gp: [N,k,chi] = [45,5,Mod(28,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 5, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.28");
S:= CuspForms(chi, 5);
N := Newforms(S);
Newform invariants
sage: traces = [2,10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 45 Z ) × \left(\mathbb{Z}/45\mathbb{Z}\right)^\times ( Z / 4 5 Z ) × .
n n n
11 11 1 1
37 37 3 7
χ ( n ) \chi(n) χ ( n )
1 1 1
i i i
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 − 10 T 2 + 50 T_{2}^{2} - 10T_{2} + 50 T 2 2 − 1 0 T 2 + 5 0
T2^2 - 10*T2 + 50
acting on S 5 n e w ( 45 , [ χ ] ) S_{5}^{\mathrm{new}}(45, [\chi]) S 5 n e w ( 4 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − 10 T + 50 T^{2} - 10T + 50 T 2 − 1 0 T + 5 0
T^2 - 10*T + 50
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T + 25 ) 2 (T + 25)^{2} ( T + 2 5 ) 2
(T + 25)^2
7 7 7
T 2 − 80 T + 3200 T^{2} - 80T + 3200 T 2 − 8 0 T + 3 2 0 0
T^2 - 80*T + 3200
11 11 1 1
( T − 100 ) 2 (T - 100)^{2} ( T − 1 0 0 ) 2
(T - 100)^2
13 13 1 3
T 2 − 410 T + 84050 T^{2} - 410T + 84050 T 2 − 4 1 0 T + 8 4 0 5 0
T^2 - 410*T + 84050
17 17 1 7
T 2 + 470 T + 110450 T^{2} + 470T + 110450 T 2 + 4 7 0 T + 1 1 0 4 5 0
T^2 + 470*T + 110450
19 19 1 9
T 2 + 5184 T^{2} + 5184 T 2 + 5 1 8 4
T^2 + 5184
23 23 2 3
T 2 + 680 T + 231200 T^{2} + 680T + 231200 T 2 + 6 8 0 T + 2 3 1 2 0 0
T^2 + 680*T + 231200
29 29 2 9
T 2 + 202500 T^{2} + 202500 T 2 + 2 0 2 5 0 0
T^2 + 202500
31 31 3 1
( T − 428 ) 2 (T - 428)^{2} ( T − 4 2 8 ) 2
(T - 428)^2
37 37 3 7
T 2 + 1510 T + 1140050 T^{2} + 1510 T + 1140050 T 2 + 1 5 1 0 T + 1 1 4 0 0 5 0
T^2 + 1510*T + 1140050
41 41 4 1
( T + 950 ) 2 (T + 950)^{2} ( T + 9 5 0 ) 2
(T + 950)^2
43 43 4 3
T 2 + 2440 T + 2976800 T^{2} + 2440 T + 2976800 T 2 + 2 4 4 0 T + 2 9 7 6 8 0 0
T^2 + 2440*T + 2976800
47 47 4 7
T 2 − 640 T + 204800 T^{2} - 640T + 204800 T 2 − 6 4 0 T + 2 0 4 8 0 0
T^2 - 640*T + 204800
53 53 5 3
T 2 + 1010 T + 510050 T^{2} + 1010 T + 510050 T 2 + 1 0 1 0 T + 5 1 0 0 5 0
T^2 + 1010*T + 510050
59 59 5 9
T 2 + 39690000 T^{2} + 39690000 T 2 + 3 9 6 9 0 0 0 0
T^2 + 39690000
61 61 6 1
( T + 3808 ) 2 (T + 3808)^{2} ( T + 3 8 0 8 ) 2
(T + 3808)^2
67 67 6 7
T 2 − 680 T + 231200 T^{2} - 680T + 231200 T 2 − 6 8 0 T + 2 3 1 2 0 0
T^2 - 680*T + 231200
71 71 7 1
( T − 3400 ) 2 (T - 3400)^{2} ( T − 3 4 0 0 ) 2
(T - 3400)^2
73 73 7 3
T 2 − 830 T + 344450 T^{2} - 830T + 344450 T 2 − 8 3 0 T + 3 4 4 4 5 0
T^2 - 830*T + 344450
79 79 7 9
T 2 + 45319824 T^{2} + 45319824 T 2 + 4 5 3 1 9 8 2 4
T^2 + 45319824
83 83 8 3
T 2 − 1360 T + 924800 T^{2} - 1360 T + 924800 T 2 − 1 3 6 0 T + 9 2 4 8 0 0
T^2 - 1360*T + 924800
89 89 8 9
T 2 + 5062500 T^{2} + 5062500 T 2 + 5 0 6 2 5 0 0
T^2 + 5062500
97 97 9 7
T 2 − 3230 T + 5216450 T^{2} - 3230 T + 5216450 T 2 − 3 2 3 0 T + 5 2 1 6 4 5 0
T^2 - 3230*T + 5216450
show more
show less