\) −65945.0 + 65945.0i −0.178980 + 0.178980i −0.790911 0.611931i \(-0.790393\pi\)
0.611931 + 0.790911i \(0.290393\pi\)
\(608\) 148080. + 148080.i 0.400580 + 0.400580i
\(609\) 0 0
\(610\) −75790.0 + 13780.0i −0.203682 + 0.0370331i
\(611\) 491861. 1.31753
\(612\) 0 0
\(613\) −204380. 204380.i −0.543898 0.543898i 0.380771 0.924669i \(-0.375659\pi\)
−0.924669 + 0.380771i \(0.875659\pi\)
\(614\) 278312.i 0.738236i
\(615\) 0 0
\(616\) −74250.0 −0.195675
\(617\) −187874. + 187874.i −0.493511 + 0.493511i −0.909410 0.415900i \(-0.863467\pi\)
0.415900 + 0.909410i \(0.363467\pi\)
\(618\) 0 0
\(619\) 617958.i 1.61279i −0.591378 0.806395i \(-0.701416\pi\)
0.591378 0.806395i \(-0.298584\pi\)
\(620\) −186587. + 269515.i −0.485398 + 0.701131i
\(621\) 0 0
\(622\) 70400.0 70400.0i 0.181967 0.181967i
\(623\) 56921.0 + 56921.0i 0.146655 + 0.146655i
\(624\) 0 0
\(625\) −293825. + 257400.i −0.752192 + 0.658944i
\(626\) −16775.9 −0.0428092
\(627\) 0 0
\(628\) −121000. 121000.i −0.306808 0.306808i
\(629\) 11447.4i 0.0289339i
\(630\) 0 0
\(631\) −256228. −0.643529 −0.321764 0.946820i \(-0.604276\pi\)
−0.321764 + 0.946820i \(0.604276\pi\)
\(632\) 26126.7 26126.7i 0.0654110 0.0654110i
\(633\) 0 0
\(634\) 152950.i 0.380514i
\(635\) 686831. 124878.i 1.70334 0.309699i
\(636\) 0 0
\(637\) 258610. 258610.i 0.637333 0.637333i
\(638\) 273932. + 273932.i 0.672980 + 0.672980i
\(639\) 0 0
\(640\) −58590.0 322245.i −0.143042 0.786731i
\(641\) 370809. 0.902472 0.451236 0.892405i \(-0.350983\pi\)
0.451236 + 0.892405i \(0.350983\pi\)
\(642\) 0 0
\(643\) 311380. + 311380.i 0.753128 + 0.753128i 0.975062 0.221934i \(-0.0712369\pi\)
−0.221934 + 0.975062i \(0.571237\pi\)
\(644\) 58786.7i 0.141745i
\(645\) 0 0
\(646\) −1980.00 −0.00474461
\(647\) −438972. + 438972.i −1.04864 + 1.04864i −0.0498886 + 0.998755i \(0.515887\pi\)
−0.998755 + 0.0498886i \(0.984113\pi\)
\(648\) 0 0
\(649\) 173250.i 0.411324i
\(650\) 76527.1 + 203493.i 0.181129 + 0.481639i
\(651\) 0 0
\(652\) 157300. 157300.i 0.370027 0.370027i
\(653\) 250475. + 250475.i 0.587404 + 0.587404i 0.936928 0.349523i \(-0.113656\pi\)
−0.349523 + 0.936928i \(0.613656\pi\)
\(654\) 0 0
\(655\) −234325. 162225.i −0.546180 0.378125i
\(656\) 63530.2 0.147629
\(657\) 0 0
\(658\) 35350.0 + 35350.0i 0.0816465 + 0.0816465i
\(659\) 24618.3i 0.0566876i 0.999598 + 0.0283438i \(0.00902331\pi\)
−0.999598 + 0.0283438i \(0.990977\pi\)
\(660\) 0 0
\(661\) 508838. 1.16460 0.582300 0.812974i \(-0.302153\pi\)
0.582300 + 0.812974i \(0.302153\pi\)
\(662\) −46488.6 + 46488.6i −0.106079 + 0.106079i
\(663\) 0 0
\(664\) 406890.i 0.922871i
\(665\) 6261.31 + 34437.2i 0.0141587 + 0.0778726i
\(666\) 0 0
\(667\) −532350. + 532350.i −1.19659 + 1.19659i
\(668\) 10887.7 + 10887.7i 0.0243997 + 0.0243997i
\(669\) 0 0
\(670\) 84150.0 121550.i 0.187458 0.270773i
\(671\) 239669. 0.532313
\(672\) 0 0
\(673\) −66425.0 66425.0i −0.146657 0.146657i 0.629966 0.776623i \(-0.283069\pi\)
−0.776623 + 0.629966i \(0.783069\pi\)
\(674\) 45046.6i 0.0991614i
\(675\) 0 0
\(676\) 47971.0 0.104975
\(677\) 583937. 583937.i 1.27406 1.27406i 0.330115 0.943941i \(-0.392912\pi\)
0.943941 0.330115i \(-0.107088\pi\)
\(678\) 0 0
\(679\) 72050.0i 0.156277i
\(680\) 5549.80 + 3842.17i 0.0120022 + 0.00830919i
\(681\) 0 0
\(682\) −327800. + 327800.i −0.704758 + 0.704758i
\(683\) 258140. + 258140.i 0.553368 + 0.553368i 0.927411 0.374044i \(-0.122029\pi\)
−0.374044 + 0.927411i \(0.622029\pi\)
\(684\) 0 0
\(685\) 198550. 36100.0i 0.423145 0.0769354i
\(686\) 75135.7 0.159661
\(687\) 0 0
\(688\) 53710.0 + 53710.0i 0.113469 + 0.113469i
\(689\) 356199.i 0.750333i
\(690\) 0 0
\(691\) 509318. 1.06668 0.533338 0.845902i \(-0.320937\pi\)
0.533338 + 0.845902i \(0.320937\pi\)
\(692\) 216189. 216189.i 0.451462 0.451462i
\(693\) 0 0
\(694\) 28280.0i 0.0587165i
\(695\) 48923.6 70667.4i 0.101286 0.146302i
\(696\) 0 0
\(697\) −4900.00 + 4900.00i −0.0100863 + 0.0100863i
\(698\) −17674.0 17674.0i −0.0362763 0.0362763i
\(699\) 0 0
\(700\) 20075.0 44275.0i 0.0409694 0.0903571i
\(701\) −705615. −1.43592 −0.717962 0.696082i \(-0.754925\pi\)
−0.717962 + 0.696082i \(0.754925\pi\)
\(702\) 0 0
\(703\) 358380. + 358380.i 0.725159 + 0.725159i
\(704\) 297238.i 0.599735i
\(705\) 0 0
\(706\) −339610. −0.681351
\(707\) 86251.1 86251.1i 0.172554 0.172554i
\(708\) 0 0
\(709\) 463158.i 0.921376i 0.887562 + 0.460688i \(0.152397\pi\)
−0.887562 + 0.460688i \(0.847603\pi\)
\(710\) 379157. 68937.7i 0.752147 0.136754i
\(711\) 0 0
\(712\) −486000. + 486000.i −0.958686 + 0.958686i
\(713\) −637035. 637035.i −1.25309 1.25309i
\(714\) 0 0
\(715\) −121000. 665500.i −0.236686 1.30178i
\(716\) −154967. −0.302283
\(717\) 0 0
\(718\) 53550.0 + 53550.0i 0.103875 + 0.103875i
\(719\) 751926.i 1.45451i 0.686366 + 0.727256i \(0.259205\pi\)
−0.686366 + 0.727256i \(0.740795\pi\)
\(720\) 0 0
\(721\) −30850.0 −0.0593451
\(722\) −144069. + 144069.i −0.276373 + 0.276373i
\(723\) 0 0
\(724\) 14278.0i 0.0272389i
\(725\) −582729. + 219146.i −1.10864 + 0.416924i
\(726\) 0 0
\(727\) −353705. + 353705.i −0.669225 + 0.669225i −0.957537 0.288311i \(-0.906906\pi\)
0.288311 + 0.957537i \(0.406906\pi\)
\(728\) −46959.8 46959.8i −0.0886061 0.0886061i
\(729\) 0 0
\(730\) −253825. 175725.i −0.476309 0.329752i
\(731\) −8285.17 −0.0155048
\(732\) 0 0
\(733\) −45650.0 45650.0i −0.0849636 0.0849636i 0.663348 0.748311i \(-0.269135\pi\)
−0.748311 + 0.663348i \(0.769135\pi\)
\(734\) 404724.i 0.751220i
\(735\) 0 0
\(736\) 799370. 1.47568
\(737\) −325240. + 325240.i −0.598783 + 0.598783i
\(738\) 0 0
\(739\) 827262.i 1.51480i −0.652953 0.757398i \(-0.726470\pi\)
0.652953 0.757398i \(-0.273530\pi\)
\(740\) −125922. 692570.i −0.229952 1.26474i
\(741\) 0 0
\(742\) −25600.0 + 25600.0i −0.0464978 + 0.0464978i
\(743\) 463131. + 463131.i 0.838932 + 0.838932i 0.988718 0.149787i \(-0.0478587\pi\)
−0.149787 + 0.988718i \(0.547859\pi\)
\(744\) 0 0
\(745\) 66825.0 96525.0i 0.120400 0.173911i
\(746\) −372200. −0.668804
\(747\) 0 0
\(748\) −6050.00 6050.00i −0.0108131 0.0108131i
\(749\) 63213.9i 0.112681i
\(750\) 0 0
\(751\) 922568. 1.63576 0.817878 0.575392i \(-0.195150\pi\)
0.817878 + 0.575392i \(0.195150\pi\)
\(752\) 91664.9 91664.9i 0.162094 0.162094i
\(753\) 0 0
\(754\) 346500.i 0.609482i
\(755\) −645791. 447086.i −1.13292 0.784327i
\(756\) 0 0
\(757\) 34030.0 34030.0i 0.0593841 0.0593841i −0.676791 0.736175i \(-0.736630\pi\)
0.736175 + 0.676791i \(0.236630\pi\)
\(758\) −179330. 179330.i −0.312114 0.312114i
\(759\) 0 0
\(760\) −294030. + 53460.0i −0.509055 + 0.0925554i
\(761\) −855364. −1.47700 −0.738502 0.674251i \(-0.764467\pi\)
−0.738502 + 0.674251i \(0.764467\pi\)
\(762\) 0 0
\(763\) −8910.00 8910.00i −0.0153048 0.0153048i
\(764\) 43481.3i 0.0744931i
\(765\) 0 0
\(766\) 247610. 0.421998
\(767\) −109573. + 109573.i −0.186257 + 0.186257i
\(768\) 0 0
\(769\) 272898.i 0.461474i −0.973016 0.230737i \(-0.925886\pi\)
0.973016 0.230737i \(-0.0741138\pi\)
\(770\) 39133.2 56525.7i 0.0660030 0.0953377i
\(771\) 0 0
\(772\) 93775.0 93775.0i 0.157345 0.157345i
\(773\) −148333. 148333.i −0.248244 0.248244i 0.572006 0.820250i \(-0.306166\pi\)
−0.820250 + 0.572006i \(0.806166\pi\)
\(774\) 0 0
\(775\) −262240. 697320.i −0.436612 1.16099i
\(776\) 615174. 1.02158
\(777\) 0 0
\(778\) −189675. 189675.i −0.313365 0.313365i
\(779\) 306804.i 0.505576i
\(780\) 0 0
\(781\) −1.19900e6 −1.96570
\(782\) −5344.25 + 5344.25i −0.00873923 + 0.00873923i
\(783\) 0 0
\(784\) 96391.0i 0.156821i
\(785\) 382636. 69570.1i 0.620935 0.112897i
\(786\) 0 0
\(787\) −771950. + 771950.i −1.24635 + 1.24635i −0.289029 + 0.957320i \(0.593332\pi\)
−0.957320 + 0.289029i \(0.906668\pi\)
\(788\) −449214. 449214.i −0.723438 0.723438i
\(789\) 0 0
\(790\) 6120.00 + 33660.0i 0.00980612 + 0.0539337i
\(791\) 86867.8 0.138837
\(792\) 0 0
\(793\) 151580. + 151580.i 0.241044 + 0.241044i
\(794\) 308196.i 0.488861i
\(795\) 0 0
\(796\) −461142. −0.727794
\(797\) −59517.2 + 59517.2i −0.0936971 + 0.0936971i −0.752402 0.658705i \(-0.771105\pi\)
0.658705 + 0.752402i \(0.271105\pi\)
\(798\) 0 0
\(799\) 14140.0i 0.0221491i
\(800\) 602042. + 272976.i 0.940691 + 0.426525i
\(801\) 0 0
\(802\) 70400.0 70400.0i 0.109452 0.109452i
\(803\) 679178. + 679178.i 1.05330 + 1.05330i
\(804\) 0 0
\(805\) 109850. + 76050.0i 0.169515 + 0.117357i
\(806\) −414638. −0.638262
\(807\) 0 0
\(808\) 736425. + 736425.i 1.12799 + 1.12799i
\(809\) 181578.i 0.277438i 0.990332 + 0.138719i \(0.0442985\pi\)
−0.990332 + 0.138719i \(0.955701\pi\)
\(810\) 0 0
\(811\) 1.26958e6 1.93027 0.965134 0.261756i \(-0.0843015\pi\)
0.965134 + 0.261756i \(0.0843015\pi\)
\(812\) 54786.5 54786.5i 0.0830924 0.0830924i
\(813\) 0 0
\(814\) 995500.i 1.50242i
\(815\) 90441.1 + 497426.i 0.136160 + 0.748882i
\(816\) 0 0
\(817\) 259380. 259380.i 0.388591 0.388591i
\(818\) 332817. + 332817.i 0.497392 + 0.497392i
\(819\) 0 0
\(820\) −242550. + 350350.i −0.360723 + 0.521044i
\(821\) −504779. −0.748884 −0.374442 0.927250i \(-0.622166\pi\)
−0.374442 + 0.927250i \(0.622166\pi\)
\(822\) 0 0
\(823\) 299365. + 299365.i 0.441979 + 0.441979i 0.892677 0.450698i \(-0.148825\pi\)
−0.450698 + 0.892677i \(0.648825\pi\)
\(824\) 263402.i 0.387940i
\(825\) 0 0
\(826\) −15750.0 −0.0230845
\(827\) 364269. 364269.i 0.532612 0.532612i −0.388737 0.921349i \(-0.627088\pi\)
0.921349 + 0.388737i \(0.127088\pi\)
\(828\) 0 0
\(829\) 597438.i 0.869328i 0.900593 + 0.434664i \(0.143133\pi\)
−0.900593 + 0.434664i \(0.856867\pi\)
\(830\) 309761. + 214450.i 0.449646 + 0.311293i
\(831\) 0 0
\(832\) 187990. 187990.i 0.271574 0.271574i
\(833\) 7434.51 + 7434.51i 0.0107143 + 0.0107143i
\(834\) 0 0
\(835\) −34430.0 + 6260.00i −0.0493815 + 0.00897845i
\(836\) 378809. 0.542011
\(837\) 0 0
\(838\) 299475. + 299475.i 0.426454 + 0.426454i
\(839\) 1.11992e6i 1.59097i 0.605970 + 0.795487i \(0.292785\pi\)
−0.605970 + 0.795487i \(0.707215\pi\)
\(840\) 0 0
\(841\) −284969. −0.402908
\(842\) 154101. 154101.i 0.217361 0.217361i
\(843\) 0 0
\(844\) 329318.i 0.462307i
\(845\) −62058.1 + 89639.5i −0.0869131 + 0.125541i
\(846\) 0 0
\(847\) −78045.0 + 78045.0i −0.108787 + 0.108787i
\(848\) 66382.5 + 66382.5i 0.0923128 + 0.0923128i
\(849\) 0 0
\(850\) −5850.00 + 2200.00i −0.00809689 + 0.00304498i
\(851\) 1.93462e6 2.67138
\(852\) 0 0
\(853\) −695120. 695120.i −0.955348 0.955348i 0.0436966 0.999045i \(-0.486087\pi\)
−0.999045 + 0.0436966i \(0.986087\pi\)
\(854\) 21788.1i 0.0298747i
\(855\) 0 0
\(856\) −539730. −0.736595
\(857\) −106117. + 106117.i −0.144485 + 0.144485i −0.775649 0.631164i \(-0.782577\pi\)
0.631164 + 0.775649i \(0.282577\pi\)
\(858\) 0 0
\(859\) 1.25206e6i 1.69683i 0.529328 + 0.848417i \(0.322444\pi\)
−0.529328 + 0.848417i \(0.677556\pi\)
\(860\) −501253. + 91136.8i −0.677735 + 0.123225i
\(861\) 0 0
\(862\) 353150. 353150.i 0.475275 0.475275i
\(863\) −221818. 221818.i −0.297835 0.297835i 0.542331 0.840165i \(-0.317542\pi\)
−0.840165 + 0.542331i \(0.817542\pi\)
\(864\) 0 0
\(865\) 124300. + 683650.i 0.166126 + 0.913696i
\(866\) 288700. 0.384956
\(867\) 0 0
\(868\) 65560.0 + 65560.0i 0.0870161 + 0.0870161i
\(869\) 106442.i 0.140953i
\(870\) 0 0
\(871\) −411400. −0.542285
\(872\) 76074.9 76074.9i 0.100048 0.100048i
\(873\) 0 0
\(874\) 334620.i 0.438055i
\(875\) 56762.9 + 94789.3i 0.0741393 + 0.123806i
\(876\) 0 0
\(877\) −20900.0 + 20900.0i −0.0271736 + 0.0271736i −0.720563 0.693389i \(-0.756117\pi\)
0.693389 + 0.720563i \(0.256117\pi\)
\(878\) 281218. + 281218.i 0.364800 + 0.364800i
\(879\) 0 0
\(880\) −146575. 101475.i −0.189276 0.131037i
\(881\) 518044. 0.667444 0.333722 0.942671i \(-0.391695\pi\)
0.333722 + 0.942671i \(0.391695\pi\)
\(882\) 0 0
\(883\) −416240. 416240.i −0.533854 0.533854i 0.387863 0.921717i \(-0.373213\pi\)
−0.921717 + 0.387863i \(0.873213\pi\)
\(884\) 7652.71i 0.00979289i
\(885\) 0 0
\(886\) 415580. 0.529404
\(887\) −92076.0 + 92076.0i −0.117031 + 0.117031i −0.763197 0.646166i \(-0.776371\pi\)
0.646166 + 0.763197i \(0.276371\pi\)
\(888\) 0 0
\(889\) 197450.i 0.249835i
\(890\) −113842. 626131.i −0.143722 0.790470i
\(891\) 0 0
\(892\) 492085. 492085.i 0.618458 0.618458i
\(893\) −442675. 442675.i −0.555113 0.555113i
\(894\) 0 0
\(895\) 200475. 289575.i 0.250273 0.361506i
\(896\) −92638.9 −0.115392
\(897\) 0 0
\(898\) −252450. 252450.i −0.313056 0.313056i
\(899\) 1.18737e6i 1.46915i
\(900\) 0 0
\(901\) −10240.0 −0.0126139
\(902\) −426117. + 426117.i −0.523740 + 0.523740i
\(903\) 0 0
\(904\) 741690.i 0.907581i
\(905\) −26680.1 18470.9i −0.0325755 0.0225523i
\(906\) 0 0
\(907\) 216040. 216040.i 0.262615 0.262615i −0.563501 0.826116i \(-0.690546\pi\)
0.826116 + 0.563501i \(0.190546\pi\)
\(908\) 335119. + 335119.i 0.406469 + 0.406469i
\(909\) 0 0
\(910\) 60500.0 11000.0i 0.0730588 0.0132834i
\(911\) −354080. −0.426643 −0.213322 0.976982i \(-0.568428\pi\)
−0.213322 + 0.976982i \(0.568428\pi\)
\(912\) 0 0
\(913\) −828850. 828850.i −0.994339 0.994339i
\(914\) 539595.i 0.645916i
\(915\) 0 0
\(916\) −566478. −0.675137
\(917\) −57000.1 + 57000.1i −0.0677855 + 0.0677855i
\(918\) 0 0
\(919\) 951192.i 1.12626i −0.826370 0.563128i \(-0.809598\pi\)
0.826370 0.563128i \(-0.190402\pi\)
\(920\) −649326. + 937916.i −0.767162 + 1.10812i
\(921\) 0 0
\(922\) −14575.0 + 14575.0i −0.0171454 + 0.0171454i
\(923\) −758314. 758314.i −0.890114 0.890114i
\(924\) 0 0
\(925\) 1.45705e6 + 660650.i 1.70291 + 0.772126i
\(926\) −766805. −0.894258
\(927\) 0 0
\(928\) 744975. + 744975.i 0.865059 + 0.865059i
\(929\) 600801.i 0.696144i −0.937468 0.348072i \(-0.886836\pi\)
0.937468 0.348072i \(-0.113164\pi\)
\(930\) 0 0
\(931\) −465498. −0.537055
\(932\) −336893. + 336893.i −0.387847 + 0.387847i
\(933\) 0 0
\(934\) 617770.i 0.708163i
\(935\) 19131.8 3478.51i 0.0218843 0.00397896i
\(936\) 0 0
\(937\) 672265. 672265.i 0.765705 0.765705i −0.211642 0.977347i \(-0.567881\pi\)
0.977347 + 0.211642i \(0.0678812\pi\)
\(938\) −29567.3 29567.3i −0.0336052 0.0336052i
\(939\) 0 0
\(940\) 155540. + 855470.i 0.176030 + 0.968164i
\(941\) 198101. 0.223721 0.111861 0.993724i \(-0.464319\pi\)
0.111861 + 0.993724i \(0.464319\pi\)
\(942\) 0 0
\(943\) −828100. 828100.i −0.931235 0.931235i
\(944\) 40840.8i 0.0458301i
\(945\) 0 0
\(946\) −720500. −0.805103
\(947\) −329845. + 329845.i −0.367798 + 0.367798i −0.866674 0.498876i \(-0.833746\pi\)
0.498876 + 0.866674i \(0.333746\pi\)
\(948\) 0 0
\(949\) 859100.i 0.953919i
\(950\) 114269. 252018.i 0.126614 0.279244i
\(951\) 0 0
\(952\) 1350.00 1350.00i 0.00148957 0.00148957i
\(953\) −811918. 811918.i −0.893977 0.893977i 0.100918 0.994895i \(-0.467822\pi\)
−0.994895 + 0.100918i \(0.967822\pi\)
\(954\) 0 0
\(955\) −81250.0 56250.0i −0.0890875 0.0616759i
\(956\) −964242. −1.05504
\(957\) 0 0
\(958\) −653400. 653400.i −0.711948 0.711948i
\(959\) 57079.1i 0.0620640i
\(960\) 0 0
\(961\) 497343. 0.538529
\(962\) 629609. 629609.i 0.680332 0.680332i
\(963\) 0 0
\(964\) 689348.i 0.741796i
\(965\) 53916.8 + 296543.i 0.0578988 + 0.318444i
\(966\) 0 0
\(967\) −422345. + 422345.i −0.451663 + 0.451663i −0.895906 0.444243i \(-0.853473\pi\)
0.444243 + 0.895906i \(0.353473\pi\)
\(968\) −666360. 666360.i −0.711145 0.711145i
\(969\) 0 0
\(970\) −324225. + 468325.i −0.344590 + 0.497742i
\(971\) −852756. −0.904453 −0.452227 0.891903i \(-0.649370\pi\)
−0.452227 + 0.891903i \(0.649370\pi\)
\(972\) 0 0
\(973\) −17190.0 17190.0i −0.0181573 0.0181573i
\(974\) 147599.i 0.155585i
\(975\) 0 0
\(976\) 56498.0 0.0593108
\(977\) 499390. 499390.i 0.523180 0.523180i −0.395351 0.918530i \(-0.629377\pi\)
0.918530 + 0.395351i \(0.129377\pi\)
\(978\) 0 0
\(979\) 1.98000e6i 2.06585i
\(980\) 531568. + 368008.i 0.553486 + 0.383183i
\(981\) 0 0
\(982\) 346025. 346025.i 0.358826 0.358826i
\(983\) 516599. + 516599.i 0.534622 + 0.534622i 0.921944 0.387322i \(-0.126600\pi\)
−0.387322 + 0.921944i \(0.626600\pi\)
\(984\) 0 0
\(985\) 1.42054e6 258280.i 1.46413 0.266206i
\(986\) −9961.17 −0.0102461
\(987\) 0 0
\(988\) 239580. + 239580.i 0.245435 + 0.245435i
\(989\) 1.40019e6i 1.43151i
\(990\) 0 0
\(991\) −552958. −0.563047 −0.281524 0.959554i \(-0.590840\pi\)
−0.281524 + 0.959554i \(0.590840\pi\)
\(992\) −891471. + 891471.i −0.905908 + 0.905908i
\(993\) 0 0
\(994\) 109000.i 0.110320i
\(995\) 596561. 861699.i 0.602571 0.870381i
\(996\) 0 0
\(997\) 830110. 830110.i 0.835113 0.835113i −0.153098 0.988211i \(-0.548925\pi\)
0.988211 + 0.153098i \(0.0489250\pi\)
\(998\) 263288. + 263288.i 0.264344 + 0.264344i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.d.28.1 4
3.2 odd 2 inner 45.5.g.d.28.2 yes 4
5.2 odd 4 inner 45.5.g.d.37.1 yes 4
5.3 odd 4 225.5.g.k.82.2 4
5.4 even 2 225.5.g.k.118.2 4
15.2 even 4 inner 45.5.g.d.37.2 yes 4
15.8 even 4 225.5.g.k.82.1 4
15.14 odd 2 225.5.g.k.118.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.g.d.28.1 4 1.1 even 1 trivial
45.5.g.d.28.2 yes 4 3.2 odd 2 inner
45.5.g.d.37.1 yes 4 5.2 odd 4 inner
45.5.g.d.37.2 yes 4 15.2 even 4 inner
225.5.g.k.82.1 4 15.8 even 4
225.5.g.k.82.2 4 5.3 odd 4
225.5.g.k.118.1 4 15.14 odd 2
225.5.g.k.118.2 4 5.4 even 2