Properties

Label 45.4.e.c.16.6
Level $45$
Weight $4$
Character 45.16
Analytic conductor $2.655$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.65508595026\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \( x^{14} - 2 x^{13} + 48 x^{12} - 60 x^{11} + 1605 x^{10} - 1800 x^{9} + 23232 x^{8} - 2346 x^{7} + 209529 x^{6} - 55412 x^{5} + 765088 x^{4} + 276096 x^{3} + 1572480 x^{2} + \cdots + 82944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.6
Root \(2.13089 + 3.69081i\) of defining polynomial
Character \(\chi\) \(=\) 45.16
Dual form 45.4.e.c.31.6

$q$-expansion

\(f(q)\) \(=\) \(q+(2.13089 - 3.69081i) q^{2} +(4.39640 - 2.76977i) q^{3} +(-5.08138 - 8.80120i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-0.854448 - 22.1284i) q^{6} +(-15.3820 + 26.6423i) q^{7} -9.21718 q^{8} +(11.6567 - 24.3541i) q^{9} +O(q^{10})\) \(q+(2.13089 - 3.69081i) q^{2} +(4.39640 - 2.76977i) q^{3} +(-5.08138 - 8.80120i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-0.854448 - 22.1284i) q^{6} +(-15.3820 + 26.6423i) q^{7} -9.21718 q^{8} +(11.6567 - 24.3541i) q^{9} +21.3089 q^{10} +(-20.3573 + 35.2599i) q^{11} +(-46.7171 - 24.6194i) q^{12} +(-31.6089 - 54.7482i) q^{13} +(65.5545 + 113.544i) q^{14} +(22.9845 + 12.1126i) q^{15} +(21.0102 - 36.3908i) q^{16} -6.58990 q^{17} +(-65.0470 - 94.9186i) q^{18} +75.3803 q^{19} +(25.4069 - 44.0060i) q^{20} +(6.16789 + 159.735i) q^{21} +(86.7584 + 150.270i) q^{22} +(31.1814 + 54.0077i) q^{23} +(-40.5225 + 25.5295i) q^{24} +(-12.5000 + 21.6506i) q^{25} -269.420 q^{26} +(-16.2075 - 139.357i) q^{27} +312.646 q^{28} +(-24.8042 + 42.9621i) q^{29} +(93.6825 - 59.0208i) q^{30} +(-51.5021 - 89.2043i) q^{31} +(-126.410 - 218.948i) q^{32} +(8.16291 + 211.402i) q^{33} +(-14.0423 + 24.3221i) q^{34} -153.820 q^{35} +(-273.577 + 21.1590i) q^{36} -282.029 q^{37} +(160.627 - 278.214i) q^{38} +(-290.606 - 153.146i) q^{39} +(-23.0430 - 39.9116i) q^{40} +(78.7700 + 136.434i) q^{41} +(602.695 + 317.613i) q^{42} +(168.907 - 292.555i) q^{43} +413.773 q^{44} +(134.598 - 10.4101i) q^{45} +265.776 q^{46} +(-22.2579 + 38.5518i) q^{47} +(-8.42472 - 218.182i) q^{48} +(-301.710 - 522.577i) q^{49} +(53.2722 + 92.2702i) q^{50} +(-28.9719 + 18.2525i) q^{51} +(-321.234 + 556.393i) q^{52} +26.2752 q^{53} +(-548.876 - 237.135i) q^{54} -203.573 q^{55} +(141.778 - 245.567i) q^{56} +(331.402 - 208.786i) q^{57} +(105.710 + 183.095i) q^{58} +(212.963 + 368.863i) q^{59} +(-10.1877 - 263.840i) q^{60} +(-425.297 + 736.637i) q^{61} -438.981 q^{62} +(469.546 + 685.176i) q^{63} -741.296 q^{64} +(158.045 - 273.741i) q^{65} +(797.638 + 420.346i) q^{66} +(-48.1538 - 83.4048i) q^{67} +(33.4858 + 57.9990i) q^{68} +(286.675 + 151.075i) q^{69} +(-327.773 + 567.719i) q^{70} +952.164 q^{71} +(-107.442 + 224.476i) q^{72} -50.8558 q^{73} +(-600.973 + 1040.92i) q^{74} +(5.01227 + 129.807i) q^{75} +(-383.036 - 663.437i) q^{76} +(-626.271 - 1084.73i) q^{77} +(-1184.48 + 746.233i) q^{78} +(98.6395 - 170.849i) q^{79} +210.102 q^{80} +(-457.241 - 567.778i) q^{81} +671.400 q^{82} +(98.8693 - 171.247i) q^{83} +(1374.52 - 865.959i) q^{84} +(-16.4747 - 28.5351i) q^{85} +(-719.844 - 1246.81i) q^{86} +(9.94603 + 257.581i) q^{87} +(187.637 - 324.997i) q^{88} +1364.54 q^{89} +(248.392 - 518.958i) q^{90} +1944.83 q^{91} +(316.889 - 548.868i) q^{92} +(-473.499 - 249.529i) q^{93} +(94.8583 + 164.299i) q^{94} +(188.451 + 326.406i) q^{95} +(-1162.18 - 612.458i) q^{96} +(715.579 - 1239.42i) q^{97} -2571.64 q^{98} +(621.422 + 906.799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{2} - 5 q^{3} - 36 q^{4} + 35 q^{5} - 31 q^{6} - 22 q^{7} - 36 q^{8} + 17 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q + 2 q^{2} - 5 q^{3} - 36 q^{4} + 35 q^{5} - 31 q^{6} - 22 q^{7} - 36 q^{8} + 17 q^{9} + 20 q^{10} + 23 q^{11} + 287 q^{12} - 96 q^{13} - 21 q^{14} - 20 q^{15} - 324 q^{16} - 322 q^{17} - 89 q^{18} + 558 q^{19} + 180 q^{20} + 180 q^{21} - 311 q^{22} + 96 q^{23} + 48 q^{24} - 175 q^{25} + 716 q^{26} - 470 q^{27} + 674 q^{28} - 296 q^{29} + 80 q^{30} - 244 q^{31} - 314 q^{32} - 211 q^{33} - 125 q^{34} - 220 q^{35} - 2399 q^{36} + 808 q^{37} + 305 q^{38} + 634 q^{39} - 90 q^{40} - 47 q^{41} + 1941 q^{42} - 525 q^{43} - 110 q^{44} + 185 q^{45} + 1434 q^{46} + 164 q^{47} + 2051 q^{48} - 1225 q^{49} + 50 q^{50} + 1517 q^{51} - 1682 q^{52} - 1012 q^{53} - 4066 q^{54} + 230 q^{55} - 981 q^{56} + 337 q^{57} - 1183 q^{58} - 85 q^{59} + 65 q^{60} - 828 q^{61} + 1572 q^{62} - 828 q^{63} + 4472 q^{64} + 480 q^{65} + 4930 q^{66} - 1093 q^{67} + 2473 q^{68} - 822 q^{69} + 105 q^{70} - 656 q^{71} - 4626 q^{72} + 4170 q^{73} - 1316 q^{74} + 25 q^{75} - 2789 q^{76} + 24 q^{77} - 5314 q^{78} - 2110 q^{79} - 3240 q^{80} - 2167 q^{81} - 124 q^{82} + 1290 q^{83} + 5775 q^{84} - 805 q^{85} - 2569 q^{86} + 3604 q^{87} - 2271 q^{88} + 6096 q^{89} + 730 q^{90} + 6676 q^{91} + 2763 q^{92} - 696 q^{93} + 517 q^{94} + 1395 q^{95} - 593 q^{96} - 1787 q^{97} - 2558 q^{98} + 2320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.13089 3.69081i 0.753383 1.30490i −0.192791 0.981240i \(-0.561754\pi\)
0.946174 0.323658i \(-0.104913\pi\)
\(3\) 4.39640 2.76977i 0.846088 0.533043i
\(4\) −5.08138 8.80120i −0.635172 1.10015i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) −0.854448 22.1284i −0.0581378 1.50564i
\(7\) −15.3820 + 26.6423i −0.830548 + 1.43855i 0.0670561 + 0.997749i \(0.478639\pi\)
−0.897604 + 0.440802i \(0.854694\pi\)
\(8\) −9.21718 −0.407346
\(9\) 11.6567 24.3541i 0.431731 0.902003i
\(10\) 21.3089 0.673846
\(11\) −20.3573 + 35.2599i −0.557996 + 0.966478i 0.439667 + 0.898161i \(0.355096\pi\)
−0.997664 + 0.0683175i \(0.978237\pi\)
\(12\) −46.7171 24.6194i −1.12384 0.592250i
\(13\) −31.6089 54.7482i −0.674364 1.16803i −0.976654 0.214817i \(-0.931085\pi\)
0.302290 0.953216i \(-0.402249\pi\)
\(14\) 65.5545 + 113.544i 1.25144 + 2.16756i
\(15\) 22.9845 + 12.1126i 0.395638 + 0.208497i
\(16\) 21.0102 36.3908i 0.328285 0.568606i
\(17\) −6.58990 −0.0940168 −0.0470084 0.998894i \(-0.514969\pi\)
−0.0470084 + 0.998894i \(0.514969\pi\)
\(18\) −65.0470 94.9186i −0.851763 1.24292i
\(19\) 75.3803 0.910180 0.455090 0.890445i \(-0.349607\pi\)
0.455090 + 0.890445i \(0.349607\pi\)
\(20\) 25.4069 44.0060i 0.284058 0.492002i
\(21\) 6.16789 + 159.735i 0.0640926 + 1.65986i
\(22\) 86.7584 + 150.270i 0.840770 + 1.45626i
\(23\) 31.1814 + 54.0077i 0.282686 + 0.489626i 0.972045 0.234793i \(-0.0754414\pi\)
−0.689360 + 0.724419i \(0.742108\pi\)
\(24\) −40.5225 + 25.5295i −0.344651 + 0.217133i
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) −269.420 −2.03222
\(27\) −16.2075 139.357i −0.115524 0.993305i
\(28\) 312.646 2.11016
\(29\) −24.8042 + 42.9621i −0.158828 + 0.275099i −0.934446 0.356104i \(-0.884105\pi\)
0.775618 + 0.631202i \(0.217438\pi\)
\(30\) 93.6825 59.0208i 0.570133 0.359189i
\(31\) −51.5021 89.2043i −0.298389 0.516824i 0.677379 0.735634i \(-0.263116\pi\)
−0.975767 + 0.218810i \(0.929783\pi\)
\(32\) −126.410 218.948i −0.698321 1.20953i
\(33\) 8.16291 + 211.402i 0.0430600 + 1.11516i
\(34\) −14.0423 + 24.3221i −0.0708306 + 0.122682i
\(35\) −153.820 −0.742865
\(36\) −273.577 + 21.1590i −1.26656 + 0.0979582i
\(37\) −282.029 −1.25312 −0.626559 0.779374i \(-0.715537\pi\)
−0.626559 + 0.779374i \(0.715537\pi\)
\(38\) 160.627 278.214i 0.685714 1.18769i
\(39\) −290.606 153.146i −1.19318 0.628794i
\(40\) −23.0430 39.9116i −0.0910853 0.157764i
\(41\) 78.7700 + 136.434i 0.300044 + 0.519692i 0.976146 0.217117i \(-0.0696653\pi\)
−0.676102 + 0.736808i \(0.736332\pi\)
\(42\) 602.695 + 317.613i 2.21423 + 1.16688i
\(43\) 168.907 292.555i 0.599025 1.03754i −0.393940 0.919136i \(-0.628888\pi\)
0.992965 0.118406i \(-0.0377783\pi\)
\(44\) 413.773 1.41770
\(45\) 134.598 10.4101i 0.445882 0.0344853i
\(46\) 265.776 0.851882
\(47\) −22.2579 + 38.5518i −0.0690777 + 0.119646i −0.898496 0.438983i \(-0.855339\pi\)
0.829418 + 0.558629i \(0.188672\pi\)
\(48\) −8.42472 218.182i −0.0253334 0.656081i
\(49\) −301.710 522.577i −0.879620 1.52355i
\(50\) 53.2722 + 92.2702i 0.150677 + 0.260980i
\(51\) −28.9719 + 18.2525i −0.0795465 + 0.0501150i
\(52\) −321.234 + 556.393i −0.856675 + 1.48380i
\(53\) 26.2752 0.0680978 0.0340489 0.999420i \(-0.489160\pi\)
0.0340489 + 0.999420i \(0.489160\pi\)
\(54\) −548.876 237.135i −1.38319 0.597592i
\(55\) −203.573 −0.499087
\(56\) 141.778 245.567i 0.338320 0.585988i
\(57\) 331.402 208.786i 0.770093 0.485165i
\(58\) 105.710 + 183.095i 0.239317 + 0.414509i
\(59\) 212.963 + 368.863i 0.469923 + 0.813930i 0.999409 0.0343889i \(-0.0109485\pi\)
−0.529486 + 0.848319i \(0.677615\pi\)
\(60\) −10.1877 263.840i −0.0219204 0.567692i
\(61\) −425.297 + 736.637i −0.892684 + 1.54617i −0.0560400 + 0.998429i \(0.517847\pi\)
−0.836644 + 0.547746i \(0.815486\pi\)
\(62\) −438.981 −0.899204
\(63\) 469.546 + 685.176i 0.939004 + 1.37022i
\(64\) −741.296 −1.44784
\(65\) 158.045 273.741i 0.301585 0.522360i
\(66\) 797.638 + 420.346i 1.48761 + 0.783955i
\(67\) −48.1538 83.4048i −0.0878048 0.152082i 0.818778 0.574110i \(-0.194652\pi\)
−0.906583 + 0.422028i \(0.861319\pi\)
\(68\) 33.4858 + 57.9990i 0.0597168 + 0.103433i
\(69\) 286.675 + 151.075i 0.500169 + 0.263583i
\(70\) −327.773 + 567.719i −0.559662 + 0.969363i
\(71\) 952.164 1.59156 0.795782 0.605583i \(-0.207060\pi\)
0.795782 + 0.605583i \(0.207060\pi\)
\(72\) −107.442 + 224.476i −0.175864 + 0.367427i
\(73\) −50.8558 −0.0815373 −0.0407686 0.999169i \(-0.512981\pi\)
−0.0407686 + 0.999169i \(0.512981\pi\)
\(74\) −600.973 + 1040.92i −0.944077 + 1.63519i
\(75\) 5.01227 + 129.807i 0.00771690 + 0.199851i
\(76\) −383.036 663.437i −0.578121 1.00134i
\(77\) −626.271 1084.73i −0.926886 1.60541i
\(78\) −1184.48 + 746.233i −1.71944 + 1.08326i
\(79\) 98.6395 170.849i 0.140479 0.243316i −0.787198 0.616700i \(-0.788469\pi\)
0.927677 + 0.373384i \(0.121803\pi\)
\(80\) 210.102 0.293627
\(81\) −457.241 567.778i −0.627217 0.778844i
\(82\) 671.400 0.904192
\(83\) 98.8693 171.247i 0.130751 0.226467i −0.793215 0.608941i \(-0.791595\pi\)
0.923966 + 0.382474i \(0.124928\pi\)
\(84\) 1374.52 865.959i 1.78539 1.12481i
\(85\) −16.4747 28.5351i −0.0210228 0.0364125i
\(86\) −719.844 1246.81i −0.902590 1.56333i
\(87\) 9.94603 + 257.581i 0.0122566 + 0.317420i
\(88\) 187.637 324.997i 0.227298 0.393691i
\(89\) 1364.54 1.62519 0.812593 0.582832i \(-0.198056\pi\)
0.812593 + 0.582832i \(0.198056\pi\)
\(90\) 248.392 518.958i 0.290920 0.607811i
\(91\) 1944.83 2.24037
\(92\) 316.889 548.868i 0.359108 0.621993i
\(93\) −473.499 249.529i −0.527953 0.278225i
\(94\) 94.8583 + 164.299i 0.104084 + 0.180279i
\(95\) 188.451 + 326.406i 0.203522 + 0.352511i
\(96\) −1162.18 612.458i −1.23557 0.651132i
\(97\) 715.579 1239.42i 0.749031 1.29736i −0.199256 0.979947i \(-0.563853\pi\)
0.948288 0.317413i \(-0.102814\pi\)
\(98\) −2571.64 −2.65076
\(99\) 621.422 + 906.799i 0.630862 + 0.920573i
\(100\) 254.069 0.254069
\(101\) −553.808 + 959.224i −0.545604 + 0.945013i 0.452965 + 0.891528i \(0.350366\pi\)
−0.998569 + 0.0534851i \(0.982967\pi\)
\(102\) 5.63073 + 145.824i 0.00546593 + 0.141556i
\(103\) −264.437 458.018i −0.252969 0.438154i 0.711373 0.702814i \(-0.248074\pi\)
−0.964342 + 0.264660i \(0.914740\pi\)
\(104\) 291.345 + 504.624i 0.274699 + 0.475793i
\(105\) −676.253 + 426.045i −0.628529 + 0.395979i
\(106\) 55.9896 96.9769i 0.0513037 0.0888607i
\(107\) 490.910 0.443533 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(108\) −1144.15 + 850.770i −1.01941 + 0.758013i
\(109\) −351.634 −0.308994 −0.154497 0.987993i \(-0.549376\pi\)
−0.154497 + 0.987993i \(0.549376\pi\)
\(110\) −433.792 + 751.349i −0.376004 + 0.651258i
\(111\) −1239.91 + 781.157i −1.06025 + 0.667965i
\(112\) 646.357 + 1119.52i 0.545313 + 0.944509i
\(113\) −881.226 1526.33i −0.733618 1.27066i −0.955327 0.295550i \(-0.904497\pi\)
0.221710 0.975113i \(-0.428836\pi\)
\(114\) −64.4085 1668.04i −0.0529159 1.37041i
\(115\) −155.907 + 270.039i −0.126421 + 0.218967i
\(116\) 504.158 0.403533
\(117\) −1701.80 + 131.620i −1.34471 + 0.104002i
\(118\) 1815.20 1.41613
\(119\) 101.366 175.570i 0.0780854 0.135248i
\(120\) −211.852 111.644i −0.161161 0.0849302i
\(121\) −163.340 282.914i −0.122720 0.212557i
\(122\) 1812.52 + 3139.38i 1.34507 + 2.32972i
\(123\) 724.195 + 381.642i 0.530882 + 0.279769i
\(124\) −523.403 + 906.561i −0.379056 + 0.656545i
\(125\) −125.000 −0.0894427
\(126\) 3529.40 272.971i 2.49543 0.193001i
\(127\) −1506.12 −1.05234 −0.526169 0.850380i \(-0.676372\pi\)
−0.526169 + 0.850380i \(0.676372\pi\)
\(128\) −568.343 + 984.399i −0.392460 + 0.679761i
\(129\) −67.7286 1754.03i −0.0462262 1.19716i
\(130\) −673.551 1166.62i −0.454418 0.787075i
\(131\) −637.562 1104.29i −0.425222 0.736506i 0.571219 0.820798i \(-0.306471\pi\)
−0.996441 + 0.0842915i \(0.973137\pi\)
\(132\) 1819.11 1146.06i 1.19950 0.755692i
\(133\) −1159.50 + 2008.31i −0.755948 + 1.30934i
\(134\) −410.441 −0.264603
\(135\) 562.914 418.573i 0.358873 0.266852i
\(136\) 60.7403 0.0382973
\(137\) −719.712 + 1246.58i −0.448826 + 0.777389i −0.998310 0.0581150i \(-0.981491\pi\)
0.549484 + 0.835504i \(0.314824\pi\)
\(138\) 1168.46 736.140i 0.720768 0.454090i
\(139\) 1269.75 + 2199.27i 0.774811 + 1.34201i 0.934901 + 0.354909i \(0.115488\pi\)
−0.160090 + 0.987102i \(0.551178\pi\)
\(140\) 781.616 + 1353.80i 0.471847 + 0.817263i
\(141\) 8.92502 + 231.139i 0.00533065 + 0.138052i
\(142\) 2028.96 3514.25i 1.19906 2.07683i
\(143\) 2573.89 1.50517
\(144\) −641.353 935.882i −0.371153 0.541598i
\(145\) −248.042 −0.142060
\(146\) −108.368 + 187.699i −0.0614288 + 0.106398i
\(147\) −2773.86 1461.79i −1.55635 0.820180i
\(148\) 1433.10 + 2482.20i 0.795945 + 1.37862i
\(149\) −46.8796 81.1979i −0.0257754 0.0446442i 0.852850 0.522156i \(-0.174872\pi\)
−0.878625 + 0.477512i \(0.841539\pi\)
\(150\) 489.774 + 258.105i 0.266599 + 0.140495i
\(151\) 534.065 925.027i 0.287825 0.498527i −0.685465 0.728105i \(-0.740401\pi\)
0.973290 + 0.229578i \(0.0737345\pi\)
\(152\) −694.794 −0.370758
\(153\) −76.8166 + 160.491i −0.0405899 + 0.0848034i
\(154\) −5338.06 −2.79320
\(155\) 257.510 446.021i 0.133443 0.231131i
\(156\) 128.809 + 3335.87i 0.0661087 + 1.71207i
\(157\) −90.8574 157.370i −0.0461861 0.0799966i 0.842008 0.539465i \(-0.181373\pi\)
−0.888194 + 0.459468i \(0.848040\pi\)
\(158\) −420.380 728.119i −0.211668 0.366621i
\(159\) 115.517 72.7764i 0.0576167 0.0362990i
\(160\) 632.048 1094.74i 0.312299 0.540917i
\(161\) −1918.52 −0.939136
\(162\) −3069.89 + 477.719i −1.48885 + 0.231686i
\(163\) −1103.07 −0.530056 −0.265028 0.964241i \(-0.585381\pi\)
−0.265028 + 0.964241i \(0.585381\pi\)
\(164\) 800.520 1386.54i 0.381159 0.660187i
\(165\) −894.990 + 563.851i −0.422272 + 0.266035i
\(166\) −421.359 729.816i −0.197011 0.341233i
\(167\) 2020.85 + 3500.22i 0.936396 + 1.62189i 0.772126 + 0.635470i \(0.219194\pi\)
0.164270 + 0.986415i \(0.447473\pi\)
\(168\) −56.8506 1472.31i −0.0261078 0.676137i
\(169\) −899.745 + 1558.40i −0.409534 + 0.709333i
\(170\) −140.423 −0.0633529
\(171\) 878.687 1835.82i 0.392953 0.820985i
\(172\) −3433.12 −1.52194
\(173\) 1373.88 2379.63i 0.603780 1.04578i −0.388463 0.921465i \(-0.626994\pi\)
0.992243 0.124314i \(-0.0396730\pi\)
\(174\) 971.875 + 512.167i 0.423435 + 0.223145i
\(175\) −384.549 666.059i −0.166110 0.287710i
\(176\) 855.423 + 1481.64i 0.366363 + 0.634560i
\(177\) 1957.94 + 1031.81i 0.831456 + 0.438168i
\(178\) 2907.69 5036.27i 1.22439 2.12070i
\(179\) −2838.32 −1.18517 −0.592587 0.805506i \(-0.701893\pi\)
−0.592587 + 0.805506i \(0.701893\pi\)
\(180\) −775.564 1131.73i −0.321151 0.468633i
\(181\) 3442.25 1.41359 0.706796 0.707417i \(-0.250140\pi\)
0.706796 + 0.707417i \(0.250140\pi\)
\(182\) 4144.21 7177.99i 1.68785 2.92345i
\(183\) 170.537 + 4416.53i 0.0688876 + 1.78404i
\(184\) −287.405 497.799i −0.115151 0.199447i
\(185\) −705.073 1221.22i −0.280206 0.485330i
\(186\) −1929.94 + 1215.88i −0.760806 + 0.479314i
\(187\) 134.153 232.359i 0.0524610 0.0908652i
\(188\) 452.403 0.175505
\(189\) 3962.10 + 1711.77i 1.52487 + 0.658801i
\(190\) 1606.27 0.613322
\(191\) 373.148 646.311i 0.141361 0.244845i −0.786648 0.617402i \(-0.788185\pi\)
0.928010 + 0.372557i \(0.121519\pi\)
\(192\) −3259.04 + 2053.22i −1.22500 + 0.771763i
\(193\) −53.9538 93.4506i −0.0201227 0.0348535i 0.855789 0.517326i \(-0.173072\pi\)
−0.875911 + 0.482472i \(0.839739\pi\)
\(194\) −3049.64 5282.13i −1.12861 1.95482i
\(195\) −63.3730 1641.22i −0.0232730 0.602720i
\(196\) −3066.20 + 5310.82i −1.11742 + 1.93543i
\(197\) −3361.02 −1.21555 −0.607774 0.794110i \(-0.707937\pi\)
−0.607774 + 0.794110i \(0.707937\pi\)
\(198\) 4671.00 361.264i 1.67653 0.129666i
\(199\) 1368.99 0.487663 0.243831 0.969818i \(-0.421596\pi\)
0.243831 + 0.969818i \(0.421596\pi\)
\(200\) 115.215 199.558i 0.0407346 0.0705544i
\(201\) −442.716 233.306i −0.155357 0.0818714i
\(202\) 2360.21 + 4088.00i 0.822097 + 1.42391i
\(203\) −763.074 1321.68i −0.263829 0.456965i
\(204\) 307.861 + 162.239i 0.105660 + 0.0556815i
\(205\) −393.850 + 682.168i −0.134184 + 0.232413i
\(206\) −2253.94 −0.762329
\(207\) 1678.78 129.840i 0.563688 0.0435966i
\(208\) −2656.44 −0.885534
\(209\) −1534.54 + 2657.90i −0.507877 + 0.879669i
\(210\) 131.431 + 3403.78i 0.0431885 + 1.11849i
\(211\) −1251.27 2167.27i −0.408252 0.707114i 0.586442 0.809991i \(-0.300528\pi\)
−0.994694 + 0.102878i \(0.967195\pi\)
\(212\) −133.514 231.254i −0.0432538 0.0749178i
\(213\) 4186.10 2637.28i 1.34660 0.848372i
\(214\) 1046.07 1811.85i 0.334150 0.578765i
\(215\) 1689.07 0.535784
\(216\) 149.388 + 1284.48i 0.0470581 + 0.404619i
\(217\) 3168.81 0.991305
\(218\) −749.292 + 1297.81i −0.232791 + 0.403206i
\(219\) −223.583 + 140.859i −0.0689877 + 0.0434629i
\(220\) 1034.43 + 1791.69i 0.317006 + 0.549071i
\(221\) 208.299 + 360.785i 0.0634015 + 0.109815i
\(222\) 240.979 + 6240.85i 0.0728535 + 1.88675i
\(223\) −937.263 + 1623.39i −0.281452 + 0.487489i −0.971743 0.236043i \(-0.924149\pi\)
0.690291 + 0.723532i \(0.257483\pi\)
\(224\) 7777.72 2.31996
\(225\) 381.572 + 556.801i 0.113058 + 0.164978i
\(226\) −7511.18 −2.21078
\(227\) −2539.37 + 4398.32i −0.742484 + 1.28602i 0.208877 + 0.977942i \(0.433019\pi\)
−0.951361 + 0.308078i \(0.900314\pi\)
\(228\) −3521.55 1855.82i −1.02290 0.539055i
\(229\) −432.933 749.861i −0.124930 0.216385i 0.796776 0.604275i \(-0.206537\pi\)
−0.921706 + 0.387890i \(0.873204\pi\)
\(230\) 664.441 + 1150.85i 0.190487 + 0.329933i
\(231\) −5757.80 3034.30i −1.63998 0.864252i
\(232\) 228.625 395.990i 0.0646981 0.112060i
\(233\) 1142.10 0.321122 0.160561 0.987026i \(-0.448670\pi\)
0.160561 + 0.987026i \(0.448670\pi\)
\(234\) −3140.56 + 6561.48i −0.877371 + 1.83307i
\(235\) −222.579 −0.0617849
\(236\) 2164.29 3748.66i 0.596964 1.03397i
\(237\) −39.5527 1024.33i −0.0108406 0.280748i
\(238\) −431.998 748.242i −0.117657 0.203787i
\(239\) 1574.68 + 2727.43i 0.426183 + 0.738171i 0.996530 0.0832330i \(-0.0265246\pi\)
−0.570347 + 0.821404i \(0.693191\pi\)
\(240\) 923.694 581.935i 0.248434 0.156516i
\(241\) −2252.18 + 3900.90i −0.601975 + 1.04265i 0.390547 + 0.920583i \(0.372286\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(242\) −1392.24 −0.369821
\(243\) −3582.83 1229.72i −0.945839 0.324637i
\(244\) 8644.39 2.26803
\(245\) 1508.55 2612.88i 0.393378 0.681351i
\(246\) 2951.75 1859.63i 0.765027 0.481973i
\(247\) −2382.69 4126.94i −0.613793 1.06312i
\(248\) 474.704 + 822.212i 0.121547 + 0.210526i
\(249\) −39.6448 1026.72i −0.0100899 0.261307i
\(250\) −266.361 + 461.351i −0.0673846 + 0.116714i
\(251\) 886.861 0.223021 0.111510 0.993763i \(-0.464431\pi\)
0.111510 + 0.993763i \(0.464431\pi\)
\(252\) 3644.43 7614.21i 0.911023 1.90337i
\(253\) −2539.08 −0.630950
\(254\) −3209.38 + 5558.81i −0.792813 + 1.37319i
\(255\) −151.465 79.8205i −0.0371966 0.0196022i
\(256\) −543.033 940.561i −0.132576 0.229629i
\(257\) −1131.02 1958.98i −0.274517 0.475478i 0.695496 0.718530i \(-0.255185\pi\)
−0.970013 + 0.243052i \(0.921851\pi\)
\(258\) −6618.09 3487.66i −1.59699 0.841598i
\(259\) 4338.17 7513.92i 1.04077 1.80267i
\(260\) −3212.34 −0.766233
\(261\) 757.166 + 1104.88i 0.179569 + 0.262032i
\(262\) −5434.30 −1.28142
\(263\) −3640.31 + 6305.20i −0.853503 + 1.47831i 0.0245245 + 0.999699i \(0.492193\pi\)
−0.878027 + 0.478611i \(0.841141\pi\)
\(264\) −75.2391 1948.53i −0.0175403 0.454257i
\(265\) 65.6881 + 113.775i 0.0152271 + 0.0263742i
\(266\) 4941.52 + 8558.96i 1.13904 + 1.97287i
\(267\) 5999.09 3779.48i 1.37505 0.866293i
\(268\) −489.375 + 847.622i −0.111542 + 0.193197i
\(269\) −106.781 −0.0242028 −0.0121014 0.999927i \(-0.503852\pi\)
−0.0121014 + 0.999927i \(0.503852\pi\)
\(270\) −345.365 2969.54i −0.0778452 0.669335i
\(271\) 5908.85 1.32449 0.662246 0.749287i \(-0.269603\pi\)
0.662246 + 0.749287i \(0.269603\pi\)
\(272\) −138.455 + 239.811i −0.0308643 + 0.0534585i
\(273\) 8550.25 5386.73i 1.89555 1.19421i
\(274\) 3067.25 + 5312.64i 0.676276 + 1.17134i
\(275\) −508.933 881.498i −0.111599 0.193296i
\(276\) −127.067 3290.75i −0.0277120 0.717681i
\(277\) −1645.04 + 2849.30i −0.356827 + 0.618042i −0.987429 0.158064i \(-0.949475\pi\)
0.630602 + 0.776106i \(0.282808\pi\)
\(278\) 10822.8 2.33492
\(279\) −2772.83 + 214.456i −0.595000 + 0.0460184i
\(280\) 1417.78 0.302603
\(281\) −169.861 + 294.209i −0.0360608 + 0.0624591i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(282\) 872.107 + 459.590i 0.184160 + 0.0970504i
\(283\) −1299.83 2251.37i −0.273028 0.472898i 0.696608 0.717452i \(-0.254692\pi\)
−0.969636 + 0.244554i \(0.921358\pi\)
\(284\) −4838.30 8380.19i −1.01092 1.75096i
\(285\) 1732.58 + 913.048i 0.360102 + 0.189769i
\(286\) 5484.67 9499.73i 1.13397 1.96409i
\(287\) −4846.55 −0.996804
\(288\) −6805.80 + 526.373i −1.39248 + 0.107697i
\(289\) −4869.57 −0.991161
\(290\) −528.550 + 915.475i −0.107026 + 0.185374i
\(291\) −286.934 7430.98i −0.0578020 1.49695i
\(292\) 258.418 + 447.592i 0.0517902 + 0.0897033i
\(293\) −89.0427 154.227i −0.0177540 0.0307509i 0.857012 0.515297i \(-0.172318\pi\)
−0.874766 + 0.484546i \(0.838985\pi\)
\(294\) −11306.0 + 7122.86i −2.24278 + 1.41297i
\(295\) −1064.82 + 1844.31i −0.210156 + 0.364001i
\(296\) 2599.52 0.510452
\(297\) 5243.65 + 2265.45i 1.02447 + 0.442609i
\(298\) −399.581 −0.0776749
\(299\) 1971.22 3414.25i 0.381266 0.660372i
\(300\) 1116.99 703.713i 0.214965 0.135430i
\(301\) 5196.24 + 9000.16i 0.995038 + 1.72346i
\(302\) −2276.07 3942.26i −0.433685 0.751164i
\(303\) 222.067 + 5751.06i 0.0421037 + 1.09039i
\(304\) 1583.76 2743.15i 0.298798 0.517534i
\(305\) −4252.97 −0.798441
\(306\) 428.653 + 625.504i 0.0800800 + 0.116855i
\(307\) 1537.60 0.285848 0.142924 0.989734i \(-0.454349\pi\)
0.142924 + 0.989734i \(0.454349\pi\)
\(308\) −6364.64 + 11023.9i −1.17746 + 2.03943i
\(309\) −2431.18 1281.20i −0.447589 0.235874i
\(310\) −1097.45 1900.84i −0.201068 0.348260i
\(311\) −472.662 818.674i −0.0861807 0.149269i 0.819713 0.572774i \(-0.194133\pi\)
−0.905894 + 0.423505i \(0.860800\pi\)
\(312\) 2678.57 + 1411.57i 0.486038 + 0.256137i
\(313\) −992.767 + 1719.52i −0.179280 + 0.310521i −0.941634 0.336638i \(-0.890710\pi\)
0.762354 + 0.647160i \(0.224043\pi\)
\(314\) −774.428 −0.139183
\(315\) −1793.03 + 3746.13i −0.320718 + 0.670066i
\(316\) −2004.90 −0.356913
\(317\) 2591.62 4488.81i 0.459179 0.795321i −0.539739 0.841833i \(-0.681477\pi\)
0.998918 + 0.0465112i \(0.0148103\pi\)
\(318\) −22.4508 581.428i −0.00395906 0.102531i
\(319\) −1009.89 1749.19i −0.177251 0.307008i
\(320\) −1853.24 3209.91i −0.323748 0.560748i
\(321\) 2158.24 1359.71i 0.375268 0.236422i
\(322\) −4088.16 + 7080.91i −0.707529 + 1.22548i
\(323\) −496.748 −0.0855722
\(324\) −2673.71 + 6909.37i −0.458455 + 1.18473i
\(325\) 1580.45 0.269746
\(326\) −2350.52 + 4071.22i −0.399336 + 0.691670i
\(327\) −1545.92 + 973.945i −0.261437 + 0.164707i
\(328\) −726.037 1257.53i −0.122222 0.211694i
\(329\) −684.741 1186.01i −0.114745 0.198744i
\(330\) 173.943 + 4504.74i 0.0290158 + 0.751448i
\(331\) 1086.68 1882.19i 0.180451 0.312551i −0.761583 0.648067i \(-0.775578\pi\)
0.942034 + 0.335517i \(0.108911\pi\)
\(332\) −2009.57 −0.332197
\(333\) −3287.54 + 6868.56i −0.541009 + 1.13032i
\(334\) 17224.8 2.82186
\(335\) 240.769 417.024i 0.0392675 0.0680133i
\(336\) 5942.47 + 3131.61i 0.964846 + 0.508463i
\(337\) 3925.16 + 6798.57i 0.634472 + 1.09894i 0.986627 + 0.162995i \(0.0521156\pi\)
−0.352155 + 0.935942i \(0.614551\pi\)
\(338\) 3834.52 + 6641.58i 0.617071 + 1.06880i
\(339\) −8101.81 4269.56i −1.29802 0.684043i
\(340\) −167.429 + 289.995i −0.0267062 + 0.0462565i
\(341\) 4193.78 0.665999
\(342\) −4903.26 7154.99i −0.775257 1.13128i
\(343\) 8011.53 1.26117
\(344\) −1556.85 + 2696.54i −0.244010 + 0.422638i
\(345\) 62.5159 + 1619.03i 0.00975577 + 0.252653i
\(346\) −5855.16 10141.4i −0.909756 1.57574i
\(347\) 4686.12 + 8116.60i 0.724969 + 1.25568i 0.958987 + 0.283451i \(0.0914792\pi\)
−0.234018 + 0.972232i \(0.575187\pi\)
\(348\) 2216.48 1396.40i 0.341425 0.215101i
\(349\) 588.952 1020.10i 0.0903321 0.156460i −0.817319 0.576186i \(-0.804540\pi\)
0.907651 + 0.419726i \(0.137874\pi\)
\(350\) −3277.73 −0.500577
\(351\) −7117.23 + 5292.25i −1.08231 + 0.804784i
\(352\) 10293.4 1.55864
\(353\) 3631.06 6289.19i 0.547484 0.948271i −0.450962 0.892543i \(-0.648919\pi\)
0.998446 0.0557274i \(-0.0177478\pi\)
\(354\) 7980.37 5027.70i 1.19817 0.754856i
\(355\) 2380.41 + 4122.99i 0.355885 + 0.616410i
\(356\) −6933.77 12009.6i −1.03227 1.78795i
\(357\) −40.6458 1052.64i −0.00602578 0.156055i
\(358\) −6048.15 + 10475.7i −0.892890 + 1.54653i
\(359\) −1939.95 −0.285199 −0.142600 0.989780i \(-0.545546\pi\)
−0.142600 + 0.989780i \(0.545546\pi\)
\(360\) −1240.61 + 95.9514i −0.181628 + 0.0140475i
\(361\) −1176.81 −0.171572
\(362\) 7335.05 12704.7i 1.06498 1.84459i
\(363\) −1501.72 791.388i −0.217134 0.114427i
\(364\) −9882.41 17116.8i −1.42302 2.46474i
\(365\) −127.139 220.212i −0.0182323 0.0315792i
\(366\) 16664.0 + 8781.72i 2.37989 + 1.25417i
\(367\) −3250.97 + 5630.85i −0.462396 + 0.800893i −0.999080 0.0428901i \(-0.986343\pi\)
0.536684 + 0.843783i \(0.319677\pi\)
\(368\) 2620.51 0.371205
\(369\) 4240.91 328.000i 0.598301 0.0462737i
\(370\) −6009.73 −0.844409
\(371\) −404.165 + 700.034i −0.0565585 + 0.0979622i
\(372\) 209.875 + 5435.32i 0.0292514 + 0.757548i
\(373\) −6659.02 11533.8i −0.924372 1.60106i −0.792568 0.609784i \(-0.791256\pi\)
−0.131805 0.991276i \(-0.542077\pi\)
\(374\) −571.729 990.263i −0.0790465 0.136913i
\(375\) −549.550 + 346.221i −0.0756764 + 0.0476768i
\(376\) 205.155 355.339i 0.0281385 0.0487373i
\(377\) 3136.13 0.428432
\(378\) 14760.6 10975.7i 2.00848 1.49347i
\(379\) −3198.42 −0.433488 −0.216744 0.976228i \(-0.569544\pi\)
−0.216744 + 0.976228i \(0.569544\pi\)
\(380\) 1915.18 3317.19i 0.258544 0.447811i
\(381\) −6621.53 + 4171.62i −0.890370 + 0.560941i
\(382\) −1590.27 2754.43i −0.212999 0.368924i
\(383\) 1170.25 + 2026.93i 0.156128 + 0.270422i 0.933469 0.358658i \(-0.116765\pi\)
−0.777341 + 0.629079i \(0.783432\pi\)
\(384\) 227.895 + 5902.00i 0.0302858 + 0.784336i
\(385\) 3131.36 5423.67i 0.414516 0.717963i
\(386\) −459.878 −0.0606403
\(387\) −5156.01 7523.81i −0.677248 0.988261i
\(388\) −14544.5 −1.90305
\(389\) −1995.97 + 3457.12i −0.260153 + 0.450599i −0.966282 0.257484i \(-0.917106\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(390\) −6192.48 3263.37i −0.804022 0.423710i
\(391\) −205.482 355.906i −0.0265772 0.0460330i
\(392\) 2780.91 + 4816.69i 0.358310 + 0.620611i
\(393\) −5861.61 3089.00i −0.752365 0.396488i
\(394\) −7161.96 + 12404.9i −0.915773 + 1.58616i
\(395\) 986.395 0.125648
\(396\) 4823.24 10077.1i 0.612063 1.27876i
\(397\) −4960.90 −0.627155 −0.313577 0.949563i \(-0.601528\pi\)
−0.313577 + 0.949563i \(0.601528\pi\)
\(398\) 2917.16 5052.66i 0.367397 0.636350i
\(399\) 464.937 + 12040.9i 0.0583358 + 1.51077i
\(400\) 525.256 + 909.769i 0.0656569 + 0.113721i
\(401\) −413.811 716.742i −0.0515330 0.0892578i 0.839108 0.543965i \(-0.183077\pi\)
−0.890641 + 0.454707i \(0.849744\pi\)
\(402\) −1804.47 + 1136.83i −0.223877 + 0.141044i
\(403\) −3255.85 + 5639.30i −0.402445 + 0.697056i
\(404\) 11256.4 1.38621
\(405\) 1315.45 3399.36i 0.161395 0.417075i
\(406\) −6504.11 −0.795058
\(407\) 5741.36 9944.33i 0.699235 1.21111i
\(408\) 267.039 168.237i 0.0324029 0.0204141i
\(409\) 4183.82 + 7246.59i 0.505811 + 0.876090i 0.999977 + 0.00672263i \(0.00213989\pi\)
−0.494167 + 0.869367i \(0.664527\pi\)
\(410\) 1678.50 + 2907.25i 0.202184 + 0.350192i
\(411\) 288.592 + 7473.90i 0.0346354 + 0.896983i
\(412\) −2687.41 + 4654.73i −0.321357 + 0.556607i
\(413\) −13103.2 −1.56117
\(414\) 3098.08 6472.74i 0.367784 0.768400i
\(415\) 988.693 0.116947
\(416\) −7991.34 + 13841.4i −0.941845 + 1.63132i
\(417\) 11673.8 + 6151.96i 1.37091 + 0.722453i
\(418\) 6539.87 + 11327.4i 0.765252 + 1.32546i
\(419\) −2100.36 3637.93i −0.244891 0.424163i 0.717210 0.696857i \(-0.245419\pi\)
−0.962101 + 0.272694i \(0.912085\pi\)
\(420\) 7186.01 + 3786.95i 0.834861 + 0.439962i
\(421\) −3469.38 + 6009.14i −0.401632 + 0.695648i −0.993923 0.110077i \(-0.964890\pi\)
0.592291 + 0.805724i \(0.298224\pi\)
\(422\) −10665.3 −1.23028
\(423\) 679.440 + 991.459i 0.0780981 + 0.113963i
\(424\) −242.184 −0.0277394
\(425\) 82.3737 142.675i 0.00940168 0.0162842i
\(426\) −813.575 21069.8i −0.0925301 2.39633i
\(427\) −13083.8 22661.8i −1.48283 2.56835i
\(428\) −2494.50 4320.60i −0.281720 0.487953i
\(429\) 11315.9 7129.09i 1.27351 0.802321i
\(430\) 3599.22 6234.03i 0.403651 0.699144i
\(431\) 6827.09 0.762991 0.381496 0.924371i \(-0.375409\pi\)
0.381496 + 0.924371i \(0.375409\pi\)
\(432\) −5411.83 2338.11i −0.602724 0.260399i
\(433\) −2199.59 −0.244124 −0.122062 0.992522i \(-0.538951\pi\)
−0.122062 + 0.992522i \(0.538951\pi\)
\(434\) 6752.39 11695.5i 0.746832 1.29355i
\(435\) −1090.49 + 687.019i −0.120196 + 0.0757243i
\(436\) 1786.78 + 3094.80i 0.196265 + 0.339940i
\(437\) 2350.46 + 4071.12i 0.257295 + 0.445648i
\(438\) 43.4536 + 1125.36i 0.00474040 + 0.122766i
\(439\) −4162.16 + 7209.07i −0.452504 + 0.783759i −0.998541 0.0540018i \(-0.982802\pi\)
0.546037 + 0.837761i \(0.316136\pi\)
\(440\) 1876.37 0.203301
\(441\) −16243.8 + 1256.33i −1.75400 + 0.135658i
\(442\) 1775.45 0.191063
\(443\) 5433.41 9410.93i 0.582729 1.00932i −0.412426 0.910991i \(-0.635318\pi\)
0.995154 0.0983247i \(-0.0313484\pi\)
\(444\) 13175.6 + 6943.39i 1.40830 + 0.742159i
\(445\) 3411.36 + 5908.65i 0.363402 + 0.629431i
\(446\) 3994.41 + 6918.51i 0.424082 + 0.734532i
\(447\) −431.001 227.133i −0.0456055 0.0240336i
\(448\) 11402.6 19749.9i 1.20250 2.08280i
\(449\) −4947.73 −0.520040 −0.260020 0.965603i \(-0.583729\pi\)
−0.260020 + 0.965603i \(0.583729\pi\)
\(450\) 2868.13 221.827i 0.300456 0.0232378i
\(451\) −6414.18 −0.669694
\(452\) −8955.69 + 15511.7i −0.931947 + 1.61418i
\(453\) −214.150 5546.03i −0.0222112 0.575221i
\(454\) 10822.2 + 18744.7i 1.11875 + 1.93773i
\(455\) 4862.07 + 8421.35i 0.500961 + 0.867690i
\(456\) −3054.59 + 1924.42i −0.313694 + 0.197630i
\(457\) 7098.85 12295.6i 0.726630 1.25856i −0.231669 0.972795i \(-0.574419\pi\)
0.958299 0.285766i \(-0.0922480\pi\)
\(458\) −3690.13 −0.376481
\(459\) 106.806 + 918.347i 0.0108612 + 0.0933873i
\(460\) 3168.89 0.321196
\(461\) 9114.02 15785.9i 0.920786 1.59485i 0.122584 0.992458i \(-0.460882\pi\)
0.798202 0.602390i \(-0.205785\pi\)
\(462\) −23468.3 + 14785.2i −2.36329 + 1.48890i
\(463\) −2170.59 3759.58i −0.217875 0.377370i 0.736283 0.676674i \(-0.236579\pi\)
−0.954158 + 0.299303i \(0.903246\pi\)
\(464\) 1042.28 + 1805.29i 0.104282 + 0.180621i
\(465\) −103.257 2674.13i −0.0102977 0.266688i
\(466\) 2433.69 4215.28i 0.241928 0.419032i
\(467\) 4919.63 0.487481 0.243740 0.969841i \(-0.421626\pi\)
0.243740 + 0.969841i \(0.421626\pi\)
\(468\) 9805.90 + 14309.1i 0.968542 + 1.41333i
\(469\) 2962.80 0.291704
\(470\) −474.291 + 821.497i −0.0465477 + 0.0806230i
\(471\) −835.324 440.206i −0.0817191 0.0430650i
\(472\) −1962.92 3399.88i −0.191421 0.331551i
\(473\) 6876.98 + 11911.3i 0.668508 + 1.15789i
\(474\) −3864.88 2036.75i −0.374515 0.197365i
\(475\) −942.254 + 1632.03i −0.0910180 + 0.157648i
\(476\) −2060.31 −0.198391
\(477\) 306.283 639.909i 0.0293999 0.0614244i
\(478\) 13421.9 1.28432
\(479\) −2286.41 + 3960.19i −0.218098 + 0.377757i −0.954226 0.299085i \(-0.903319\pi\)
0.736128 + 0.676842i \(0.236652\pi\)
\(480\) −253.440 6563.55i −0.0240998 0.624132i
\(481\) 8914.64 + 15440.6i 0.845057 + 1.46368i
\(482\) 9598.31 + 16624.8i 0.907035 + 1.57103i
\(483\) −8434.61 + 5313.87i −0.794592 + 0.500600i
\(484\) −1659.99 + 2875.19i −0.155897 + 0.270021i
\(485\) 7155.79 0.669954
\(486\) −12173.3 + 10603.1i −1.13620 + 0.989646i
\(487\) 15751.5 1.46564 0.732822 0.680421i \(-0.238203\pi\)
0.732822 + 0.680421i \(0.238203\pi\)
\(488\) 3920.04 6789.72i 0.363631 0.629828i
\(489\) −4849.55 + 3055.26i −0.448475 + 0.282543i
\(490\) −6429.10 11135.5i −0.592729 1.02664i
\(491\) −7654.18 13257.4i −0.703520 1.21853i −0.967223 0.253928i \(-0.918277\pi\)
0.263703 0.964604i \(-0.415056\pi\)
\(492\) −320.994 8313.05i −0.0294137 0.761751i
\(493\) 163.457 283.116i 0.0149325 0.0258639i
\(494\) −20309.0 −1.84968
\(495\) −2373.00 + 4957.83i −0.215471 + 0.450178i
\(496\) −4328.28 −0.391826
\(497\) −14646.2 + 25367.9i −1.32187 + 2.28955i
\(498\) −3873.89 2041.49i −0.348580 0.183698i
\(499\) −8866.05 15356.5i −0.795389 1.37765i −0.922592 0.385777i \(-0.873933\pi\)
0.127203 0.991877i \(-0.459400\pi\)
\(500\) 635.172 + 1100.15i 0.0568115 + 0.0984005i
\(501\) 18579.3 + 9791.07i 1.65681 + 0.873119i
\(502\) 1889.80 3273.23i 0.168020 0.291019i
\(503\) −10511.5 −0.931775 −0.465887 0.884844i \(-0.654265\pi\)
−0.465887 + 0.884844i \(0.654265\pi\)
\(504\) −4327.89 6315.39i −0.382499 0.558155i
\(505\) −5538.08 −0.488003
\(506\) −5410.49 + 9371.25i −0.475347 + 0.823326i
\(507\) 360.782 + 9343.47i 0.0316033 + 0.818457i
\(508\) 7653.18 + 13255.7i 0.668416 + 1.15773i
\(509\) −9815.42 17000.8i −0.854737 1.48045i −0.876889 0.480693i \(-0.840385\pi\)
0.0221524 0.999755i \(-0.492948\pi\)
\(510\) −617.358 + 388.941i −0.0536021 + 0.0337698i
\(511\) 782.262 1354.92i 0.0677206 0.117296i
\(512\) −13722.1 −1.18444
\(513\) −1221.73 10504.8i −0.105147 0.904086i
\(514\) −9640.30 −0.827267
\(515\) 1322.19 2290.09i 0.113131 0.195949i
\(516\) −15093.4 + 9508.96i −1.28769 + 0.811257i
\(517\) −906.223 1569.62i −0.0770902 0.133524i
\(518\) −18488.3 32022.7i −1.56820 2.71621i
\(519\) −550.900 14267.1i −0.0465931 1.20666i
\(520\) −1456.73 + 2523.12i −0.122849 + 0.212781i
\(521\) 88.4336 0.00743636 0.00371818 0.999993i \(-0.498816\pi\)
0.00371818 + 0.999993i \(0.498816\pi\)
\(522\) 5691.34 440.179i 0.477209 0.0369082i
\(523\) 21346.4 1.78473 0.892363 0.451317i \(-0.149046\pi\)
0.892363 + 0.451317i \(0.149046\pi\)
\(524\) −6479.39 + 11222.6i −0.540178 + 0.935616i
\(525\) −3535.46 1863.15i −0.293905 0.154885i
\(526\) 15514.2 + 26871.4i 1.28603 + 2.22747i
\(527\) 339.394 + 587.847i 0.0280535 + 0.0485902i
\(528\) 7864.58 + 4144.55i 0.648224 + 0.341606i
\(529\) 4138.94 7168.86i 0.340178 0.589205i
\(530\) 559.896 0.0458874
\(531\) 11465.8 886.783i 0.937047 0.0724729i
\(532\) 23567.4 1.92063
\(533\) 4979.67 8625.03i 0.404678 0.700923i
\(534\) −1165.93 30195.1i −0.0944847 2.44695i
\(535\) 1227.27 + 2125.70i 0.0991770 + 0.171780i
\(536\) 443.842 + 768.757i 0.0357669 + 0.0619501i
\(537\) −12478.4 + 7861.51i −1.00276 + 0.631749i
\(538\) −227.538 + 394.108i −0.0182340 + 0.0315821i
\(539\) 24568.0 1.96330
\(540\) −6544.32 2827.39i −0.521524 0.225318i
\(541\) −14432.6 −1.14696 −0.573480 0.819220i \(-0.694407\pi\)
−0.573480 + 0.819220i \(0.694407\pi\)
\(542\) 12591.1 21808.4i 0.997850 1.72833i
\(543\) 15133.5 9534.24i 1.19602 0.753505i
\(544\) 833.027 + 1442.84i 0.0656539 + 0.113716i
\(545\) −879.084 1522.62i −0.0690933 0.119673i
\(546\) −1661.75 43035.9i −0.130250 3.37320i
\(547\) 8284.80 14349.7i 0.647592 1.12166i −0.336105 0.941825i \(-0.609110\pi\)
0.983696 0.179837i \(-0.0575571\pi\)
\(548\) 14628.5 1.14033
\(549\) 12982.5 + 18944.5i 1.00925 + 1.47273i
\(550\) −4337.92 −0.336308
\(551\) −1869.75 + 3238.50i −0.144562 + 0.250389i
\(552\) −2642.34 1392.48i −0.203742 0.107369i
\(553\) 3034.54 + 5255.98i 0.233349 + 0.404172i
\(554\) 7010.80 + 12143.1i 0.537654 + 0.931245i
\(555\) −6482.30 3416.10i −0.495780 0.261271i
\(556\) 12904.1 22350.6i 0.984277 1.70482i
\(557\) 11597.0 0.882191 0.441096 0.897460i \(-0.354590\pi\)
0.441096 + 0.897460i \(0.354590\pi\)
\(558\) −5117.08 + 10691.0i −0.388214 + 0.811084i
\(559\) −21355.9 −1.61584
\(560\) −3231.79 + 5597.62i −0.243871 + 0.422397i
\(561\) −53.7928 1393.12i −0.00404836 0.104844i
\(562\) 723.912 + 1253.85i 0.0543352 + 0.0941113i
\(563\) 11524.6 + 19961.3i 0.862709 + 1.49426i 0.869304 + 0.494278i \(0.164568\pi\)
−0.00659429 + 0.999978i \(0.502099\pi\)
\(564\) 1988.95 1253.05i 0.148493 0.0935516i
\(565\) 4406.13 7631.64i 0.328084 0.568258i
\(566\) −11079.2 −0.822778
\(567\) 22160.2 3448.45i 1.64134 0.255417i
\(568\) −8776.27 −0.648317
\(569\) −7366.96 + 12759.9i −0.542775 + 0.940114i 0.455968 + 0.889996i \(0.349293\pi\)
−0.998743 + 0.0501179i \(0.984040\pi\)
\(570\) 7061.81 4449.00i 0.518924 0.326927i
\(571\) −7555.94 13087.3i −0.553776 0.959169i −0.997998 0.0632515i \(-0.979853\pi\)
0.444221 0.895917i \(-0.353480\pi\)
\(572\) −13078.9 22653.3i −0.956043 1.65591i
\(573\) −149.625 3874.98i −0.0109087 0.282512i
\(574\) −10327.5 + 17887.7i −0.750975 + 1.30073i
\(575\) −1559.07 −0.113074
\(576\) −8641.09 + 18053.6i −0.625079 + 1.30596i
\(577\) −26150.5 −1.88676 −0.943380 0.331715i \(-0.892373\pi\)
−0.943380 + 0.331715i \(0.892373\pi\)
\(578\) −10376.5 + 17972.7i −0.746724 + 1.29336i
\(579\) −496.039 261.407i −0.0356040 0.0187629i
\(580\) 1260.39 + 2183.07i 0.0902328 + 0.156288i
\(581\) 3041.61 + 5268.22i 0.217190 + 0.376184i
\(582\) −28037.7 14775.6i −1.99691 1.05235i
\(583\) −534.894 + 926.463i −0.0379983 + 0.0658150i
\(584\) 468.747 0.0332139
\(585\) −4824.43 7039.95i −0.340967 0.497549i
\(586\) −758.961 −0.0535023
\(587\) −1045.77 + 1811.33i −0.0735326 + 0.127362i −0.900447 0.434965i \(-0.856761\pi\)
0.826915 + 0.562327i \(0.190094\pi\)
\(588\) 1229.49 + 31841.2i 0.0862303 + 2.23318i
\(589\) −3882.24 6724.24i −0.271587 0.470403i
\(590\) 4538.01 + 7860.06i 0.316656 + 0.548464i
\(591\) −14776.4 + 9309.26i −1.02846 + 0.647939i
\(592\) −5925.50 + 10263.3i −0.411379 + 0.712530i
\(593\) 3260.34 0.225778 0.112889 0.993608i \(-0.463990\pi\)
0.112889 + 0.993608i \(0.463990\pi\)
\(594\) 19535.0 14525.9i 1.34938 1.00337i
\(595\) 1013.66 0.0698417
\(596\) −476.426 + 825.194i −0.0327436 + 0.0567135i
\(597\) 6018.61 3791.78i 0.412606 0.259945i
\(598\) −8400.90 14550.8i −0.574479 0.995026i
\(599\) 11499.6 + 19917.9i 0.784410 + 1.35864i 0.929351 + 0.369197i \(0.120367\pi\)
−0.144941 + 0.989440i \(0.546299\pi\)
\(600\) −46.1991 1196.46i −0.00314345 0.0814085i
\(601\) 7146.93 12378.9i 0.485074 0.840173i −0.514779 0.857323i \(-0.672126\pi\)
0.999853 + 0.0171500i \(0.00545928\pi\)
\(602\) 44290.5 2.99858
\(603\) −2592.56 + 200.513i −0.175087 + 0.0135415i
\(604\) −10855.1 −0.731274
\(605\) 816.702 1414.57i 0.0548821 0.0950586i
\(606\) 21699.3 + 11435.3i 1.45457 + 0.766544i
\(607\) 8217.04 + 14232.3i 0.549455 + 0.951685i 0.998312 + 0.0580809i \(0.0184981\pi\)
−0.448856 + 0.893604i \(0.648169\pi\)
\(608\) −9528.80 16504.4i −0.635598 1.10089i
\(609\) −7015.54 3697.11i −0.466805 0.246001i
\(610\) −9062.62 + 15696.9i −0.601532 + 1.04188i
\(611\) 2814.19 0.186334
\(612\) 1802.85 139.435i 0.119078 0.00920971i
\(613\) 3674.45 0.242104 0.121052 0.992646i \(-0.461373\pi\)
0.121052 + 0.992646i \(0.461373\pi\)
\(614\) 3276.45 5674.99i 0.215353 0.373003i
\(615\) 157.927 + 4089.96i 0.0103548 + 0.268168i
\(616\) 5772.46 + 9998.19i 0.377563 + 0.653958i
\(617\) −4313.78 7471.69i −0.281469 0.487519i 0.690278 0.723544i \(-0.257488\pi\)
−0.971747 + 0.236026i \(0.924155\pi\)
\(618\) −9909.25 + 6242.91i −0.644998 + 0.406354i
\(619\) 654.905 1134.33i 0.0425248 0.0736551i −0.843980 0.536375i \(-0.819793\pi\)
0.886504 + 0.462720i \(0.153127\pi\)
\(620\) −5234.03 −0.339038
\(621\) 7020.97 5220.67i 0.453691 0.337356i
\(622\) −4028.76 −0.259708
\(623\) −20989.4 + 36354.7i −1.34979 + 2.33791i
\(624\) −11678.8 + 7357.73i −0.749240 + 0.472027i
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 4230.95 + 7328.23i 0.270132 + 0.467883i
\(627\) 615.323 + 15935.5i 0.0391924 + 1.01500i
\(628\) −923.362 + 1599.31i −0.0586722 + 0.101623i
\(629\) 1858.54 0.117814
\(630\) 10005.5 + 14600.3i 0.632744 + 0.923320i
\(631\) 14447.2 0.911463 0.455731 0.890117i \(-0.349378\pi\)
0.455731 + 0.890117i \(0.349378\pi\)
\(632\) −909.179 + 1574.74i −0.0572234 + 0.0991138i
\(633\) −11503.9 6062.45i −0.722339 0.380665i
\(634\) −11044.9 19130.3i −0.691875 1.19836i
\(635\) −3765.31 6521.71i −0.235310 0.407569i
\(636\) −1227.50 646.881i −0.0765310 0.0403309i
\(637\) −19073.4 + 33036.2i −1.18637 + 2.05485i
\(638\) −8607.88 −0.534152
\(639\) 11099.1 23189.1i 0.687127 1.43560i
\(640\) −5683.43 −0.351027
\(641\) 10036.6 17383.8i 0.618440 1.07117i −0.371330 0.928501i \(-0.621098\pi\)
0.989770 0.142669i \(-0.0455685\pi\)
\(642\) −419.457 10863.0i −0.0257860 0.667803i
\(643\) 8867.96 + 15359.8i 0.543885 + 0.942037i 0.998676 + 0.0514386i \(0.0163807\pi\)
−0.454791 + 0.890598i \(0.650286\pi\)
\(644\) 9748.75 + 16885.3i 0.596513 + 1.03319i
\(645\) 7425.83 4678.34i 0.453321 0.285596i
\(646\) −1058.52 + 1833.40i −0.0644686 + 0.111663i
\(647\) −11456.8 −0.696158 −0.348079 0.937465i \(-0.613166\pi\)
−0.348079 + 0.937465i \(0.613166\pi\)
\(648\) 4214.48 + 5233.31i 0.255494 + 0.317259i
\(649\) −17341.4 −1.04886
\(650\) 3367.75 5833.12i 0.203222 0.351990i
\(651\) 13931.4 8776.89i 0.838731 0.528408i
\(652\) 5605.12 + 9708.36i 0.336677 + 0.583142i
\(653\) −14536.0 25177.0i −0.871113 1.50881i −0.860847 0.508864i \(-0.830065\pi\)
−0.0102660 0.999947i \(-0.503268\pi\)
\(654\) 300.453 + 7781.08i 0.0179643 + 0.465236i
\(655\) 3187.81 5521.45i 0.190165 0.329376i
\(656\) 6619.90 0.393999
\(657\) −592.812 + 1238.55i −0.0352021 + 0.0735468i
\(658\) −5836.43 −0.345787
\(659\) 2177.54 3771.62i 0.128718 0.222946i −0.794462 0.607314i \(-0.792247\pi\)
0.923180 + 0.384368i \(0.125581\pi\)
\(660\) 9510.35 + 5011.85i 0.560894 + 0.295585i
\(661\) −13647.7 23638.5i −0.803075 1.39097i −0.917583 0.397545i \(-0.869862\pi\)
0.114508 0.993422i \(-0.463471\pi\)
\(662\) −4631.19 8021.46i −0.271898 0.470941i
\(663\) 1915.06 + 1009.22i 0.112179 + 0.0591172i
\(664\) −911.297 + 1578.41i −0.0532608 + 0.0922504i
\(665\) −11595.0 −0.676141
\(666\) 18345.2 + 26769.8i 1.06736 + 1.55752i
\(667\) −3093.72 −0.179594
\(668\) 20537.4 35571.8i 1.18955 2.06035i
\(669\) 375.825 + 9733.06i 0.0217194 + 0.562484i
\(670\) −1026.10 1777.26i −0.0591669 0.102480i
\(671\) −17315.8 29991.9i −0.996230 1.72552i
\(672\) 34194.0 21542.5i 1.96289 1.23664i
\(673\) 8880.01 15380.6i 0.508617 0.880951i −0.491333 0.870972i \(-0.663490\pi\)
0.999950 0.00997909i \(-0.00317650\pi\)
\(674\) 33456.3 1.91200
\(675\) 3219.76 + 1391.06i 0.183598 + 0.0793212i
\(676\) 18287.8 1.04050
\(677\) −968.667 + 1677.78i −0.0549910 + 0.0952472i −0.892210 0.451620i \(-0.850846\pi\)
0.837219 + 0.546867i \(0.184180\pi\)
\(678\) −33022.2 + 20804.3i −1.87052 + 1.17844i
\(679\) 22014.0 + 38129.4i 1.24421 + 2.15504i
\(680\) 151.851 + 263.013i 0.00856355 + 0.0148325i
\(681\) 1018.24 + 26370.3i 0.0572968 + 1.48386i
\(682\) 8936.48 15478.4i 0.501753 0.869061i
\(683\) −2125.71 −0.119090 −0.0595448 0.998226i \(-0.518965\pi\)
−0.0595448 + 0.998226i \(0.518965\pi\)
\(684\) −20622.3 + 1594.97i −1.15280 + 0.0891596i
\(685\) −7197.12 −0.401442
\(686\) 17071.7 29569.0i 0.950146 1.64570i
\(687\) −3980.29 2097.57i −0.221045 0.116488i
\(688\) −7097.55 12293.3i −0.393301 0.681218i
\(689\) −830.532 1438.52i −0.0459227 0.0795405i
\(690\) 6108.73 + 3219.23i 0.337037 + 0.177615i
\(691\) −6913.13 + 11973.9i −0.380590 + 0.659201i −0.991147 0.132771i \(-0.957612\pi\)
0.610557 + 0.791973i \(0.290946\pi\)
\(692\) −27924.8 −1.53402
\(693\) −33717.9 + 2607.81i −1.84825 + 0.142947i
\(694\) 39942.4 2.18472
\(695\) −6348.74 + 10996.3i −0.346506 + 0.600166i
\(696\) −91.6744 2374.17i −0.00499268 0.129300i
\(697\) −519.086 899.084i −0.0282092 0.0488597i
\(698\) −2509.98 4347.42i −0.136109 0.235748i
\(699\) 5021.14 3163.36i 0.271698 0.171172i
\(700\) −3908.08 + 6768.99i −0.211016 + 0.365491i
\(701\) −24464.0 −1.31810 −0.659052 0.752097i \(-0.729042\pi\)
−0.659052 + 0.752097i \(0.729042\pi\)
\(702\) 4366.64 + 37545.5i 0.234769 + 2.01861i
\(703\) −21259.5 −1.14056
\(704\) 15090.8 26138.0i 0.807892 1.39931i
\(705\) −978.548 + 616.493i −0.0522755 + 0.0329340i
\(706\) −15474.8 26803.1i −0.824931 1.42882i
\(707\) −17037.3 29509.5i −0.906300 1.56976i
\(708\) −867.842 22475.2i −0.0460671 1.19304i
\(709\) 14749.1 25546.2i 0.781263 1.35319i −0.149944 0.988695i \(-0.547909\pi\)
0.931206 0.364492i \(-0.118757\pi\)
\(710\) 20289.6 1.07247
\(711\) −3011.05 4393.81i −0.158823 0.231759i
\(712\) −12577.3 −0.662012
\(713\) 3211.81 5563.02i 0.168700 0.292198i
\(714\) −3971.70 2093.04i −0.208175 0.109706i
\(715\) 6434.72 + 11145.3i 0.336566 + 0.582950i
\(716\) 14422.6 + 24980.7i 0.752790 + 1.30387i
\(717\) 14477.3 + 7629.38i 0.754065 + 0.397384i
\(718\) −4133.81 + 7159.98i −0.214864 + 0.372156i
\(719\) −3857.66 −0.200093 −0.100046 0.994983i \(-0.531899\pi\)
−0.100046 + 0.994983i \(0.531899\pi\)
\(720\) 2449.10 5116.84i 0.126768 0.264852i
\(721\) 16270.2 0.840410
\(722\) −2507.66 + 4343.39i −0.129260 + 0.223884i
\(723\) 903.085 + 23387.9i 0.0464538 + 1.20305i
\(724\) −17491.4 30295.9i −0.897874 1.55516i
\(725\) −620.105 1074.05i −0.0317657 0.0550197i
\(726\) −6120.86 + 3856.19i −0.312901 + 0.197130i
\(727\) −4372.55 + 7573.48i −0.223066 + 0.386361i −0.955737 0.294221i \(-0.904940\pi\)
0.732672 + 0.680582i \(0.238273\pi\)
\(728\) −17925.8 −0.912604
\(729\) −19157.6 + 4517.26i −0.973309 + 0.229501i
\(730\) −1083.68 −0.0549436
\(731\) −1113.08 + 1927.91i −0.0563184 + 0.0975463i
\(732\) 38004.2 23943.0i 1.91896 1.20896i
\(733\) 4709.20 + 8156.58i 0.237296 + 0.411010i 0.959938 0.280214i \(-0.0904054\pi\)
−0.722641 + 0.691223i \(0.757072\pi\)
\(734\) 13854.9 + 23997.4i 0.696723 + 1.20676i
\(735\) −604.901 15665.6i −0.0303566 0.786171i
\(736\) 7883.26 13654.2i 0.394811 0.683832i
\(737\) 3921.13 0.195979
\(738\) 7826.33 16351.3i 0.390368 0.815584i
\(739\) 6219.42 0.309587 0.154794 0.987947i \(-0.450529\pi\)
0.154794 + 0.987947i \(0.450529\pi\)
\(740\) −7165.49 + 12411.0i −0.355958 + 0.616537i
\(741\) −21905.9 11544.2i −1.08601 0.572316i
\(742\) 1722.46 + 2983.39i 0.0852204 + 0.147606i
\(743\) 14693.7 + 25450.3i 0.725518 + 1.25663i 0.958760 + 0.284216i \(0.0917333\pi\)
−0.233242 + 0.972419i \(0.574933\pi\)
\(744\) 4364.33 + 2299.95i 0.215059 + 0.113334i
\(745\) 234.398 405.989i 0.0115271 0.0199655i
\(746\) −56758.5 −2.78563
\(747\) −3018.06 4404.05i −0.147825 0.215710i
\(748\) −2726.72 −0.133287
\(749\) −7551.15 + 13079.0i −0.368375 + 0.638045i
\(750\) 106.806 + 2766.04i 0.00520001 + 0.134669i
\(751\) 10823.6 + 18747.0i 0.525909 + 0.910901i 0.999544 + 0.0301801i \(0.00960808\pi\)
−0.473636 + 0.880721i \(0.657059\pi\)
\(752\) 935.287 + 1619.97i 0.0453543 + 0.0785559i
\(753\) 3899.00 2456.40i 0.188695 0.118880i
\(754\) 6682.75 11574.9i 0.322774 0.559061i
\(755\) 5340.65 0.257438
\(756\) −5067.23 43569.4i −0.243774 2.09604i
\(757\) −13907.2 −0.667722 −0.333861 0.942622i \(-0.608352\pi\)
−0.333861 + 0.942622i \(0.608352\pi\)
\(758\) −6815.48 + 11804.8i −0.326582 + 0.565657i
\(759\) −11162.8 + 7032.66i −0.533840 + 0.336324i
\(760\) −1736.98 3008.55i −0.0829040 0.143594i
\(761\) 11953.0 + 20703.3i 0.569379 + 0.986193i 0.996628 + 0.0820585i \(0.0261494\pi\)
−0.427249 + 0.904134i \(0.640517\pi\)
\(762\) 1286.90 + 33328.0i 0.0611806 + 1.58445i
\(763\) 5408.82 9368.35i 0.256635 0.444504i
\(764\) −7584.42 −0.359155
\(765\) −886.987 + 68.6012i −0.0419204 + 0.00324220i
\(766\) 9974.70 0.470497
\(767\) 13463.1 23318.7i 0.633798 1.09777i
\(768\) −4992.53 2631.01i −0.234573 0.123618i