Newspace parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.65508595026\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.15759792.1 |
Defining polynomial: |
\( x^{6} - 3x^{5} + 16x^{4} - 27x^{3} + 52x^{2} - 39x + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 3x^{5} + 16x^{4} - 27x^{3} + 52x^{2} - 39x + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{2} - \nu + 4 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{4} + 2\nu^{3} - 11\nu^{2} + 10\nu - 12 ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 2\nu^{5} - 5\nu^{4} + 30\nu^{3} - 40\nu^{2} + 88\nu - 39 ) / 3 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -7\nu^{5} + 18\nu^{4} - 103\nu^{3} + 141\nu^{2} - 289\nu + 126 ) / 3 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -8\nu^{5} + 20\nu^{4} - 117\nu^{3} + 157\nu^{2} - 334\nu + 147 ) / 3 \)
|
\(\nu\) | \(=\) |
\( ( -2\beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -2\beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 - 11 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 13\beta_{5} - 10\beta_{4} + 17\beta_{3} - 5\beta_{2} - 2\beta _1 - 8 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 28\beta_{5} - 22\beta_{4} + 35\beta_{3} - 20\beta_{2} - 38\beta _1 + 79 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -77\beta_{5} + 47\beta_{4} - 139\beta_{3} + \beta_{2} - 29\beta _1 + 112 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).
\(n\) | \(11\) | \(37\) |
\(\chi(n)\) | \(\beta_{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−1.87428 | + | 3.24635i | −4.05724 | − | 3.24635i | −3.02587 | − | 5.24096i | −2.50000 | − | 4.33013i | 18.1432 | − | 7.08665i | 15.6746 | − | 27.1492i | −7.30318 | 5.92239 | + | 26.3425i | 18.7428 | ||||||||||||||||||||||
16.2 | 0.0874923 | − | 0.151541i | 5.19394 | + | 0.151541i | 3.98469 | + | 6.90169i | −2.50000 | − | 4.33013i | 0.477395 | − | 0.773837i | −4.23186 | + | 7.32979i | 2.79440 | 26.9541 | + | 1.57419i | −0.874923 | |||||||||||||||||||||||
16.3 | 2.28679 | − | 3.96084i | 3.36330 | + | 3.96084i | −6.45882 | − | 11.1870i | −2.50000 | − | 4.33013i | 23.3794 | − | 4.26387i | 10.0573 | − | 17.4197i | −22.4912 | −4.37646 | + | 26.6429i | −22.8679 | |||||||||||||||||||||||
31.1 | −1.87428 | − | 3.24635i | −4.05724 | + | 3.24635i | −3.02587 | + | 5.24096i | −2.50000 | + | 4.33013i | 18.1432 | + | 7.08665i | 15.6746 | + | 27.1492i | −7.30318 | 5.92239 | − | 26.3425i | 18.7428 | |||||||||||||||||||||||
31.2 | 0.0874923 | + | 0.151541i | 5.19394 | − | 0.151541i | 3.98469 | − | 6.90169i | −2.50000 | + | 4.33013i | 0.477395 | + | 0.773837i | −4.23186 | − | 7.32979i | 2.79440 | 26.9541 | − | 1.57419i | −0.874923 | |||||||||||||||||||||||
31.3 | 2.28679 | + | 3.96084i | 3.36330 | − | 3.96084i | −6.45882 | + | 11.1870i | −2.50000 | + | 4.33013i | 23.3794 | + | 4.26387i | 10.0573 | + | 17.4197i | −22.4912 | −4.37646 | − | 26.6429i | −22.8679 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.4.e.b | ✓ | 6 |
3.b | odd | 2 | 1 | 135.4.e.b | 6 | ||
5.b | even | 2 | 1 | 225.4.e.c | 6 | ||
5.c | odd | 4 | 2 | 225.4.k.c | 12 | ||
9.c | even | 3 | 1 | inner | 45.4.e.b | ✓ | 6 |
9.c | even | 3 | 1 | 405.4.a.h | 3 | ||
9.d | odd | 6 | 1 | 135.4.e.b | 6 | ||
9.d | odd | 6 | 1 | 405.4.a.j | 3 | ||
45.h | odd | 6 | 1 | 2025.4.a.q | 3 | ||
45.j | even | 6 | 1 | 225.4.e.c | 6 | ||
45.j | even | 6 | 1 | 2025.4.a.s | 3 | ||
45.k | odd | 12 | 2 | 225.4.k.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.4.e.b | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
45.4.e.b | ✓ | 6 | 9.c | even | 3 | 1 | inner |
135.4.e.b | 6 | 3.b | odd | 2 | 1 | ||
135.4.e.b | 6 | 9.d | odd | 6 | 1 | ||
225.4.e.c | 6 | 5.b | even | 2 | 1 | ||
225.4.e.c | 6 | 45.j | even | 6 | 1 | ||
225.4.k.c | 12 | 5.c | odd | 4 | 2 | ||
225.4.k.c | 12 | 45.k | odd | 12 | 2 | ||
405.4.a.h | 3 | 9.c | even | 3 | 1 | ||
405.4.a.j | 3 | 9.d | odd | 6 | 1 | ||
2025.4.a.q | 3 | 45.h | odd | 6 | 1 | ||
2025.4.a.s | 3 | 45.j | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} - T_{2}^{5} + 18T_{2}^{4} + 11T_{2}^{3} + 292T_{2}^{2} - 51T_{2} + 9 \)
acting on \(S_{4}^{\mathrm{new}}(45, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} - T^{5} + 18 T^{4} + 11 T^{3} + \cdots + 9 \)
$3$
\( T^{6} - 9 T^{5} + 12 T^{4} + \cdots + 19683 \)
$5$
\( (T^{2} + 5 T + 25)^{3} \)
$7$
\( T^{6} - 43 T^{5} + 1654 T^{4} + \cdots + 28483569 \)
$11$
\( T^{6} + 14 T^{5} + \cdots + 1896428304 \)
$13$
\( T^{6} + 40 T^{5} + \cdots + 5679732496 \)
$17$
\( (T^{3} + 166 T^{2} + 8920 T + 156324)^{2} \)
$19$
\( (T^{3} + 164 T^{2} + 7292 T + 57316)^{2} \)
$23$
\( T^{6} + 171 T^{5} + \cdots + 3746541681 \)
$29$
\( T^{6} - 335 T^{5} + \cdots + 11463342489 \)
$31$
\( T^{6} - 352 T^{5} + \cdots + 97238137683600 \)
$37$
\( (T^{3} - 402 T^{2} + 24708 T + 3335284)^{2} \)
$41$
\( T^{6} + 187 T^{5} + \cdots + 52247959475625 \)
$43$
\( T^{6} + \cdots + 238533321586576 \)
$47$
\( T^{6} + 665 T^{5} + \cdots + 6187571675289 \)
$53$
\( (T^{3} + 730 T^{2} + 106300 T + 3250536)^{2} \)
$59$
\( T^{6} - 298 T^{5} + \cdots + 16\!\cdots\!16 \)
$61$
\( T^{6} - 1439 T^{5} + \cdots + 30\!\cdots\!09 \)
$67$
\( T^{6} - 1849 T^{5} + \cdots + 43\!\cdots\!81 \)
$71$
\( (T^{3} - 70 T^{2} - 685460 T + 223775052)^{2} \)
$73$
\( (T^{3} + 368 T^{2} - 372928 T - 134927744)^{2} \)
$79$
\( T^{6} - 382 T^{5} + \cdots + 19\!\cdots\!56 \)
$83$
\( T^{6} - 831 T^{5} + \cdots + 91\!\cdots\!41 \)
$89$
\( (T^{3} - 1719 T^{2} + 238491 T + 125506395)^{2} \)
$97$
\( T^{6} + \cdots + 285551326213696 \)
show more
show less