Properties

Label 45.5.g.c
Level 4545
Weight 55
Character orbit 45.g
Analytic conductor 4.6524.652
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,5,Mod(28,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.28"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 5 5
Character orbit: [χ][\chi] == 45.g (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.651648338774.65164833877
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(5i+5)q2+34iq425q5+(40i+40)q7+(90i90)q8+(125i125)q10+100q11+(205i+205)q13+400iq14356q16+(235i235)q17++(3995i3995)q98+O(q100) q + (5 i + 5) q^{2} + 34 i q^{4} - 25 q^{5} + (40 i + 40) q^{7} + (90 i - 90) q^{8} + ( - 125 i - 125) q^{10} + 100 q^{11} + ( - 205 i + 205) q^{13} + 400 i q^{14} - 356 q^{16} + ( - 235 i - 235) q^{17}+ \cdots + (3995 i - 3995) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+10q250q5+80q7180q8250q10+200q11+410q13712q16470q17+1000q22680q23+1250q25+4100q262720q28+856q31680q32+7990q98+O(q100) 2 q + 10 q^{2} - 50 q^{5} + 80 q^{7} - 180 q^{8} - 250 q^{10} + 200 q^{11} + 410 q^{13} - 712 q^{16} - 470 q^{17} + 1000 q^{22} - 680 q^{23} + 1250 q^{25} + 4100 q^{26} - 2720 q^{28} + 856 q^{31} - 680 q^{32}+ \cdots - 7990 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/45Z)×\left(\mathbb{Z}/45\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 ii

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
28.1
1.00000i
1.00000i
5.00000 5.00000i 0 34.0000i −25.0000 0 40.0000 40.0000i −90.0000 90.0000i 0 −125.000 + 125.000i
37.1 5.00000 + 5.00000i 0 34.0000i −25.0000 0 40.0000 + 40.0000i −90.0000 + 90.0000i 0 −125.000 125.000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.5.g.c yes 2
3.b odd 2 1 45.5.g.a 2
5.b even 2 1 225.5.g.a 2
5.c odd 4 1 inner 45.5.g.c yes 2
5.c odd 4 1 225.5.g.a 2
15.d odd 2 1 225.5.g.c 2
15.e even 4 1 45.5.g.a 2
15.e even 4 1 225.5.g.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.5.g.a 2 3.b odd 2 1
45.5.g.a 2 15.e even 4 1
45.5.g.c yes 2 1.a even 1 1 trivial
45.5.g.c yes 2 5.c odd 4 1 inner
225.5.g.a 2 5.b even 2 1
225.5.g.a 2 5.c odd 4 1
225.5.g.c 2 15.d odd 2 1
225.5.g.c 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2210T2+50 T_{2}^{2} - 10T_{2} + 50 acting on S5new(45,[χ])S_{5}^{\mathrm{new}}(45, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+25)2 (T + 25)^{2} Copy content Toggle raw display
77 T280T+3200 T^{2} - 80T + 3200 Copy content Toggle raw display
1111 (T100)2 (T - 100)^{2} Copy content Toggle raw display
1313 T2410T+84050 T^{2} - 410T + 84050 Copy content Toggle raw display
1717 T2+470T+110450 T^{2} + 470T + 110450 Copy content Toggle raw display
1919 T2+5184 T^{2} + 5184 Copy content Toggle raw display
2323 T2+680T+231200 T^{2} + 680T + 231200 Copy content Toggle raw display
2929 T2+202500 T^{2} + 202500 Copy content Toggle raw display
3131 (T428)2 (T - 428)^{2} Copy content Toggle raw display
3737 T2+1510T+1140050 T^{2} + 1510 T + 1140050 Copy content Toggle raw display
4141 (T+950)2 (T + 950)^{2} Copy content Toggle raw display
4343 T2+2440T+2976800 T^{2} + 2440 T + 2976800 Copy content Toggle raw display
4747 T2640T+204800 T^{2} - 640T + 204800 Copy content Toggle raw display
5353 T2+1010T+510050 T^{2} + 1010 T + 510050 Copy content Toggle raw display
5959 T2+39690000 T^{2} + 39690000 Copy content Toggle raw display
6161 (T+3808)2 (T + 3808)^{2} Copy content Toggle raw display
6767 T2680T+231200 T^{2} - 680T + 231200 Copy content Toggle raw display
7171 (T3400)2 (T - 3400)^{2} Copy content Toggle raw display
7373 T2830T+344450 T^{2} - 830T + 344450 Copy content Toggle raw display
7979 T2+45319824 T^{2} + 45319824 Copy content Toggle raw display
8383 T21360T+924800 T^{2} - 1360 T + 924800 Copy content Toggle raw display
8989 T2+5062500 T^{2} + 5062500 Copy content Toggle raw display
9797 T23230T+5216450 T^{2} - 3230 T + 5216450 Copy content Toggle raw display
show more
show less