Properties

Label 45.5.g.b
Level $45$
Weight $5$
Character orbit 45.g
Analytic conductor $4.652$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i + 1) q^{2} - 14 i q^{4} + ( - 15 i - 20) q^{5} + ( - 26 i - 26) q^{7} + ( - 30 i + 30) q^{8} + ( - 35 i - 5) q^{10} + 8 q^{11} + ( - 139 i + 139) q^{13} - 52 i q^{14} - 164 q^{16} + (i + 1) q^{17} + \cdots + ( - 1049 i + 1049) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 40 q^{5} - 52 q^{7} + 60 q^{8} - 10 q^{10} + 16 q^{11} + 278 q^{13} - 328 q^{16} + 2 q^{17} - 420 q^{20} + 16 q^{22} + 332 q^{23} + 350 q^{25} + 556 q^{26} - 728 q^{28} + 1144 q^{31} - 1288 q^{32}+ \cdots + 2098 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
1.00000i
1.00000i
1.00000 1.00000i 0 14.0000i −20.0000 + 15.0000i 0 −26.0000 + 26.0000i 30.0000 + 30.0000i 0 −5.00000 + 35.0000i
37.1 1.00000 + 1.00000i 0 14.0000i −20.0000 15.0000i 0 −26.0000 26.0000i 30.0000 30.0000i 0 −5.00000 35.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.5.g.b 2
3.b odd 2 1 5.5.c.a 2
5.b even 2 1 225.5.g.b 2
5.c odd 4 1 inner 45.5.g.b 2
5.c odd 4 1 225.5.g.b 2
12.b even 2 1 80.5.p.d 2
15.d odd 2 1 25.5.c.a 2
15.e even 4 1 5.5.c.a 2
15.e even 4 1 25.5.c.a 2
24.f even 2 1 320.5.p.c 2
24.h odd 2 1 320.5.p.h 2
60.h even 2 1 400.5.p.a 2
60.l odd 4 1 80.5.p.d 2
60.l odd 4 1 400.5.p.a 2
120.q odd 4 1 320.5.p.c 2
120.w even 4 1 320.5.p.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.5.c.a 2 3.b odd 2 1
5.5.c.a 2 15.e even 4 1
25.5.c.a 2 15.d odd 2 1
25.5.c.a 2 15.e even 4 1
45.5.g.b 2 1.a even 1 1 trivial
45.5.g.b 2 5.c odd 4 1 inner
80.5.p.d 2 12.b even 2 1
80.5.p.d 2 60.l odd 4 1
225.5.g.b 2 5.b even 2 1
225.5.g.b 2 5.c odd 4 1
320.5.p.c 2 24.f even 2 1
320.5.p.c 2 120.q odd 4 1
320.5.p.h 2 24.h odd 2 1
320.5.p.h 2 120.w even 4 1
400.5.p.a 2 60.h even 2 1
400.5.p.a 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2T_{2} + 2 \) acting on \(S_{5}^{\mathrm{new}}(45, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 40T + 625 \) Copy content Toggle raw display
$7$ \( T^{2} + 52T + 1352 \) Copy content Toggle raw display
$11$ \( (T - 8)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 278T + 38642 \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} + 32400 \) Copy content Toggle raw display
$23$ \( T^{2} - 332T + 55112 \) Copy content Toggle raw display
$29$ \( T^{2} + 230400 \) Copy content Toggle raw display
$31$ \( (T - 572)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 502T + 126002 \) Copy content Toggle raw display
$41$ \( (T - 1688)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 2948 T + 4345352 \) Copy content Toggle raw display
$47$ \( T^{2} + 4948 T + 12241352 \) Copy content Toggle raw display
$53$ \( T^{2} - 6662 T + 22191122 \) Copy content Toggle raw display
$59$ \( T^{2} + 13395600 \) Copy content Toggle raw display
$61$ \( (T - 1592)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 1748 T + 1527752 \) Copy content Toggle raw display
$71$ \( (T - 6068)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1582 T + 1251362 \) Copy content Toggle raw display
$79$ \( T^{2} + 83174400 \) Copy content Toggle raw display
$83$ \( T^{2} + 11308 T + 63935432 \) Copy content Toggle raw display
$89$ \( T^{2} + 4665600 \) Copy content Toggle raw display
$97$ \( T^{2} + 13102 T + 85831202 \) Copy content Toggle raw display
show more
show less