Defining parameters
| Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 45.f (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(45, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 44 | 12 | 32 |
| Cusp forms | 28 | 12 | 16 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(45, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 45.4.f.a | $12$ | $2.655$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(24\) | \(q+\beta _{6}q^{2}+(-6\beta _{1}+\beta _{5})q^{4}+(\beta _{9}+\beta _{10}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(45, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)