Properties

Label 45.5.g
Level $45$
Weight $5$
Character orbit 45.g
Rep. character $\chi_{45}(28,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $18$
Newform subspaces $5$
Sturm bound $30$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(30\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(45, [\chi])\).

Total New Old
Modular forms 56 22 34
Cusp forms 40 18 22
Eisenstein series 16 4 12

Trace form

\( 18 q + 2 q^{2} + 44 q^{5} + 108 q^{7} - 120 q^{8} - 186 q^{10} + 304 q^{11} + 318 q^{13} - 1296 q^{16} - 898 q^{17} - 984 q^{20} + 2016 q^{22} + 1892 q^{23} + 2526 q^{25} + 3580 q^{26} - 2808 q^{28} - 2424 q^{31}+ \cdots - 44342 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.5.g.a 45.g 5.c $2$ $4.652$ \(\Q(\sqrt{-1}) \) None 45.5.g.a \(-10\) \(0\) \(50\) \(80\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-5 i-5)q^{2}+34 i q^{4}+25 q^{5}+\cdots\)
45.5.g.b 45.g 5.c $2$ $4.652$ \(\Q(\sqrt{-1}) \) None 5.5.c.a \(2\) \(0\) \(-40\) \(-52\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i+1)q^{2}-14 i q^{4}+(-15 i-20)q^{5}+\cdots\)
45.5.g.c 45.g 5.c $2$ $4.652$ \(\Q(\sqrt{-1}) \) None 45.5.g.a \(10\) \(0\) \(-50\) \(80\) $\mathrm{SU}(2)[C_{4}]$ \(q+(5 i+5)q^{2}+34 i q^{4}-25 q^{5}+\cdots\)
45.5.g.d 45.g 5.c $4$ $4.652$ \(\Q(i, \sqrt{10})\) None 45.5.g.d \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}-11\beta _{2}q^{4}+(2\beta _{1}-11\beta _{3})q^{5}+\cdots\)
45.5.g.e 45.g 5.c $8$ $4.652$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 15.5.f.a \(0\) \(0\) \(84\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+(\beta _{1}-12\beta _{2}+\beta _{3}+\beta _{5})q^{4}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(45, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)